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We consider a system of globally coupled bistable systems under the influence of noise and periodic
modulations. The hopping process between the stable states is described by a nonlinear master equa-
tion. We observe an unusually large amplification of the periodic modulations for certain values of the
noise strength due to collective dynamics of the coupled bistable elements.
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Rate processes in bistable and multistable systems have
been studied for a long time in many fields of physics and
other fields as well (for a review, see [1]). One widely
used approach is stochastic modeling in terms of a
Langevin equation [2-4]. These equations describe the
motion of a particle in a low-dimensional phase space in
the presence of fluctuations which simulate interactions
with other degrees of freedom. The transition rates be-
tween basins of attraction can be obtained, in principle,
from the corresponding Fokker-Planck equation. With
these transition rates, the rate process can subsequently be
described in terms of a master equation. These master
equations are linear equations for the populations in the
basins of attraction and possess unique asymptotic solu-
tions for large times.

In this paper we consider a network of globally coupled
bistable systems, wherein each individual system is de-
scribed by a two-state master equation. We are especially
interested in the collective aspects of the rate processes
due to a possible cooperative interaction of the individual
units. Our results demonstrate that there is a substantial
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collective effect near a spontaneous ordering transition
which takes place at a critical noise intensity. This collec-
tive effect manifests itself as a substantial amplification of
periodic modulation.

Spontaneous ordering transitions in noisy, globally cou-
pled systems have been observed before [5], but the effects
of periodic modulation, which have become increasingly
important to a number of applications, were not previous-
ly studied. Amplification of periodic modulation near a
deterministic bifurcation in a system of globally coupled
oscillators has recently been reported in an interesting pa-
per by Wiesenfeld [6], who observed simultaneously a
suppression of the global response to the noise. Using per-
turbation theory and linearization of the dynamical equa-
tion near the bifurcation, he observed an amplification (of
the modulation) and a suppression (of the noise) which
occurred because of respectively coherent or incoherent
superposition. In contrast, the system we study here is
fully statistical, that is, the ordering transition is spon-
taneous and our treatment is based on a master equation.
It is remarkable that we discover results which are quali-
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tatively similar to those of Wiesenfeld. In our system, the
individual bistable elements (numerated by i=1,2, ...,
N) have stable states, + and —, and perform jumps, due
to either environmental or internal fluctuations between
the states with transition rates r,-i. The dynamics of the
ith single bistable element is described by a two-state
master equation for the populations p;,~ and p;* in the
state — and +, respectively. Each element is coupled to
all other elements with the same coupling constant g. The
coupling between any two units is such that they prefer to
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where g is a coupling constant, 4 is the strength of the
external periodic modulation, S is a static bias, rq is the
bare (uncoupled) transition rate, and D denotes the
strength of the fluctuations. AU denotes the energetic bar-
rier height that an uncoupled element has to overcome in
order to jump from one stable state to the other. In con-
trast to conventional deterministic coupling (kinetic Ising
model [12]), we have assumed probabilistic coupling.
This means that a certain configuration of states of ele-
ments j=1,...,V, j#i, does not deterministically gen-
erate a certain coupling to the ith element. This is
reflected by the occurrence of the probabilities {pji} in
(1) instead of the state variables o;= * | of the bistable
elements. The dependence of the transition rates on the
populations {pj‘t} is chosen as the most simple one which
guarantees ferromagnetic coupling. The parameters g, A4,
S, and D are already scaled quantities without dimension.
Rate expressions of this form can be obtained from sto-
chastic differential equations [13]. The nonlinear master
equation then reads

it =r* Upet)pi™ —ri™ Up G} pi™ . @)

Utilizing the mean-field approximation (N — o)
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we obtain the equation of motion for the order parameter
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where we have used the scaled quantities A=g/D,
a=A/D, and c=S/D.

For a=0, the stationary solution of (4), xgo
=tanh(Axo+ o), exhibits, in contrast to a single bistable
element (described by a single-particle Fokker-Planck
equation), a bifurcation at a critical value of the control
parameter A.(c) with A.(6) =1/(1 —x§). Without bias
(6=0), the stationary solution xo shows a second-order
(continuous) phase transition: The solution xo=0 is
stable for A <A.(0) =1 and unstable for A > A.(0). In ad-
dition, two nonvanishing stable, symmetry-breaking, solu-
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be in the same states (ferromagnetic coupling). Original-
ly, global coupling was studied using discrete maps [7],
but recent interest in this area has been stimulated by an
experiment with a multimode solid-state laser, wherein
the interaction among the modes was successfully
modeled by such a global coupling [8,9]. Moreover, the
techniques are important for understanding arrays of
lasers and/or Josephson junctions [9-11]. The transition
rates of the ith system from the =+ state to the * state
are then modeled as

, ro=Vvexp
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tions exist for A > A. [Fig. 1(a)]l. In the presence of bias
(6#0) we find a (discontinuous) first-order phase transi-
tion: one solution remains stable [the upper branch in Fig.
1(b)], while a new stable solution and a new unstable
solution occur below a critical value of the control param-
eter A.(o).

In a potential picture, Eq. (4) is the overdamped equa-
tion of motion in a symmetric potential for =0. For
A > A, the potential is bistable with minima at the nonvan-
ishing stationary solutions of (4), whereas for A <A, the
potential is monostable with a minimum at the vanishing
solution of (4). For o#0 the potential is asymmetric with
two minima for A >A.(o) and one minimum for A
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FIG. 1. Bifuraction diagram of the stationary solution of (4)

(a) without bias and (b) with bias. The dashed lines represent
unstable solutions, whereas the solid lines are stable solutions.
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<A.(c). The minimum corresponding to the upper
stable branch in Fig. 1(b) is the absolute minimum of the
potential. This branch is thus termed the globally stable
branch.

The critical behavior of the order parameter close to the
stationary values is obtained for small periodic driving by

expanding around the stationary points, i.e.,
x(t)=x0+6(), where

8(t) = —A8@t) +2aro(1 —x§) 2sin(Qr) (5)
and

A=2ro(1 —x§)"? [l;—k (6)

—x§

In Fig. 2, the relaxation coefficient A, which is the inverse
time scale of the relaxation process of the control parame-
ter, is shown. For o =0, the inverse time scale A decreases
with increasing control parameter (increasing coupling)
until it vanishes at A=A.(0). On the stable branches
(x070), the coefficient A increases again for A > 1 with
increasing control parameter and diverges for A ~!'—0
(i.e., g— ). The system thus exhibits critical slowing
down.

In a physically realistic array of elements, not all of
them are perfectly identical and much more important,
none of them is perfectly symmetric. A subset of array
elements may have a tiny preference to the + state, while
the rest may have a certain preference to the — state with
the result that the overall behavior is not fully symmetric.
Thus, the case with bias 60 is more realistic than the
latter without bias. Since positive and negative bias leads
to the same dynamical time scales we restrict ourselves to
a constant positive bias. For o0, the coefficient A has a
minimum on the continuous globally stable branch. On
the additional stable branch [A > A.(c)], the coefficient A
is positive, but becomes zero at A=A.(c). The system
thus shows critical slowing down on the additional stable
branch.

The dynamical response of the system to periodic
modulation is given by the long-time solution of E? (5),
i.e., 6(t) =xsin(Qr+¢), where ¥ =2r¢a(l1 —x§)'?/(q?
+A2)"2 and tang=— Q/A. The amplitude % is, up to a

/A

FIG. 2. The relaxation time scale of the order parameter A
(5) on the stable branches with bias (dashed lines) and without
bias (solid line).
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phase factor, the dynamical response function of the sys-
tem at the driving frequency, i.e, ¥ =exp(—ig)y(w=0),
where y(®) is the Fourier transform of the response func-
tion R(t) =2ro(1 —x§) 2exp(— At). Most interesting is
the dependence of the response function on the strength of
the fluctuations D. The spectral power amplification at
the driving frequency, defined by n=%2/42 [14], is then
given by

2
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In Fig. 3(a), n is shown as a function of the strength of
the fluctuations D for c=0. The quantity (D) shows a
resonance whose height and position Do(g) depends
strongly on the coupling g. For increasing coupling g the
position of the maximum approaches very quickly the
value of the coupling, i.e., Do(g)— g. The height of the
resonance peak has a maximum for a certain value of the
coupling g =g,. This allows the system to be tuned such
that the collective response to any particular periodic in-
put can be maximized. The maximal collective response
can exceed the maximal response of an individual bistable
element by orders of magnitude (depending on the driving
frequency Q).

For 6#0, the collective response also shows a resonance
as a function of the noise strength [Fig. 3(b)]. The curve
in Fig. 3(b) is obtained under the condition that the sys-
tem always stays in the vicinity of the globally stable solu-
tion. The maximal response is reached here for a different
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FIG. 3. The spectral amplification n is shown as a function of
the noise D at 0 =0.1 for various values of the coupling g (a)
without bias and (b) with bias.
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value of the coupling strength g=g; than in the case
o =0. The mechanism, leading to the large response for
finite bias o, is not the phase transition as in the case
o =0, but rather the minimum of A/2r¢ (see Fig. 2).

Also interesting is the shape of the response amplitude
as a function of the noise strength shown in Fig. 3. For
vanishing coupling, we do not observe a monotonous
Curie-type shape of the response, but rather a maximum
at a certain value of the noise strength Do(Q). This none-
quilibrium effect has been termed stochastic resonance
[14-20]. It occurs when the hopping time scale ro(Dg)
between the stable states equals half the period of the
periodic forcing and is connected with a significant im-
provement of the signal to noise ratio. For increasing cou-
pling, critical slowing down (at the second-order phase
transition for 6=0) generates a collective response which
combines with the stochastic resonance effect to exhibit a
collective stochastic resonance effect which is much more
efficient than that of a single-element bistable system.
The combined interaction of collective modes and none-
quilibrium response becomes even more obvious for finite
bias (6=0) if we restrict ourselves to the vicinity of the
globally stable stationary solution [the upper stable
branch in Fig. 1(b)]. Here, the maximal response of the
system is reached if the coupling constant g is chosen
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equal to the value of the noise strength D =D, for which
the uncoupled system shows the largest response. In other
words, the coupling must be tuned to the stochastic reso-
nance of a single bistable element. At this point, the
response of the individual system is maximal. Again, we
obtain the collective stochastic resonance effect which is
much larger than that of a single bistable oscillator. This
effect suggests a variety of very interesting technical ap-
plications. For instance the detection of ultrasmall signals
in biological systems (brain signals) might be significantly
improved by using a network of globally coupled SQUID’s
or Josephson-junction arrays.
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