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A direct numerical solution of the Schrodinger equation for quantum scattering problems is pre-
sented. The wave function for each partial wave is expanded in coupled spherical harmonics and the
corresponding radial functions are expanded in a local basis set using finite-element analysis, with
the appropriate scattering boundary conditions. The method is shown to give very accurate results
for elastic phase shifts (S, P, D, and E) and resonance positions for electron-hydrogen scattering.
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Various formalisms have been developed over the years
to treat electron-atom quantum scattering, including
variational [1—3] close-coupling [4, 5] and R-matrix meth-
ods [6, 7]. Even though these methods have been used
successfully to compute the scattering parameters in
electron-atom scattering, their applicability has been lim-
ited both in the type of systems that can be treated and
the energy range over which the calculated scattering pa-
rameters are accurate. These difficulties arise in part
from the use of global basis functions, which must simu-
late the exact wave function over a large region of space.
A different approach is to obtain a direct numerical so-
lution of the Schrodinger equation. Until recently, such
an approach has been limited by the availability of al-
gorithms to solve the equations efficiently and the difB-
culty in applying the boundary conditions, which require
matching the solution to the asymptotic limit that de-
pends on unknown scattering parameters. We present
here a method for treating electron-atom scattering that

directly solves the Schrodinger equation using the finite-
element method (FEM) [8]. The use of a local basis set
has the advantage of providing greater flexibility in ap-
proximating the wave function over an extended region
of space and facilitates the imposition of complicated
boundary conditions.

In order to illustrate our method, we outline the pro-
cedure for obtaining elastic phase shifts for electron-
hydrogen scattering. Unlike previous attempts at ap-
plying FEM to 8-wave positron-hydrogen scattering [9,
10], the general scheme presented here is applicable to
higher partial waves and can easily be extended to in-
elastic scattering. First, the total wave function is ex-
panded in partial waves; each partial wave with definite
parity is further expanded in coupled spherical harmonics
Yi, t, (r"g, r2),

(rl ~2) = ) Ui t (rl r2)+t t (rl r2).
ly, lg
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Using Eq. (1) in the Schrodinger equation, and retaining
E terms in the expansion, one obtains a set of coupled
differential equations for the unknown radial functions
ULS

) Hl ~l a, lql2 Ul tq(T» Tz) = 0
l1,l2

where

(2)

1 F
l'1, L 1 l2, l2

1B 1 B l(l +1)
lqlai lola )~ 2 BT2 T BT 2 T2

a=1

+) & i(Ylill (Ti, Tz)
~

Pg(cosOiz)
~ Yl, l, (Ti, Tz) ).

k=0")'
(3)

The angle brackets indicate integration over the an-

gular coordinates and E = —I/2nz + kz/2 is the total
energy, where k is the incident momentum of the elec-
tron and n is the principal quantum number of the hy-
drogen target. Atomic units are used throughout unless
otherwise stated.

Equation (2) is solved using the finite-element method
[8]. The coordinate space spanned by Ti and Tz is trun-
cated and discretized into small regions called elements
(see Fig. 1). In each element e, the radial functions UlLlS

are expanded in a local basis,

36

Ul, l, (Ti, Tz) = ) ul, l, , p, (Ti, Tz).LS (6) LS (~) (~) (4)

The functions p,
'

(Ti, Tz) are products of fifth-order poly-
nomials in Ti and Tz and are nonzero only in element

These basis functions have the property that the 36

expansion coefficients ul l,. are the value of the func-LS (.)
tion Ul l, , and its derivatives BUl l, /BTi, BUl l, /BT2, and

B Ul l /BTiBT2 at nine nodes in the element [8).
Substituting Eq. (4) into Eq. (2), we obtain a set of

368 linear coupled equations for the expansion coefficients
for element e:

g L(e) LS(~) 0

I

conditions for elastic scattering from the ground state.
On the boundary Ti = Tma„, the radial functions are
given by

LS
Ul, l, (Tmaz ~ Tz)

= A„L A. ,o Rio(T2)

&&~k jL(kTm, ) + ta»L j L i(kTm, x)

where jL is the spherical Bessel function, R„l is the hy-

drogen radial function, and 6L is the elastic phase shift
for the Lth partial wave. On the boundary Tz = T

we have

Ul&l&(T1, Tmax) = (—1) Pi2 Ulzl (Tmax~ T2),
LS S LS (9)

where P1q is the electron exchange operator.
The components that correspond to nodes on the

boundary are completely determined by Eqs. (8) and

(9) except for the common phase shift 6L. One nonvan-

ishing component of the vector u on the boundary is
left arbitrary; all other nonvanishing components of uLs

on the boundary are expressed as a constant plus a mul-

tiple of the single unknown component on the boundary,
through the common phase shift. Fixing these values of
the global vector in Eq. (7) and carrying out the matrix

where

+, l~, l'„ l, l, &

= ( (t'I' (Ti~ Tz) 1%',l,', l&l& I
&I' ("i "2) )

(6)
I"

max

The brackets here indicate integration over the area of
element e. The local equations are not solved indepen-
dently. The expansion coeEcients for nodes that lie on
the boundary between two or four elements (see Fig. 1)
couple together the local equations for those elements.
Therefore the local matrices for all the elements are
mapped onto a single global matrix,

HL IS 0

The order of the global matrix is N = 4jA, where JV
is the total number of nodes in the grid. The global
matrix is banded and sparse. The unknown global vector
components ul l, are the value of the radial functions
and their derivatives at the JV nodes in the grid.

The next, step is to impose the scattering boundary

max

I IG. 1. Schematic diagram of the Bnite-element grid. The
dots on the upper right corner show the distribution of the
nodes in every element.
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multiplication, one obtains a new global equation,

au~~ =c s (1o)
The dimension of H is N, where N —N is the number
of vector components fixed by imposing the boundary
conditions. The solution of Eq. (10) yields the value of
the radial functions and their derivatives at the interior
grid points and the single component on the boundary,
from which the phase shift is obtained.

Table I gives the elastic phase shifts for partial waves

up to L = 3. We compare our results with those obtained
using the variational method [1—3] and the intermediate
energy 8-matrix theory [6]. No attempt was made to
optimize the grid at each energy; rather, our intention
was to show that the accuracy and computational effort
involved in obtaining accurate phase shifts is independent
of the partial wave L and the incident momentum k. All
the phase-shift calculations were done using a 10x 10 grid
with rm~„= 24 for k & 03 and r ~„=40 for k & 02.
Smaller elements were used near the origin as shown in
Fig. 1. The FEM results agree with the best variational
calculations to within +0.001 and were extremely stable
with respect to minor variation in r and the element
size.

Table II gives the position and widths of the lowest
resonance for each partial wave below the n=2 thresh-
old. These results are compared with those obtained by
R-matrix theory [6], complex coordinate rotation calcu-

lation [11—13], Feshbach projection operator formalism

[14], a recent hyperspherical calculation [15], and exper-
imental results [16]. The resonant calculations were car-
ried out using a 20 x 20 grid with r ~ = 64.

Notice that in a direct solution of the Schrodinger
equation, only the asymptotically open channels are in-
cluded when imposing the boundary conditions, if the
matching radius r „ is large enough. For the elastic
case, only the 1s channel is included, even in the res-
onant energy region. The drawback of this method is
that the collision parameters that vary slowly with en-

ergy [7, 15, 17] are not extracted directly. The extension
to multichannel scattering is straightforward in princi-
ple. If there are N, open channels, then the boundary
condition for a state in incident channel i contains the
N, unknown reactance matrix elements K~;, instead of
the single phase shift. In imposing these conditions, N,
values of the radial functions are left arbitrary on the
boundary. After obtaining these values from the FEM
calculation, they can be used to compute the ith column
of the K matrix. This work is in progress and results will

be reported elsewhere.
We have presented an alternative method for solving

the Schrodinger equation for quantum scattering prob-
lems. We illustrated the validity and accuracy of this
method for elastic scattering of electrons off atomic hy-
drogen. The advantages and applications of this ap-
proach are manyfold. It gives directly both the collision

TABLE I. Singlet and triplet elastic phase shifts.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3+e

R matrix
Variational
FEM'
R matrix
Variational
FEM'

2.550
2.553
2.553
2.939
2.9388
2.938

2.062
2.0673
2.066
2.717
2.7171
2.717

1.691
1.6964
1.695
2.500
2.4996
2.500

1.410
1.4146
1.414
2.294
2.2938
2.294

1.196
1.202
1.200
2.105
2.1046
2.104

1.035
1.041
1.040
1.933
1.9329
1.933

0.886
0.887

0.925
0.930
0.930
1.780
1.7797 1.643
1.780 1.645

lgo

3po

R matrix'
Variational
FEM'
R matrix
Variational
FEM'

0.006
0.007
0.0060
0.010
0.0114
0.0100

0.015
0.0147
0.0148
0.045
0.0450
0.0452

0.016
0.0170
0.0160
0.107
0.1063
0.1067

0.009
0.0100
0.0090
0.187
0.1872
0.1873

-0.002
-0.0007
-0.0020
0.270
0.2705
0.2708

-0.012
-0.009
-0.0117
0.341
0.3412
0.3417

-0.016
-0.013 -0.004
-0.0149 -0.0068
0.392
0.3927 0,427
0.3933 0.4283

De

3D8

R matrix
Variational
FEM~
R matrix
Variational
FEM~

0.0013
0.0012
0.0007
0.0013
0.0013
0.0007

0.0051
0.0052
0.0048
0.0052
0.0052
0.0049

0.0109
0.0108
0.0105
0.0114
0.0114
0.0110

0.0183
0.0183
0.0182
0.0197
0.0198
0.0196

0.0272
0.0274
0.0271
0.0301
0.0304
0.0300

0.0379
0.0383
0.0379
0.0421
0.0424
0.0422

0.0518
0.0523
0.0518
0.0553
0.0549
0.0554

0.0745
0.0745

0.0697
0.0699

FEM"
FEM"

0.0000 0.0016 0.0037
0.0000 0.0016 0.0037

0.0065 0.0101 0.0145
0.0065 0.0102 0.0148

0.0199 0.0264
0.0204 0.0271

From Ref. [6].
From Ref. [1].'
lt~t2) = Ioo) I11) I22) I33&.
From Ref. [2].

' It, t, &
= I1o) Io1) I21) I12) 132) 123).

From Ref. [3].' lt~t2) = I2o) Io2) I») 113& I11) I22&."
lt~t2& = 13o& 1o3&, 112& I21& I14& I41&.
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lee R matrix
CCRb
FPO'
Hyperspherical
FEM
Experiment

9.5572
9.55737
9.55735
9.559
9.559
9.549

TABLE II. Resonances below the n = 2 threshold.

Position (eV) Width (eV)

0.0471
0.04710
0.04717
0.0475
0.0481
0.063

R matrix
CCRb
Hyperspherical
FEM
Experiment'

9.7382
9.7381
9.745
9.738
9.736

0.00582
0.00580
0.00765
0.0057
0.005

R matrix
CCRb
Hyper spherical
FEM
Experiment'

10.1253
10.12436
10.129
10.127
10.115

0.00881
0.00862
0.0101
0.0075
0.006

' From Ref. [6].
b Complex coordinate rotation, from Refs. [11—13].' Feshbach projection operator, from Ref. [14].

From Ref. [15).' From Ref. [16].

parameters and the wave function over the entire space
for each partial wave. Transition amplitudes may then
be calculated without much effort. The method may be
easily extended to electron scattering from H-like atoms
by replacing the Coulomb potential in the Hamiltonian
by an efFective potential. The procedure presented here
may also be applied easily to the study of bound and
doubly excited states of two-electron atoms with arbi-
trary total angular momentum, by imposing the much
simpler bound-state boundary conditions [18).
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