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We study chaotic quantum billiards using both microwave cavities and numerical simulations.
For the same geometry, viz., a Sinai billiard, agreement to remarkable precision is found for both

the eigenvalue magnitudes and the spatial detail of the eigenfunctions.

The association of the

eigenfunctions with classical periodic orbits is demonstrated, and scarred states are identified. De-
symmetrizing the Sinai billiard by slightly moving the central disk is shown to lead to strong local-
ization of the eigenfunction. The calculated eigenstates of the symmetric billiard show an even- and
odd-parity pair whose linear combination gives the localized state.

PACS number(s): 05.45.+b, 03.65.Sq, 84.40.Cb

The wave or quantum mechanics of a particle whose
classical motion is chaotic is the subject of much recent
interest [1-7]. Since the nonintegrable nature of the prob-
lem precludes exact analytical results for the eigenvalues
and eigenfunctions, numerical approaches are required.
Such numerical simulations have yielded significant in-
formation regarding eigenvalues and their statistics [8],
and the eigenfunctions [1,9]. From such simulations, the
association of the eigenfunctions with classical periodic
orbits was discovered [9].

Experiments and theory on atoms in magnetic fields
have yielded some of the most definitive results to date,
allowing direct comparison of experimental and theoret-
ical results [10]. However, only the energy of the eigen-
states, or at most an additional spectral intensity, are
available from such experiments to date.

Recently, experiments on microwave cavity and scat-
tering geometries (11, 12] have been reported that ex-
ploit the correspondence of the stationary solutions of the
scalar Maxwell’s equation and the Schrédinger’s equa-
tion in two dimensions (2D), viz., (V2 + k2?) = 0. Such
experiments have also provided the first direct experi-
mental observation and mapping [11] of scarred eigen-
states. One of the unique aspects of the microwave cav-
ity experiments is the ability to measure the entire eigen-
state, a privilege usually accorded only to theorists. Al-
though neither the experiments nor the theory on the
Schrodinger equation in two-dimensional cavities is in
much doubt, a detailed comparison of the two on the
same cavity, mapping details of wave functions, has not
been done before to our knowledge.

The microwave experiments were carried out on Cu
cavities in the form of Sinai billiards. The cavity con-
sists of a rectangle of dimensions 21.8 cm x 44 cm X 6
mm, with a circular disk 10 cm diameter x 6 mm height
placed at the center. Because of the small 6 mm height,
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all modes occurring at frequencies below 25 GHz obey
the 2D wave equation. The wave functions of nearly
200 modes were experimentally mapped out in two di-
mensions using a small bead perturbation [14] technique.
As the metallic bead is magnetically moved from place
to place inside the cavity, the resonant frequency of the
cavity is tuned slightly, and the detuning is proportional
to the square of the electric field strength [13] at the lo-
cation of the bead. A contour plot or density map of the
frequency detuning thus yields a map of |¢|2.

Three examples of Sinai billiard eigenstates are shown
in Fig. 1. These are fairly low frequency modes which
seem least susceptible to experimental error, such as
slight imperfections of the cavity. The association of
the wave functions with classical periodic orbits is just
emerging at these low frequencies. The wave functions
are compared below with numerical calculations, which
are described next.

Experiment

Theory

FIG. 1. Experimental and theoretical probability density
plots for the Sinai billiard described in the text. The experi-
mental frequencies are, from top to bottom, 3.112, 3.278, and
3.663 GHz; and the theoretical values are 3.114, 3.280, and
3.664 GHz.
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The method we use to find the eigenstates of bounded
enclosures like the stadium is simple and accurate. We
pick a value of k, and suppose temporarily that an eigen-
state with energy E = h%k2/2 exists. Plane waves are
chosen as a basis; all have wave-vector magnitude k. For
the Sinai billiard, the basis functions sin(k.x) sin(kyy)
are used for the states reported here; the z and y axes
are boundaries and thus nodes of the eigenstates.

The Sinai billiard is solved separately for each of the
four symmetries (even-even, even-odd, etc.) by using ap-
propriate boundary conditions. For example, the wave
function at the points shown as dots in Fig. 2 are set to
zero for the odd-odd states, etc.

We try to force L' points on the boundary to be zero
using L < L' plane waves as a basis. If those points are
closer together than a wavelength (say by a factor of 3
or so0), the boundary will be specified sufficiently for the
quantum mechanics. We set a single arbitrary point in-
side the boundary to 1, and the resulting inhomogeneous
set of equations can be solved by singular value decom-
position [15, 16].

At each trial energy, the wave function inside the
boundary is normalized, after which the wave function
is evaluated on the boundary at about four times as
many points as were initially set to zero. The sum of the
squares of the values on these points is a positive number
which we call the “tension.” The tension is found to have
deep minima as a function of k, approaching very small
values at what are obviously the eigenvalues.

The results of the experiments and the numerical cal-
culations are shown for three eigenstates in Fig. 1. Note
that the calculated and measured eigenfrequencies agree
to better than 0.1%. Note also that experiment and the-
ory for the wave functions agree very well.

The comparison was carried out over the entire spec-
tral range up to about 10 GHz, corresponding to sev-
eral hundred levels. With a few exceptions, all the wave
functions observed in the experiment were also present
in the theory. The experiments may miss closely spaced
eigenvalues due to the finite resonance widths caused by
absorption in the walls. As we note later, the absorption

FIG. 2. (a) Typical set of points (dots) where boundary
conditions are imposed; the z and y axes are automatically
nodes because of the basis functions used. (b) A nonisolated
periodic orbit (and its symmetry partner) in the Sinai billiard
corresponding to the top state in Fig. 1.
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does not affect the spatial aspects of the measured wave
functions.

One of the eigenfunctions (Fig. 1 top) is clearly influ-
enced by periodic trajectories, an example of which is
shown in Fig. 2(b); these are nonisolated periodic orbits
which avoid hitting the circular disk in the center. The
orbits are nonisolated in the sense that they are part of a
continuous one parameter family of orbits which all have
the same slope but differ in their intercepts; they are
the analog of the “bouncing ball” states first seen in the
stadium by McDonald and Kaufman [1].

A principal result which emerges from examination of
eigenfunctions such as shown in Fig. 1 is the association
of the eigenfunctions with classical periodic orbits [9].
Figure 3 shows the calculated and experimental state at
2.505 GHz (calculated 2.503 GHz), which has a peculiar
localization between the central disk and the walls. There
is an unstable periodic orbit which bounces vertically ex-
actly in the center; however, this orbit is an isolated pe-
riodic orbit of zero measure. This phenomenon can be
seen in many other states in the Sinai billiard. The in-
fluence of isolated periodic orbits on eigenstates and the
first theoretical explanation for scarring (in terms of the
short-time quantum dynamics near the periodic orbit)
were given in 1984 [9]. A somewhat different theoretical
approach with new insights was given by Bogomolny [17]
and Berry [18]. In Ref. [9] it was shown that those or-
bits with small enough geometrical Lyapunov exponent
A (M\/2m < 1) would generate scars; the vertical bounce
orbit between the top of the circular disk and the side has
A/2m = 0.8, so it is indeed a scarring orbit. These mi-
crowave experiments have provided the first experimental
mapping of the wave functions of scarred states [11].

When classical trajectories flow between regions of co-
ordinate space or more generally phase space but quan-
tum eigenstates do not, the phenomenon is deemed
“quantum localization,” which in many ways is the op-
posite of quantum tunneling.

This phenomenon is observed experimentally by
slightly desymmetrizing the Sinai billiard, thereby break-
ing parity. The consequence of this is shown in Fig. 4,
bottom, which displays the effect of introducing a small
asymmetry (about 1%) to the Sinai billiard of Fig. 1, by
displacing the disk to the right. The f = 3.654 GHz
eigenfunction of the asymmetric cavity shown in Fig. 4

FIG. 3. Scarred state at 2.505 GHz (experimental, bot-
tom), 2.503 GHz (calculated, top). The unstable vertical
bounce trajectory is “responsible” for this scar.
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FIG. 4. Probability density plots of the 3.664 GHz state
(top), its even partner at 3.695 GHz (down one); the addition
of the two amplitudes squared (third state) and the experi-
mental symmetry broken state for a displaced disk at 3.654
GHz (bottom).

not only has a lower frequency than the f = 3.663 GHz
(Fig. 1) symmetric mode, but also has its wave function
localized on one side. The lower frequency belongs of
course to the state with the most area. This state dis-
plays a global localization, in addition to the scarring
which is localization along (the diagonal) periodic orbits.

In an ironic turn of events, the quantum localized
states may be made to “tunnel” into each other, thus
regaining the delocalization of the classical trajectories,
by bringing the disk to the center. (The use of the term
“tunnel” is not really appropriate, since the classical tra-
jectories cross from the left to the right with measure
unity.) We shall call this phenomenon “retunneling.”
The phenomenon is illustrated in the numerical calcu-
lations, which show, in Fig. 4, the even and odd part-
ners at 3.695 and 3.664 GHz, respectively. (Uncommonly,
the even state has a higher energy.) When added, they
give the nonstationary (for the symmetric billiard) state
shown second from the bottom, which is very similar to
the experimental slightly asymmetric stationary state at

S. SRIDHAR AND E. J. HELLER 46

3.654 GHz, Fig. 4, bottom. (All the plots are of |¥|?; the
bottom localized state was of course generated by adding
amplitudes before squaring.)

The behavior of the energy levels as a function of a
parameter has played a major role in the theory of eigen-
values of chaotic Hamiltonian systems [8,19-22]. As a
parameter is varied, the levels of a given symmetry will
interact and repel one another with an interaction that
can sometimes be estimated [23]. Gaspard and Rice
have introduced the important idea of the curvature of
the energy levels plotted as a function of a parameter
[21]. Takami [24] has given strong evidence that many of
the avoided crossings in the stadium billiard (and doubt-
less other chaotic systems) are understandable as scarred
states that have interacted in pairs, triplets, etc. The
present situation involves states of different symmetry,
states which in principle are allowed to be degenerate
at some value of a parameter. Here they are necessarily
split by the retunneling interaction.

The agreement between the numerical calculations and
the experiments confirms the validity of both approaches.
While no serious problems were expected from either,
the mutual confirmation is significant, since it lends a
physical reality to the numerical simulations, and verifies
that the nonidealities (principally finite skin depth, about
1 pum, and absorption) present in the experiment do not
affect the results (at least those discussed here).

There will be interesting geometries for scattering and
cavities where calculations are not so easy. It is reassur-
ing to see that when both experiments and theory can
be directly compared, the agreement is more than satis-
factory.

Beyond the good agreement of theory and experiment,
this work has raised interesting questions about the re-
lation between wave mechanics and the corresponding
classical ray motion. The retunneling and its associated
splitting is not fully understood, and is intimately tied
up with the issue of quantum localization.
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Experiment

FIG. 1. Experimental and theoretical probability density
plots for the Sinai billiard described in the text. The experi-
mental frequencies are, from top to bottom, 3.112, 3.278, and
3.663 GHz; and the theoretical values are 3.114, 3.280, and
3.664 GHz.
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FIG. 2. (a) Typical set of points (dots) where boundary
conditions are imposed; the z and y axes are automatically
nodes because of the basis functions used. (b) A nonisolated
periodic orbit (and its symmetry partner) in the Sinai billiard
corresponding to the top state in Fig. 1.
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FIG. 3. Scarred state at 2.505 GHz (experimental, bot-
tom), 2.503 GHz (calculated, top). The unstable vertical
bounce trajectory is “responsible” for this scar.
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FIG. 4. Probability density plots of the 3.664 GHz state
(top), its even partner at 3.695 GHz (down one); the addition
of the two amplitudes squared (third state) and the experi-
mental symmetry broken state for a displaced disk at 3.654
GHz (bottom).



