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Quantization of the nonlinear Schrodinger equation
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It is shown that the quantum form of the nonlinear Schrodinger equation does not call, in general,
for the introduction of a finite relaxation time of the Kerr medium and of the concomitant quantum
noise sources.
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The "squeezing" of solitons demonstrated experimen-
tally [1] calls for a self-consistent quantum theory for the
nonlinear Schrodinger equation (NLSE) [2-4]. When
squeezing is performed at, or near, the zero dispersion
wavelength of the fiber, the NLSE degenerates into a
simpler form that involves only the action of the Kerr
medium [5]. This nonlinear equation can be simply in-
tegrated. However, it was pointed out [6-9] that the
quantized field calls for the assignment of a relaxation
time to the Kerr medium. Such an assignment is
equivalent to the introduction of a reservoir that calls for
the introduction of quantum noise sources [7]. One may
then raise the question of whether the assignment of such
a relaxation time is necessary for a self-consistent quan-
tum theory of the Kerr eA'ect. It is the purpose of this pa-
per to show that this is not necessary in general. The re-
quirement for a finite relaxation time of the Kerr medium
is the consequence of neglecting the fiber dispersion. The
corollary of this conclusion is that the quantum noise asso-
ciated with the Kerr medium is not required for the self-
consistency of the quantized N LSE.

The NLSE involving creation and annihilation opera-
tors of the electromagnetic field [Eq. (2.10) of Ref. [3]]:
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gives the normalized equation
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From these definitions it is not obvious whether a mode
volume and/or normalization time has been used to define
the quantum form of the NLSE. In order to ascertain
whether this is the case, it is convenient to return to the
classical NLSE and normalize it so as to arrive at its
quantum counterpart. The correspondence principle then
allows for a direct comparison.

The classical NLSE is of the form
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js the Heisenberg formulation of the nonlinear propaga-
tion problem in the slowly varying envelope approxima-
tion. Here p(t, x) and p(t, x) are the creation and an-
nihilation operators of photons at a "point" x and time t.
The coefficient c was defined as

(2)

where the Kerr coefficient x is expressed in terms of the
nonlinear optical index n2.
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with A, the free space wavelength, coo the carrier frequen-
cy, A,g the cross section of the mode, k' the first deriva-
tive (inverse group velocity 1/vs), and k" the second
derivative with respect to frequency of the propagation
constant; I was defined as an intensity of normalization.
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Now the equation is of the form of the quantum-
mechanical NLSE and the parameter c is
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The c parameter does not involve a relaxation time of the
medium. Thus, (1) is a self-consistent quantum formula-
tion in which the finite relaxation time of the medium did
not have to be taken into account. Why is this the case~
Clearly some physical considerations must be envoked to
settle the issue.

The finite relaxation time of the Kerr medium needs to
be introduced when the dispersion term is absent. This
follows from the fact that a pulse excitation of the medi-
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um can be viewed as an excitation by photons contained in
time slots into which the pulse can be decomposed. When
the time slots are made shorter and shorter, the Auctua-
tions of the photon number in these time slots is larger and
larger. In a linear system, such a decomposition does not
present any problems. Indeed, decomposition into nar-
rower and narrower time slots corresponds to the inclusion
of Auctuations of broader and broader bandwidth. An
eventual measurement uses a filter and passes only the
fluctuations within the passband of the filter. The broad-
band noise does not affect the operation of the linear sys-
tem. A nonlinear system reacts differently depending
upon whether more and more noise is included by increas-
ing the bandwidth of the electromagnetic field. The larg-
est bandwidth processed by the nonlinear medium is the
bandwidth proportional to the inverse relaxation time of
the medium. Hence, this relaxation time acts as the ulti-
mate filter that has to be included in the analysis.

The situation changes when the system is dispersive,
since the dispersion itself imposes a bandwidth limitation.
Pulses so short that they spread within a time that is too
small for the nonlinear phase shift to take eAect are not
acted upon by the nonlinearity. Thus, the dispersion itself
provides a bandwidth limitation. The finite relaxation
time of the Kerr medium needs to be included only when
analyzing pulses of duration comparable to the relaxation
time. This implies, of course, a nonlinearity su%ciently
large (and dispersion sufficiently small) so as to cause ap-
preciable nonlinear phase shift within a distance small
compared with the spreading time of the pulse due to
dispersion.

Additional insight into the difficulties associated with
the dispersionless case can be gained by looking at the
Schrodinger picture corresponding to the NLSE. It is a
many-particle problem with an attractive b-function-like

interaction, which models the instantaneous nonlinear ac-
tion of the Kerr medium [3]. The limit of a dispersionless
fiber corresponds to the limit of particles with infinite
mass which attract each other. The quantum theory of
such a system is completely meaningless, despite the fact
that this limit makes perfect sense in the case of the classi-
cal optical system. In order to fix the quantum theory
with respect to this singular limit, one has to reconsider
the Hamiltonian generating the NLSE and taking into ac-
count higher-order effects, which are, e.g. , the finite
response time of the medium or higher-order dispersion
and so on.

Of course, one can find states of the input field that are
not properly treated in the frame work of the nonlinear
Schrodinger equation, e.g., a higher-order soliton of very
large order, so that the bandwidth occupied by the soliton
is much larger than the bandwidth where the parabolic
approximation of the dispersion profile and the instan-
taneous action of the Kerr medium is valid. But this is
true in the classical as well as in the quantum treatment
and is not an artifact of the corresponding quantum
theory; it only shows that the modeling of a fiber by the
NLSE has certain physical limits.

The above arguments show that one may build up a
self-consistent quantum theory of nonlinear pulse evolu-
tion without inclusion of a finite relaxation time of the
Kerr medium and of the accompanying quantum noise
sources, provided the nonlinearity is small enough (or the
dispersion is large enough) in the context discussed above.
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