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Structural and dynamical properties of long-range correlated percolation
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We develop an algorithm for generating long-range correlations in the percolation problem and in-

vestigate their eA'ect on both structural and dynamical properties of the incipient infinite cluster in two

dimensions. We find that the fractal dimensions of the backbone and the red bonds (singly connected

bonds) are quite diA'erent from uncorrelated percolation and vary with A., the strength of the correla-

tion. Also, we find that the conductivity exponent varies with A. .

PACS number(s): 64.60.Ak

The study of systems possessing spatial disorder has

been a very active area of research in recent years. Per-
colation is a model that has been widely applied to de-

scribe the essential physics of such systems [ll. In studies

of the percolation model and its variants, spatial disorder

has usually been assumed to be uncorrelated —i.e., the

probability for any site to be occupied is independent of
the occupancy of other sites. However, the nature of dis-

order in real systems is seldom uncorrelated. For exam-

ple, the permeability of rock formations is known not to

vary randomly in space, but to be consistently high over

extended regions of space and low over others; thus it is

strongly correlated in space.
The possibility that the elements in a percolation prob-

lem experience a long-range spatial correlation has been

of long-standing interest [2],but the study of such a corre-
lation has been handicapped by the inability to perform

computer simulations. Here we develop an algorithm for

generating long-range correlations in the site-occupancy
variables of the percolation model. We also investigate
the effects of such correlations on the structural and

dynamical properties of percolation.
Our first step is to replace the uncorrelated occupancy

variables of ordinary site percolation by correlated vari-

ables ju (r)j. If the correlation has a finite range Ro, then

the exponents characterizing the correlated system will be
unaffected —since if the correlated system is viewed on a

scale larger than Ro, it will be uncorrelated [3]. Here we

study the effect on the exponents if the correlation has a

range that is effectively infinite; such long-range spatial
correlations are customarily represented by the power-law

form

(u (r)u (r+ R))-R (1)

To generate long-range correlated variables [4], we (i)

start with random uncorrelated variables jw(r)], taken
from a uniform distribution; (ii) form the Fourier trans-
form w(q) —=fw(r)e'~'dr; (iii) multiply by a power in q
space u(q)—= ~q( w(q); (iv) Fourier transform back to
real space, u(r)= fu(q)e ' 'dq. We thereby obtain
long-range correlations in our disordered system, with a
correlation function given by

g(R) =(u(r)u(r+R)) =
~q~ e 'q "dq

(2)

The uncorrelated case corresponds to k =0 since
f(X=O) =0 in (2). We can tune the parameter
(k & d =2) to obtain any arbitrary degree of long-range
correlation. The ease X &0 corresponds to antiferro-type
correlations, since the site occupancy variables favor a
configuration in which the neighbor of an occupied site
prefers to be vacant and vice versa; thus the various con-
tributions to the correlation cancel each other faster than

they would for an uncorrelated configuration. This results
in the correlation decaying with distance even faster than

the uncorrelated case.
We place these numbers [u(r)] on the sites [r] of a

two-dimensional lattice of size L [5]; the variables [u]
have a Gaussian distribution P(u) which is normalized to
the same form for all X,. Next we convert these continu-

ously distributed variables to the corresponding discrete
(correlated) occupancy variables given by 8(r) =e(y
—u(r)), where p is chosen to give the desired occupied
fraction p using the expression p =f ~ P(u)du.

We next study the dependence on the correlation of
various percolation quantities. We begin with the percola-
tion threshold p, . Since the probability distribution is the
same for all k, any variation in p, can be attributed entire-
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FIG. 1. The phase diagram p, (X).

ly to the variation in the strength of correlations. We cal-
culate p, (A, ) using the Ziff [6] method of measuring the
average internal and external cluster perimeters, and iden-
tifying p, as the value of p where the two are equal. We
use a lattice of size L 104 [5] with 12000 realizations
for every X value. We find that ferro-type correlations
(X )0) decrease p, and antiferro-type correlations
(A, (0) increase p, (Fig. 1). For X 2, our results extra-
polate to p, —,', which can be understood from (2) since
for )I, 2, the symmetry between vacant and occupied
clusters is restored.

To study the effect of long-range spatial correlations on
the cluster structure, we calculate [5] the fractal dimen-
sion df of the incipient infinite cluster and the fractal di-
mensions dna, d;„, and dg of its constituent parts, the
backbone, the minimum path, and the singly connected
"red" bonds, respectively [I]. We find that df does not
change appreciably [7] with the correlation parameter k,
while the other exponents vary rather dramatically with A, .
We find that the backbone gets increasingly compact as X

increases. A quantitative analysis of the tendency, in
terms of the values of the various exponents, is presented
in Table I and Fig. 2. We see that dna increases continu-
ously with X while dg and dm;„decrease. In fact, the clus-
ter appears to become identical to its backbone for
A, ) 1.75 (df=daa=1. 9). The variation in all the ex-

(4a)

where

d„df+ g 2+ (p —P)/v, (4b)

with d„=2.87 and /=0. 97 for uncorrelated percolation.
We first calculate d using (4a) and then find g using
(4b) for various values of A, , and find that g changes sub-
stantially with A, [see Figs. 2(c) and 3(d) and Table I].

(ii) We also calculate the conductance directly by re-
ducing the network to a single equivalent conductance us-

ing a series of "propagator" transformations [8,9] that in

ponents is consistent with the trend towards increasing
compactness as A, increases. In Fig. 3, we plot the values
of these exponents as a function of A, and observe that
exponents are linear in X, for A. &1, so we can write
dan(X)=dan(0)+&4, dg(A)=d~(0) —Ah, and d;„(X)
=d;„(0)—Ad/2. Moreover, the quantities X~ —=dita
+dg, X2=—d an+ 2d;„, and X3=—2d;„—dg are remark-
ably A, independent for all values studied.

We anticipate that long-range spatial correlations will

have a substantial effect on the dynamical exponents, due
to the considerable variation in the structural properties of
the incipient infinite cluster. Moreover, knowledge of the
dynamic properties like the conductance is essential for
trying to understand the behavior of real systems, such as
the permeability of rock formations. Thus we now consid-
er the conductance exponents p and (defined by

(p —p, )", L
(3)

.L ' S=S"
where o is the conductance and g p/v for d 2, with v

being the correlation length exponent. There are many
conjectured relations between static and dynamical ex-
ponents [I]; these could be more efficien]y tested since
we have a tunable parameter X, and all the exponents can
be calculated independently as a function of A, .

Here we calculate [5] the conductance exponent g using
the following two different methods.

(i) We allow particles to diffuse on the incipient infinite
cluster and calculate the mean-square displacement as a
function of time [I],

( 2) 2/dw
t

TABLE I. Dependence upon A, of the various quantities calculated. Studies of the fractal dimensions of various cluster components
for q-state Potts droplets [13,14] reveal a remarkable correspondence to the exponents in our correlated percolation problem; namely,
for each value of q 6 [1,4], we can find a value of X E [0,2] such that all the corresponding exponents are equal to a good accuracy
(compare the last two rows of the table with our values given in rows labeled A, =1.0 and 1.75, respectively). Consequently, the quanti-
ties X|,X2, and X3 defined in the text remain approximately constant as a function of q as well.

0.0
0.25
0.50
0.75
1.00
1.27
1.75

q-2 Potts [14]
q 3 Potts [14]

pc

0.593 w 0.002
0.590 ~ 0.003
0.584+ 0.003
0.580+ 0.003
0.569 ~ 0.003
0.560 ~ 0.004
0.529 + 0.005

dna

1.61 ~ 0.02
1.65 ~ 0.03
1.68 + 0.03
1.73+ 0.03
1.76+ 0.03
1.83 ~ 0.02
1.90+ 0.02
1.75+ 0.01
1.75 W 0.02

1.13+0.01
1.120 ~ 0.01
1 ~ 113+0.01
1.102 ~ 0.01
1.070+' 0.01
1.048 + 0.01
1.015 ~ 0.01
1.08 ~ 0.01
1.01 +' 0.01

0.75 + 0.05
0.71 ~ 0.05
0.68 + 0.05
0.63+ 0.05
0.60+ 0.04
0.48+ 0.05
0.36 w 0.05
0.55+ 0.01
0.32+ 0.04

1.02+' 0.02
0.968 w 0.02
0.939 +' 0.01
0.860+ 0.01
0.825 + 0.01
0.673 + 0.02
0.396+' 0.02
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FIG. 2. Analysis used to obtain critical exponents for (a) the
fractal dimension of the infinite cluster df, (b) the fractal di-

mension of the backbone dsa, and (c) the conductance exponent
In (a) and (b) ) -1.75, 1.0, and 0 reading from top to bot-

tom, while in (c) k 1.75, 1.27, 1.0, 0.75, 0.5, 0.25, and 0 from

top to bottom.
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turn are composed of a series of star-triangle transforma-
tions. We calculate a for various lattice sizes and find the
exponent g using (3) for several values of X (Table I). We
then compare with the results from diffusion and find that
the two sets of values for g(k) agree well with each other,
and are consistent with the trend towards increasing com-
pactness with increasing A, [see Fig. 3(d)]. As the correla-
tion gets stronger, the resistance is increasingly dominated
by the rare red bonds, and thus g dz (Table I).

To study the correlation length exponent v, we first car-
ry out a Monte Carlo renormalization group (RG) calcu-
lation, in the spirit of Ref. [10],but with variables that are
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FIG. 3. Variation of exponents with correlation strength X,.
(a) Fractal dimension of the backbone dan. (b) Fractal dimen-
sion of the minimum path d;„. (c) Fractal dimension of the red
bonds dg. (d) Conductance exponent g. Note the trend towards
compactness as k 2; i.e., dss 2, d;„ I, g 0.
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I I I appears to hold in that certain ratios of exponents do not
change; this is similar to the situation in a large class of
models, including the q-state Potts models [13].

Finally, we compare our results for long-range correlat-
ed percolation with the structural properties of Ising clus-
ters at criticality. It is known that the Ising model at criti-
cality possesses correlations of the form (I), i.e.,

(S;SJ)-R '+"' (6)

FIG. 4. Correlation length exponent v(A, ).

correlated. To this end, we must find the fixed point
p*(L) of the RG transformation for several values of the
lattice size L. From the fixed point we can find the ex-
ponent v as a function of A, by using the scaling relation

p*(L)-p, -L -'t". (5)

We find agreement of v(X) with the predictions of Wein-
rib and Halperin [2] for )I, ~ 1.0 (Fig. 4); specifically, we

obtain no change in the exponent from the uncorrelated
percolation value for A, ~ 0.5; for 0.5 ~ X ~ 1.0, our value

agrees with the prediction v=2/(d —
A, ), but for X ~ 1.0,

our values are consistently lower than this prediction.
Before concluding, we note that several exponents we

found do not seem to change with the introduction of
long-range correlations [7]. These are the fractal dimen-
sion df of the incipient infinite cluster and exponents relat-
ed to df, the ratio P/v, y/v, and the exponent r of the clus-
ter size distribution [11]. Thus although the universality
class changes continuously with X, strong universality [12]

which corresponds to the correlation strength A, =d —
ri

=1.75 in two dimensions. Consequently, it is interesting
to compare our clusters at A, 1.75 to the "bare" critical
Ising clusters (not Ising droplets [1]). The two systems
are identical only up to two-point correlations, moreover
even this is true only asymptotically. Thus, we do not ex-
pect the exponents to be the same. The percolation
threshold for Ising clusters is known to be p, =0.5 because
of symmetry, and we find p, 0.529 ~ 0.005 for X =1.75.
However, we find p, 0.5 only as k 2, also because of
symmetry. The results [7] for the Ising case are
df =1.947 (analytic) and df =1.90+'0.006 (simulations).
We find df 1.91~0.01 for k 1.75

In summary, the success of our numerical method for
generating long-range correlated percolation serves to
motivate applications to related problems of interest, such
as directed percolation, invasion percolation, and aniso-
tropic percolation. Moreover, since we have a tunable pa-
rameter X, we are also able to conjecture a model indepen-
dent relation between the various exponents (see the dis-
cussion in the caption of Table I).
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