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Eckhaus instability for traveling waves
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The mechanism by which a one-dimensional pattern of traveling waves changes wavelength (i.e., the
Eckhaus instability) is studied in a binary fluid mixture. Long-lived transient phase modulations connect
states of uniform wave number. The dynamics of wave-number increases and wave-number decreases
are found to be qualitatively different due to a strong dependence of the group velocity on wave number.
Relevant theoretical models are discussed.

PACS number(s): 47.20.—k, 47.25.Qv

A fundamental question in pattern selection and dy-
namics in nonequilibrium systems involves understanding
the mechanism by which a periodic pattern changes
wavelength in response to changes in a control parame-
ter. This can occur through the growth of long-
wavelength phase modulations, conventionally referred
to as the Eckhaus instability [1]. In the case of stationary
patterns, this instability has been studied in a number of
physical systems [2,3]. In contrast, the case in which the
underlying pattern consists of traveling waves has re-
ceived very little attention. As we show below, the fact
that pattern modulations in such a system travel at the
group velocity of the waves leads to a wide range of
dynamical phenomena. The one previous experiment to
consider this question, by Janiaud and co-workers [4,5],
studied wavelength changes at a secondary instability
(the oscillatory instability) in Rayleigh-Benard convec-
tion. They examined unstable waves at two different
wave numbers which evolved to higher wave-number
states via the Eckhaus instability.

In this paper, we present the results of a study of the
dynamics associated with the Eckhaus instability in
traveling-wave convection in a binary fluid mixture. The
fluid is confined in a long, narrow annular channel which
approximates a one-dimensional system with periodic
boundary conditions. The bifurcation to traveling-wave
convection is subcritical, and stable patterns with
different numbers of roll pairs in the cell can be created.
The wavelength of the pattern is the extent of a roll pair
in the direction of roll propagation. As the Rayleigh
number (i.e., the temperature difference across the fluid
layer) is decreased, an Eckhaus instability is encountered
in the region near the saddle-node bifurcation to the con-
ducting state. We find that wavelength changes occur by
the growth of wavelength compressions and dilations
which grow in amplitude until they nucleate the annihila-
tion or creation of new roll pairs. Compression and dila-
tion pulses propagate at approximately the measured
group velocity v which varies by an order of magnitude
for wave numbers near the minimum of the Eckhaus sta-
bility curve. This instability results in either stable pat-
terns or conduction, but can evolve by long-lived tran-
sients with the successive nucleation and annihilation of

many roll pairs.
The apparatus has been described previously in Ref.

[6]. The fluid is confined between a sapphire top plate
and a copper bottom plate with a separation of d =0.309
cm. Sidewa11s of Ultem plastic form an annu1ar channel
with a rectangular cross section of width 1.288d and a
mean circumference of 67.09d. The top plate is regulated
at 25.000+0.0007'C. The fluid is 8.00 lo (by weight) eth-
anol in water. At the onset of convection, the average
temperature is 27.53'C, and the fluid parameters are
ttt= —0.26, P =9.16, and L =0.008 where std, P, and L
are the separation ratio, Prandtl number, and Lewis num-
ber [6]. The vertical thermal diffusion time is
r„=d ltc=74. 2 s, where a. is the thermal diffusivity. The
shadowgraph technique, which images index of refraction
variations in the convecting fluid, is used to visualize the
pattern [6]. The resulting optical signal is measured with
a 720-element annular-array CCD camera.

The technique of complex demodulation, which can be
regarded as a local version of harmonic analysis, is used
to obtain the local amplitude and phase of the nearly har-
monic signal [7]. The wavelength profile k(8, t) in the
spatial coordinate 8 at time t is obtained from the demo-
dulation in t. The wave-number profile is further refined
by applying a local scale factor to correct for optical dis-
tortions. This factor is computed using the wave-number
profile of a uniform state traveling at constant phase ve-
locity. The result is k =k(O, t).

The system undergoes an initial subcritical bifurcation
to traveling waves at a reduced Rayleigh numberr„=l.70, where r =R /R, . The Rayleigh number
R, =1708 is the onset Rayleigh number for convection in
a laterally infinite pure fluid, with the corresponding tem-
perature difference across the fluid layer AT, calculated
using the fluid parameters of the homogeneous mixture.
As the Rayleigh number is increased in the convecting
state, the phase velocity v& decreases continuously and
goes to zero at r *=1.73, resulting in stationary convec-
tion [6]. As r is decreased, v& increases until a saddle-
node bifurcation is reached, below which the system goes
into conduction. Well above the saddle node, a range of
wavelengths is stable. In the work presented here, the
system is prepared in uniform states of different initial
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wave number k, by making sudden transitions from the
conduction state to states of stationary convection above
r

As r is decreased, uniform traveling-wave states with
wave number k,- go unstable to wavelength perturbations
at a Rayleigh number rz(k, ); this Eckhaus stability
boundary is shown in Fig. 1(a). Defining ko as the
minimum in the stability curve, a parabolic fit to the
lowest three data points yields ko=(3.0320.05)d ' and
rE(ko ) = l. 518%0.003. Our data are consistent with
1's ( kp ) being both the minimum of the Eckhaus curve
and the location of the saddle node.

As illustrated in Figs. 2 and 3, the evolution of the sys-
tem differs qualitatively for k, )k0 and k, (k0. An ex-
ample of the behavior for k, ) k0 is shown in Fig. 2. Ini-
tially, a long-wavelength sinusoida1 modulation of k be-
gins to grow. As discussed in Ref. [5], this is consistent
with the behavior expected from the Eckhaus instability.
At a later time, as shown in Fig. 2(a), the modulation am-
plitude has grown to 15%%uo, and the spatial profile of the
modulation has changed. The dilated regions are wider
in spatial extent, and the compressions are narrower. At
t =19.6X10 s, the loss of one roll pair occurs within the
compression. The modulation travels at approximately
2.4v&, where v&=0.008d s '. The features near I9=~/8
and 3m. /8 rad in Fig. 2 do not appear to affect the dynam-
ics and are most likely due to inhomogeneities in the opti-
cal system.

Figure 4 is an alternate view of the phase modulation
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FIG. 1. (a) Experimental measurements of the Eckhaus sta-
bility boundary rE(k; ). The wave number is given by k =2m/k,
where k is the local wavelength measured in units of the cell
height d. The upper scale indicates the number of roll pairs cor-
responding to each initial wave number k;. The solid line is
drawn as a visual guide only. (b) The dispersion relation co(k)
with co in units of 10 rad/s and k in units of d ': o, data
from Fig. 2(a); and 0, data from Fig. 3(b). The slopes of the
solid lines represent the measured propagation velocities of the
compressions and dilations shown in Figs. 2(a) and 3(b), and the
line lengths indicate the range of k in these modulations.

in Fig. 2 which shows the time evolution of the local
wave number at a particular position in the annulus as
the modulations move past [8]. The initially sinusoidal
modulation grows in amplitude, while the compressed re-
gion narrows in spatial extent and becomes a well-defined
pulse. At t =19.6X10 s, there is the change in roll num-
ber described above, and then the amplitude of the
remaining compression pulse slowly decreases in time as
the pulse continues to propagate.

The behavior for k, & k0 is different. This is illustrated
by the example in Fig. 3. A slowly moving dilation devel-
ops. The amplitude of this dilation increases until a new
roll pair is created at t =2.5 X 10 s. Each creation event
produces a compression pulse which travels at a velocity
of approximately 2.0v4, where v&=0.009d s '. Later,
another dilation develops and eventually leads to the
creation of three more roll pairs and finally to the loss of
one roll pair to bring the system back within the stable
band.

During the times shown in Figs. 2 and 3, the convec-
tion amplitude is nearly constant, except very near roll
pair creations or annihilations where the amplitude must
go to zero in order to add or subtract phase. Thus the
perturbations to the uniform pattern are almost purely
phase modulations. The duration of a creation or annihi-
lation event is quite short, corresponding to a time less
than that for the rolls to move a few wavelengths.

One intriguing feature of the data shown in Figs. 2 and
3 is that some wave-number modulations appear to prop-
agate at a large group velocity ( —2U&), while others
move slowly. We have found that this is due to an unusu-
ally strong dependence of the group velocity v =des/dk
on the local wave number. To obtain the dispersion rela-
tion co(k), we calculate co(8, t) and k(8, t) when phase
modulations are present and then average the co's at each
value of k using a bin size of Ak =0.02d '. The results
are shown in Fig. 1(b) for two values of r. (The shift of
the curves in co is due to the strong dependence of co on
r )For k ). ko, the group velocity is positive and faster
than vs=co/k, while for k &k0, the group velocity is
much smaller and negative. The fact that vg changes
near k0 may reflect the intrinsic dispersion relation rath-
er than behavior associated with the Eckhaus boundary
or the saddle node. As illustrated by the solid lines in
Fig. 1(b), the wave-number modulations in Figs. 2(a) and
3(b) move at v =des/dk, showing that nonlinear correc-
tions to v are not significant for the data shown.

The work of Janiaud and co-workers [4,5] for a
traveling-wave Eckhaus instability in a pure fluid bears
some similarity to that described here. They observe
pulses of phase modulation which propagate at the group
velocity. However, in their experiment, the wave-number
increase occurs in a region where a standing wave has
developed. In our system, this does not appear to occur.
In Ref. [5], the authors argue that, for a supercritical bi-
furcation, the limiting form of phase compression pulses
could be expected to be a Korteweg —de Vries soliton.
The relationship between the width and amplitude of the
evo1ving compression pulse shown in Fig. 4 is consistent
with such a soliton, but severa1 issues remained to be ad-
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FIG. 2. Evolution of the local wave number in space and

time for k; & ko(k; =3.28d '), at r =1.543, for two time inter-
vals in the same data set. Wave numbers is mapped to color,
and the solid lines indicate the motion of a roll boundary (i.e.,
the phase velocity of the rolls). The annihilation of one roll pair
occurs at t = 19.6 X 10' s.
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FIG. 3. Evolution of the local wave number for

k; & ko(k, =2.90d '), at r =1.521, for two time intervals in the
same data set. The solid lines indicate the motion of a roll

boundary. Roll pairs are created at several times, and a roll

pair is lost at t = 19.6 X 10 s.

dressed, including the relevance of the theory to the case
of a subcritical bifurcation and the possible dependence
of pulse group velocity on amplitude [5]. A separate is-
sue raised by our experiments is the theoretical descrip-
tion of the propagating dilations observed for k & k0.

In this paper, we have presented data for the
traveling-wave Eckhaus instability in a binary Quid mix-
ture. We find that long-lived and intricate transients con-
nect states of uniform wave number. The dynamics of lo-
cally unstable waves is dominated by the qualitatively
different propagation characteristics of modulations with
k &k0 as compared to those with k)k0. One conse-
quence of the strong dependence of the group velocity on
k is that, as shown in Fig. 3(a), it is difficult for the pat-
tern to increase in wave number. A dilation grows in am-
plitude at the Eckhaus boundary, then a roll pair is creat-

I I I I
I

I I I I
I

t I I I

3—
I

0 10

TIME (IO s)

20 30

FIG. 4. Temporal evolution of the wave number k near a sin-

gle spatial point, 0=1.4m. rad, for data which includes that
shown in Fig. 2.
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ed, but the resulting compression pulse propagates away
leaving a dilation which can again grow and lead to more
roll creations.

In the case of a supercritical bifurcation, a theoretical
model of the dynamics of phase modulations of traveling
waves has been proposed in terms of a complex
Ginzburg-Landau equation with the limiting form of a
Korteweg —de Vries equation [4,5]. Whether this frame-
work is adequate to describe the dynamical behavior
shown in Figs. 2 and 3 remains to be investigated [9].
The results presented here indicate that the study of

binary fluid convection in an annular geometry can pro-
vide important insights into the mechanisms by which
wavelength adjustments occur in traveling wave patterns.
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