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Landau quantization of electrons on a sphere

1 AUGUST 1992

H. Aoki and H. Suezawa
Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan

(Received 1 May 1992)

The energy levels and wave functions of the electrons confined on the surface of a sphere in uniform

magnetic fields H are obtained from both the exact solution in terms of the spheroidal function and

numerical study. The crossover points between the weak-H (orbital Zeeman splitting) and strong-8
(Landau quantization) regimes are shown to delineate a series of envelopes, which, together with pecu-

liar bunch of Landau levels, form a series of overlapping bands. The result is compared with the Lan-

dau quantization of tight-binding electrons on C60 and C240 fullerene structures. These spectra are

shown to imply an interesting orbital magnetism.

PACS number(s): 36.40.+d, 33.55.Be

Landau quantization in two dimensions (2D) makes the
energy levels coalesce into a discrete spectrum, which is
the background to the quantum Hall effect [1,2]. An in-

triguing question would be whether yet another fascinat-
ing quantization takes place for the electrons on curved
surfaces in magnetic fields. The simplest example would
be an electron system on a sphere. Here we have solved
the electronic structure for electrons on the surface of a
sphere in uniform magnetic fields from both the exact
solutions in terms of the spheroidal wave function and nu-

merical results. Recent dramatic advances in fabricating
microclusters such as fullerene families [3,4] are enabling
us to realize spheres of microscopic dimensions in addition
to mesoscopic fine particles. We have also obtained the
electronic structure pf tight-binding electrons on ful-
lerenes to compare the results with those for the continu-
ous surface of a sphere. These results are shown to have
implications on the orbital magnetic moment and optical
absorption of electrons on closed surfaces of mesoscopic
dimension.

The Hamiltonian for a free electron on the surface of a
sphere of radius R in a uniform magnetic field H is given
by

/F = p+ —A
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1 L +eHL, + eH Rz i 28 . (1)
2m~ R2

Here e (m ) is the charge (effective mass) of an electron,
L is the angular momentum, A is the vector potential in
the symmetric gauge, and H is assumed to be in the z
direction. Since the system has a rotational symmetry, an
eigenfunction can be written as iit(8, &) =e(8)exp(imp)
in the spherical coordinates, where mA is the eigenvalue

I

A

of L,. The Schrodinger equation, 'P ilt Eiit, becomes
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for 1=0, 1, . . . , where we have also indicated the pertur-
bation term proportional to @ which contains the term
H R sin Oin the Hamiltonian.

To look into the opposite limit of strong H, we can
rewrite the spheroidal equation as

upon introducing e(8)=f(z) with z —=cos8, @=ttR H/
yo, X=——4z —2m@+E/tr, it= 6 /2m R z. Here 4~ H
denotes the magnetic flux encircled by the sphere in units
of the flux quantum, &0 hc/e, or, alternatively, (24)'12
corresponds to R measured in units of the magnetic
length, LH=—(ch/eH) 'I, for a flat system. The equation
is just the (oblate) spheroidal differential equation, so that
the regular solution with f(z) finite for —1~ z(1 is
given by the (oblate) spheroidal wave function with
discrete eigenvalue for A, [5]. The spheroidal function,

ft, of order m and degree 1 can be expressecI as an expan-
sion in terms of Legendre's bipolynomials, Pi (z). In the
Hamiltonian matrix, (PI"(P (Pt ), the elements are non-
zero only for m m' and1' l, l+ 2.

Before we turn to the exact solution, we first discuss the
weak H limit. When the H term in the Hamiltonian is

dropped to have /f (tc/ft )L +ItnHL, /fi (with

pit eh/2m c being the Bohr magneton), Pt (z) be-
comes the solution, and we have a series of Zeeman-split
(21+1) states with

4@ x + m+1 —x +d d l A+@
dx dx 4

——(m+ I ) u
1

2

d+ —x
2

+ [x —2(m+1)x] + (m+1)(x —m) u =0
dx dx

(4)
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by substituting u&
= (1 —z ) ~ e ' '—

f& with x
—:2(1 ~ z)4. For large @we can only retain the first line
proportional to 4. This just yields the Laguerre equation,
and the solution is given by Laguerre's polynomial, L,
with v equated to the constant term in that line. We can
follow the analysis of the spheroidal function by Flammer
[5] to establish, by counting zeros, that
ui fv ~e (' '~ L, (2(1 —z)@) for the northern
hemisphere (z &0) or fqa:e ('+'i L„i(2(1+z)@) for
the southern hemisphere (z (0), where v= (I —m)/2 [for
(I —m ) even] or v = (I —m —1)/2 [for (I —m ) odd].
Thus the eigenenergy becomes

E [(v+m)+ —,
' ]hro,

—[2v(v+m+1)+m+1]K+0(@ ') . (5)
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Here hro, —= heH/m*c =4ic@ is the cyclotron frequency
for the flat system, so that the levels are shufHed into fam-
ilies of peculiar "Landau levels, " (N+ —,

' )hro, +const
(N =0, 1, . . .), each of which comprises all the combina-
tions of (I,m) satisfying I+m =2N or I+m =2N+ l. In
Eq. (5) we have indicated the additional constant shift
-0((1/4) ), which comes from the "perturbation" en-

ergy, (L„ IP'IL„), with S' being the deviation
[second line of Eq. (4)] from the Laguerre equation.
Thus, even in the H ~ limit (with LH 0), there is no
degeneracy, and we have instead a parallel bunch of lines
for each value of N.

Physically, we have a unique realization of coupled os-
cillators here in the following sense. The effect of H of
general magnitude in Eq. (1) is to add a confining poten-
tial proportional to H R sin 0 parabolic in the distance
from the polar axis. %hen H is large, an electron is
trapped to either of the north pole or south pole, and the
state around each pole may be thought of as a two-
dimensional harmonic oscillator (on the curved surface).
The perturbation, /f', just represents the efi'ect that the
oscillators are not isolated but connected along the equa-
tor.

The only degeneracy in the large-H limit comes from
the pair, fiv with I = —m+2N and fq with I = —m
+2N+1, which have the same (H'). From the degen-
erate perturbation an eigenfunction becomes either the
"bonding" state, fa ~fv +fs, or "antibonding" state,
furr ~f~ fs, which conform t—o the constraint that each
wave function has to be an eigenstate of the parity against
the north-south exchange. Thus the levels corresponding
to fa and f~a coalesce into a single line as @ is increased,
where the coalescence is shown to take place at the value
of N that becomes smaller the smaller (l, m) is.

The real problem is the crossover between these weak-H
and strong-H limits. For the general value of @ we have
obtained the wave function by diagonalizing the Hamil-
tonian matrix, which is block diagonal in m. We have ap-
proximated each of the infinite-dimensional block ma-
trices by a finite one, in which we have checked that the
cutoff for I (~ 540) is large enough to give accurate
eigen vectors.

The result for all the energy levels against & (Fig. 1)
has a striking structure: The crossover points between the
weak-H regime (orbital Zeeman splitting) and the
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FIG. 1. Energy levels against the dimensionless magnetic
field, 4, for an electron gas on a sphere in a uniform magnetic
field. (a) is the (tenfold) enlargement of (b).

strong-H regime (Landau levels) form a series of en

velopes. For the characterization of the crossover point,
we can look at the wave function in Fig. 2. The lowest en-

velope (locus of the ground-state energy) comes from the
set of states with m = —l(N=0). For these states the
amplitude is peaked at the equator for small H. As H is

increased, the potential proportional to H R sin 0 pushes
the amplitude towards the poles, and a competition be-
tween the kinetic and potential energies sets in. The waIv~
function is seen to be significantly deformed from PI
around the critical value, @„atwhich E(@) curve for a
given I attains a minimum.

From Eqs. (3) and (5) we can roughly estimate N, to
be @,—I (at which E—sl) for large I, which inay be
thought of as a geometrical resonance at N~ R /LH —in-

teger. Semiclassically, formation of the envelope is con-
sidered to originate from the following argument. For the
electrons on the surface of a sphere, the component of H
perpendicular to the surface varies from place to place
(depending on the latitude), so that there is no single
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FIG. 2. Wave function, f4, 4(e),-for various values of 4,
where 4, [=3.5 for (t,m) (4, —4)l is the value of 4 that
gives the lowest energy.
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length scale characterizing the system unlike the Aat sys-
tem, which will give rise to a similarity among the states
with progressively larger number, l, of cyclotron orbits ac-
commodated on the sphere.

Similarly there are m = —1+1, m = —l+2, . . . fami-
lies with f(z) having increasing number of nodes, in

which the above competition between kinetic and poten-
tial energies depends on both l and m. In terms of the lim-

iting behaviors above, the crossover position of the two be-
haviors is a definite function of l that depends only on the
deviation of m from —l, so that the crossover points con-
stitute distinct envelopes for various (l,m) families. An
indication that the crossover is right in the middle of the
nonperturbative region is also seen from the fact that the
crossover occurs well before the aforementioned coales-
cence of the pair takes place.

An eA'ect of interlacing of the energy spectrum for vari-
ous (l, m) families appears in the total energy, ET, of the
system for a given number of electrons: while an individu-
al level in the large-H region, Eq. (5), has a diamagnetic
contribution, [2(v+m)+1]pn, the series of level cross-
ings arising from the overlapping bands makes ET for a
fixed EF (i.e., a fixed number of electrons) oscillate with
H. This is the case even when we start from a closed shell
(with EF in a gap between adjacent l fans at low H) in the
energy spectrum, and the oscillation exists both before
and after EF plunges into the envelope region as 0 is in-
creased. This implies that the orbital magnetic moment
(at T=O), M= —BET/BH, always oscillates strongly
(Fig. 3). In some regions of H, M becomes positive (fer-
romagnetic), which is consistent with the observation of
Meier and Wyder [6] for rotationally symmetric systems.

If we look at the energy spectrum for wider ranges of E
and @ [Fig. 1(b)], a striking full picture emerges: each
family of given N forms a band, of which the lower en-
velope comprises the crossover points for the I = —m+ 2N
bunch, the middle envelope is delineated by the crossover
points of the partner states with I = —m+2N+ 1, and the
upper boundary is the top of the bunch of Landau levels
with E =()V+ ll2)hro, +const, which corresponds to the
pair containing I =m =N state, and the whole spectrum is
in fact a superposition of the bands for N =0, 1, . . . .

Spherical structures may be realized in covalent clus-
ters with x electrons as exemplified by the recently fabri-
cated fullerene families. In finite clusters the tight-
binding nature of electrons may inAuence the Landau
quantization. To explore this point, we have numerically
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FIG. 3. Total energy, ET, and the orbital magnetic moment,
M &Erl8H, —against magnetic field for 25 electrons on a
sphere. EF starts to run along an envelope around the middle of
the figure.

diagonalized the tight-binding model on the idealized Ceo
and Cz4o fullerene structures, in which a constant transfer
energy t is assumed between nearest-neighbor atoms. The
presence of uniform magnetic fields is incorporated as the
Peierls phase in the transfer energy. The result for the en-

ergy spectrum (Fig. 4) shows that, for small clusters such
as Ceo, the zero-field spectrum [7,8] itself is dominated by
the specific structure (icosahedral symmetry here), so that
degeneracies and gaps in the levels due to the symmetry
strongly interfere with the effect of uniform magnetic
fields. There, the splitting of degenerate levels for finite K
should be observable by optical absorptions. We also no-
tice a closure of the lowest unoccupied molecular
orbital-highest occupied molecular orbital gap with in-

creasing H.
The orbital magnetism is again of interest. The mag-

netic susceptibility of Ceo is intriguing as pointed out by
Elser and Haddon [7], who have pointed out that the ring
current effect only results in a weak diamagnetism for
infinitesimal H. The total energy at general magnitude of
the field, however, has also interesting structures. Al-
though this aspect already appears for the sphere as men-
tioned above, an effect specific to a molecule is that the
electron levels depend on the orientation of the system rel-
ative to H as well, so that the molecular axis, when free to
rotate, has preferred directions in H with a stabilization
energy (of typically O. 1 t depending on @).

As the size of the cluster is increased (to C24o in Fig. 4),
the region over which the result resembles the con-
tinuous-space result increases, and some envelopes be-
come visible. For these molecules the magnitude of H in
the region of interest [@-I, i.e., the encircled fiux—0(po)] is still orders of magnitude larger than those at-
tainable experimentally at present. If we regard the prob-
lem more generally as a quantization in mesoscopic sys-
tems, we can alternatively consider clusters of larger sizes
or fine particles with metallic coating. The eA'ect of a
finite thickness of the metallic surface is an interesting fu-
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FIG. 4. Encl'gy levels of a tight-binding system on C60 (left panel) and Ct40 (right panel) fullerene structures against the strength
of the uniform magnetic field. Here 4 is the total magnetic flux encircled by the sphere circumscribing each fullerene in units of &0

and F. is measured in units of the transfer energy (t) in the tight-binding model. Here H is applied parallel to the sixfold axis of the
fullerene structures. For C60 the symmetry and degeneracy of each level for H =0 is indicated after Ref. [7].

ture problem. Another extension would be to consider
free electrons on solid Cso crystals [4] in a uniform mag-
netic field Also. , the effect of curvature may be probed in

a structure such as a negative-curvature fullerene [9].
The message obtained in this work is that, although

such phenomena as the quantum chaos in the hydrogen
atom in a uniform magnetic field [10] are absent for elec-
tron systems confined on surfaces, the application of mag-
netic fields does give rise to interlacing "shell" structures

in the energy spectrum with an interesting orbital magne-
tism.
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