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Theory of electronic relaxation in solution:
Exact solution for a b-function sink in a parabolic potential
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(Received 12 March 1992)

We give a general method for finding the exact solution for the problem of a particle undergoing
diffusive motion in a potential in the presence of a &function sink of arbitrary position and strength.
The solution requires knowledge of the Laplace transform of the Green's function for the motion in the
absence of the sink. We find the exact solution for the case of the parabolic potential. This has long
been an unsolved problem and is of considerable importance as a model for nonradiative electronic re-
laxation of a molecule in solution.

PACS number(s): 05.40.+j, 34.20.-b, 82.40.—g, 82.50.—m

The relaxation of an excited electronic state in solution
has attracted considerable attention (see the recent excel-
lent reviews by Bagchi and Fleming [1] and Lippert et al.
[2]). A molecule in solution is put on an excited-state po-
tential energy surface (PES) by absorption of light. It
moves on the PES and if it reaches certain regions of the
PES it may undergo nonradiative decay. It can also decay
radiatively from anywhere on the surface. The problem is

to calculate the survival probability, P, (t) that the mole-
cule will still be found on the excited PES at time t

Most currently available theoretical models assume
motion on the excited PES to be one dimensional and
diffusive, the relevant coordinate being denoted by x. In
the discussion below, we shall refer to x as the position of
a particle and to the deexcitation of the molecule as the
decay of the particle. The probability P(x, t), that the
particle may be found at x at the time t obeys a modified
Smoluchowski equation [3-5]

tlP(x, t) -JP(x, t) —k,S(x)P(x, t) k„P(x,t) . —
t

We have adopted the notation of Ref. [1]. In the above,

t)' + tl dv(x) (2)
t)x dx

V(x) is a potential causing the drift of the particle, S(x)
is a position-dependent sink function, taken to be normal-
ized (for convenience), kp is the rate of nonradiative de-

cay, and k, is the rate of radiative decay. Initially, the
particle s position is taken to have a probability distribu-
tion Pp(x). Solutions to Eq. (1) have been obtained for
the following cases.

(1) The instantaneous extinction models (see Bagchi
[5]). This includes the Oster-Nishijima model [6], in

which the particle is assumed to decay as soon as it goes
out of the region 0 (x (a, or a variant of this, referred to
as the staircase model [6], in which the particle is
reflected at x =0 and absorbed at x =a. These models put
V(x) -O.

(2) The pinhole sink model. Here V(x) is taken to be
parabolic, which is much more reasonable than a flat po-
tential and the sink is taken to be a 6' function of infinite
strength, located at the origin [7]. That is, V(x) =Bx /2,

P(x,s) -„dxoS'(x,s+k, lxp)Pp(xp),

g(x, slxp) is the Green's function, obeying

fs —X+kpS(x)] Q(x, s lxp) b(x xp) .

(4)

(5)

Q(x, s lxp) describes motion in the case where there is no
radiative decay. Using the operator notations of quantum
mechanics, we write

Q(x, slxp) -(xl[s —X+kpS] 'lxp) .

Now we use the operator identity

[s —X+kpS] ' [s —X]
—[s —X] 'kpS b —L+kpS]

and arrive at the Lippman-Schwinger-type equation

Q (x,s l xp) =Qp(x, s l xo)

p cx)

kp dy go(x, sly)S(y)Q(y, s lxo) .

(7)
gp(x, slxp) (xl [s —X] 'lxp) corresponds to propaga-
tion of the particle placed initially at xo, in the absence of
any sink. Note that it is the Laplace transform of
Gp(x, t lxp), which is the probability that a particle start-
ing at xo may be found at x at time t, given that there is

no decay. Obviously, f— dx Gp(x, t lxp) 1, so that

f— dx 5'p(x, s lxp) = I/s.

S(x) b(x), and kp vv. However, a solution in the
case where the 8 function is located at x, and its strength
is finite [S(x)=b(x —x, ) and kp (~] has been obtained
numerically [6]. The numerical method was found to fail
in the region of large kp.

In the following, we give a general procedure for finding
the exact solution of the problem with a 8-function sink.
Solutions have been obtained for several different prob-
lems by this method and shall be reported separately [8].
The Laplace transform P(x,s) fo P(x, t)e "dt obeys

[s —X+kpS(x)+kit]P(x, s) Pp(x) . (3)

Pp(x) =P(x,0) is the initial distribution. The solution of
this equation may be written as
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If S(y) =8(y —y, ), then one can solve the Eq. (7) to obtain

Q(x, sixp) Qp(x, sixp) kpQp(x, six )Qp(x„sixp)[l+kpSp(x„six )] (8)

1
t Oo

1
—[1+kpQp(x &,s+ k ixi)] kp„dxp Qp(xi, s+ k, exp)Pp(xp) (9)

s+k,
An average- and a long-time rate constant may be used to characterize P, (t) [1]. They are defined by kt '

fp dtP, (t) and kL,
—lim, (d/dt)lnP, (t). Clearly, kt '=P, (0) and kL, is the negative of the pole of P, (s),

closest to the origin. From Eq. (9),

kt '
1 —kp[1+kpQp(x„k, ix, )] '„dxp5'p(x„k„exp)Pp(xp)1 (io)

P, (s)-

Using the above equation in (4) gives us P(x,s) explicitly. Our interest is in the survival probability, P, (t)
I d—xP(x, t) whose Laplace transform, P, (s), is given by P, (s) f dx P(x,s). From equations (4) and (8), we

get

Obviously, kt is dependent on the initial probability distri-
bution Pp(x). On the other hand, kt. is the negative of the
pole of ([I+kpQp(x„s+k, ~x, )][s+k,]) ', closest to the

origin, on the negative s axis, and is independent of the in-

itial distribution.
In the following, we give results for the parabolic poten-

tial, where we take V(x) Bx2/2. In this case, one can
solve the equation [s —X]Qp(x, s~xp) b(x —xp) using
standard techniques for determination of Green's func-
tions for ordinary differential equations [9] to obtain

5'p(x, s~xp) F(z,s~zp)/s,

with

F(z,sIzp) =D ( z()D„(z))exp[(zp z )/4]

~ r( I —v) [8/(2' )] 't'. (i2)

In the above, we have introduced a new variable z related
to x by z -x(A/8) 't, zj xj(A/8) 't for any subscript
j. v = —s/8 and I is the gamma function. z &

min(z, zp) and z ) max(z, zp). D„are parabolic
cylinder functions. To get a qualitative idea of the behav-
ior of the rate constants, we imagine the initial distribu-
tion Pp to be sharply peaked at xp, and to be well repre-
sented by b(x —xp). Then, we obtain

kpF(z„k, izp)
kt '-k, '

1 — „'(''
i )

. (13)

Further,

kL,
—[value of s for which s+kpF(z„s~z, ) =0] +k, .

(i4)

We note that kr is dependent on the initial position xo
(i.e., zp) and k, in a rather complex fashion. On the other
hand, k~ is independent of xo and depends on k, linearly.
In the following, we let k, 0, in which limit equations
(13) and (14) simplify. By analyzing this limit, we arrive
at conclusions, which we expect to be valid even when k, is
finite. Using the properties of D„(z) [10],we find that as
k, 0, F(z„k,[zp) and F(z„k„~z,) exp( z, /2) [8/—
(2+A)]'~ sothat

kpF(z„k, ~zp)/[k, +kpF(z„k, ~z, )] 1 .

Hence

kpF(z„k, izp)

&k k +kpF(z k Iz ) k, -p

We take, without loss of generality, zp &z„so that the
particle is initially placed to the left of the sink. Then

k exp(z /2)/[kp[8/(2trA)] ' }

exp [(z$ —z,')/4] D„(—zp)

ak, D„(—z, )

(is)

v 0

After somewhat lengthy algebra, we obtain

v/k p D„(—z, )D„(z,)I (1 —v) .

If v n, where n 0, 1,2, . . . , then D„(z) 2

(i7)

kt ' -exp(z, '/2)/[kp[8/(2trA )] ' '}

+, dz exp(z /2)dz[1+erf(z/J2)] (tr/2) ' /8.

(16)
In the limit of the pinhole sink, i.e., kp ~, this reduces
to the expression of Poornimadevi and Bagchi [11],ob-
tained by calculating the mean first passage time.

As in Ref. [1], the viscosity and temperature depen-
dence of the rate constants kt and ki may be obtained by
making the identifications A kT/g and 8 ptu /g, with

( being proportional to the viscosity rt. Note that A/8
is independent of the viscosity. In the low viscosity or
small kp limit, the dimensionless rate constant kp kp/
(2trAB) '~z&&1, only the first term on the right-hand side
(RHS) of (16) is significant. kt is then independent of rl.
If the sink is not at the origin, (z, &0) the rate exhibits
Arrhenius-type activation. But if z, =0, ki would de-
crease with temperature, leading to an apparent negative
activation energy. If the viscosity is high or ko is large,
ko» 1, and ki shows inverse dependence on g. Further, in
this limit the ki is determined by the rate of arrival of the
particle at the sink position, which would increase with
temperature. Therefore ki increases with temperature.

The long-term rate constant kq is determined by the
value of s, which satisfy s+kpF(z„s(z, ) 0. We write
this equation as an equation for v( -—s/8),
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xexp( —z /4)H„(z/J2), H„being Hermite polynomials.
I (1 —v) has simple poles at v=1,2, . . . . A graphical
analysis using the above information shows that there is
one value of v C [n,n+1] which satisfies Eq. (17). Our
interest is in v E [0,1], as kL =Bv. If ko«1, or z, ))1
then v«1 and one gets v=koDo( —z, )Do(z, ) and hence

kL =exp( —z, /2)ko[B/(2trA)] ' (18)

In this limit, the rate constant, kL, exhibits Arrhenius ac-
tivation and is independent of rl. If ko»1, v is deter-
mined by D„(—z, ) D„(z,) 0. If ~v~ & 1, D„(z) 0 only
for z & 0, and hence we write this as D„(—~z, ~

) =0. If
ko 0 and z, 0, one gets kL, -B, the result for pinhole
sink at origin [3,5]. However, for any other value of ko
and z„one has a solution of (17) for v&1. From the
above analysis, one finds that both ki and kr, are indepen-

dent of g if ko«1 and proportional to g
' if kp»1 as

concluded by earlier authors [1,12]. At intermediate ri,
one expects fractional dependence on g.

Our Eq. (8) is quite general and we have used it to solve
several related problems, involving b-function sinks, for
which Qo(x, s~xo) is known. The same procedure is also
applicable to the case where S is a nonlocal operator, and
may be represented by S=—(f)ko(g~, where f and g are ar-
bitrary acceptable functions. Choosing both of them to be
Gaussian should be an improvement over the b-function
sink model. S may even be a linear combination of such
operators. Results for these [8] and detailed numerical
results for the parabolic potential shall be presented later
[»].
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