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Disordered-surface-layer transition in nematic liquid crystals
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A disordered nematic surface layer, with negative orientational order or biaxial order, is shown to re-

sult from interaction with substrates which favor random planar alignment. We propose a simple in-

teraction Hamiltonian which yields predictions in excellent agreement with measured pretransitional
effects for 4-n-pentyl-4'-cyanobiphenyl on clean glass and un rubbed n-methylaminopropyltri-
methoxysilane substrates. When the dimensionless interaction strength is larger than a critical value, a
pretransitional biaxial boundary layer is predicted for a temperature range which is bounded above by
surface biaxial-uniaxial and biaxial-biaxial transitions, and below by a complete wetting transition of the
boundary layer.

PACS number(s): 61.30.Cz, 64.70.Md, 68.45.—v

As an integral part of the liquid-crystal display tech-
nology, substrate alignment of liquid crystals is a subject
of both practical and basic scientific interest. For sub-
strates treated by rubbing or coating techniques, various
theoretical and experimental studies in the past two de-
cades have revealed the existence of a surface layer [1—6],
on the order of 100—1000 A, which transmits the aligning
action of the substrate to the bulk as well as controls the
wetting property of the liquid crystals [7]. For nematic
liquid crystals, the surface layer on a treated substrate
has been found to have phase-transition characteristics
distinct from those of the bulk [1,3,5]. In this work, we
show that for an untreated substrate with no particular
aligning effect the surface layer can present a new set of
phenomena. In particular, for nematic liquid crystals
whose molecules prefer to lie perpendicular to the sub-
strate normal, the surface layer not only has negative
orientational order, but can also have a first-order direc-
tor orientational transition, as well as a uniaxial-biaxial
surface transition when the interaction strength exceeds a
critical value. Experimentally measured pretransitional
effect shows excellent agreement with theoretical predic-
tions.

Consider a nematic-liquid-crystal sample in the half
space z ~ 0 with an order parameter defined by [8]
QJ =S(n;nl —5~13), where S =(Pz(cos8)), P2 denotes
the second-order Legendre polynomial, n; the ith com-
ponent of the director unit vector n, t9 the angle between
the molecular axis and n, and the angular brackets
denotes volume averaging. The lowest-order
substrate —nematic-liquid-crystal interaction at an isotro-
pic surface has the form H, =Gk.g k5(z ), where k is the
unit substrate normal and 6 denotes the interaction
strength. We will use i, j, and k to denote the unit vec-
tors in three orthogonal directions in the laboratory
frame. For 6 negative, this interaction with S )0 implies
a homeotropic aligning substrate —nematic-liquid-crystal
interaction whose implications have been studied before

+G5(z) (S P)cos g+ P ———
3

+H, , (la)

p(S, P, T)=a(T —T*)(S +3P ) BS(S 9P )——

+ C (S2+ 3P2)2 (lb)

[1—6]. In this work, we show that for G positive the in-

teraction can also denote the effect of a nonaligning sub-
strate on which the molecules prefer to lie perpendicular
to k. In that case, since the director n is defined as the
axis of uniaxial symmetry, the favored state is where the
molecular axes point randomly in the plane of the sub-

strate so that n~~k but S is negative [8], which makes the
interaction energy also negative. However, the possibili-
ty of spontaneous symmetry breaking in the plane
of the substrate means that one must consider a biaxial
order parameter [9] near the substrate, i.e.,
Q,t =S(n;nl —5,J l3)+P(l; lj m; m ), wh—ere Iln and is in

the plane formed by n and k, rn is perpendicular to both 1

and n, and P is the additional order parameter, represent-
ing the asymmetry of the molecular state in the 1,xa

plane, associated with a biaxial state. Therefore,
H, =G5(z) [S[(n k) —

—,
' ]+P(k 1) ] is the complete form

of the substrate —nematic-liquid-crystal interaction if we

assume n to be in the plane formed by k and 1. Below we

show that such a substrate —nematic-liquid-crystal in-

teraction can induce a pretransitional surface layer of
negative order or biaxial order, as well as surface
uniaxial-biaxial transition, biaxial-biaxial transition, and
a complete wetting transition by the boundary layer.

For mathematical simplicity, in this work we follow

the Sluckin-Poniewierski model [9] for the biaxial nemat-

ic state. In the Landau —de Gennes formalism, the total
free-energy density, including the possibility of biaxiality,
is given by [9,10]

'2

f=p(S,P, T)+L dS
dz
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where g is the angle between n and k, T' is the minimum
supercooling temperature (also called the virtual transi-
tion temperature), a, 8, C, and L are the material con-
stants, and H, ——s5(z )S sin icos (P —$0), with s —+0+,
is an infinitesimal symmetry-breaking potential intended
to lift the degeneracy in the x-y plane, with Po denoting
the symmetry-breaking direction.

Equation (1) is derived under two assumptions. First,
the angle g for the bulk state is assumed to be either 0 or
m/2. At these two values of g, it can be shown that
d g/dz =0 and d g/dz =0 identically, and g is therefore
a constant throughout the sample. Second, the terms
containing (dp/dz) are dropped so that the theory be-
comes analytically integrable. Analysis of these two as-
sumptions has shown that the overall qualitative behavior
of the original model is most likely to be preserved [10].

For the purpose of calculation, it is more convenient to
express the Q;~ in laboratory coordinates. By assuming

that m~~ j, we have

difference between the total free energy and the bulk free
energy, which is given by the integral of p(uz, O, t). For
the liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) [11],
a=0.065 Jcm K ', 8=0.53 J/cm, C=0.98 J/cm,
and I.=4.5 X 10 ' J/cm, which implies that At = 1

translates into AT=4 K, b,/=1 translates into hz=40
A, and Au, hv =1 means ES,AP=0. 5.

It should be noted here that in terms of u and v, there
are two bulk states at t (0 with identical bulk free-energy
densities. For the bulk state with n~~k, we have v =0 and
u =us given by Eq. (4a). For bulk state with nl.k, on the
other hand, we have u= —us/2 and v=us/2. These
two bulk states pose different conditions at infinity for the
boundary layer and therefore induce different free ener-
gies as calculated by Eq. (3) for t (0.

To minimize I', we first note that the Euler-Lagrange
equation for the variable v results in an equation which
may be solved analytically to get v in terms of u. The re-
suit is

Q = U kk ——+ V(ii —j j ),
3

where

S, /=0

(2a)
V=

where

1/2
(u —u )(u+ —u)

u u u+
I

0, otherwise,

(5a)

3 P —
—,'S, —3-&9—8(t + 1/4)u+—

4
(5b)

P, /=0
V=.

, 'fr
—,
' (S+P),

(2c)

+C(U +3V ) (2d)

and I denotes the identity matrix. The form of p is in-
variant under this transformation. This is,

p( U VT)=a( T T*)(U +3V—)
—BU(U 9V )—

and v=0 for t ~7/8. Below we will write p(u, v, t) as
p(u, t). As a function of u, p(u, t) has three minima for
—

—,'(t (
—,', at u =us, 0, and —us/2. In the range of

0&t, u=0 is the absolute minimum. For t &0, u=uz,
v =0, and u = —us/2, v =u~/2 are equivalent uniaxial
states with the same lowest free energy, but with the uni-
axial axis either along the k or the i axes, respectively, as
noted above. The first integral of the Euler-Lagrange
equation for variable u gives

In dimensionless form, the free energy to be minimized is
that induced by the surface, which may be expressed as

du
=sgn(us —u, )Qp(u, t )

—p( uts) . (6)

F= ', gu, + J dg p—(u, v, t) —p(u, O, t)+
0

—,'(3+&1—32t ), t (0
up=

0, t)0, (4a)

(3)

Here u =CU/8, v =CV/8, (=Bz/O'CL, t =aC(T
—Tx)/8, g=C G/8 &L, Tx=T*+8 /4aC is the
bulk nematic-isotropic transition temperature, uz is the
bulk nematic order parameter, given by
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and u, denotes the order parameter value at the sub-
strate, /=0. The expression for us is obtained as the ab-
solute minimum of the dimensionless p ( u, 0, t):

-0.05— gc
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0.4 0.6

p(u, O, t)=(t+ —,')u —u +u (4b)

The appearance of p(us, 0, t ) in Eq. (3) is due to the fact
that the surface part of the free energy is defined as the

FIG. 1. Boundary-layer phase diagram as a function of I; and

g. The solid line denotes a first-order phase transition. The
dashed line denotes a second-order phase transition.
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By substituting Eq. (6) into Eq. (2), one gets

GgF=—,'gu, +2sgn(gtt —u, ) Qp(u, t) p—(utt, t }du .
S

(7)

Here gs =us for nllk, and ga = —ga/2 for nik. Eq
tion (7) is to be minimized with respect to u, and the two

possible bulk states at (= oo.

The two branches of minimum free-energy solutions,
corresponding to /=0, m. /2, have been examined. The
phase behavior obtained by the condition of minimum I'
is shown in Fig. 1, where it is seen that there are basically
two types of surface phases in the bulk isotropic tempera-

I

ture range, t 0, with both a first-order transition line,
denoted by the solid line, and a second-order transition
line, denoted by the dashed line, separating the different
phases. For g &g, =0.12 the boundary layer above t, =0
is uniaxial with u, &0, v=0. Below t, =0 the bulk state
with t)'t=m. /2 is favored, and there is always a biaxial
boundary layer. This situation is illustrated in Fig. 2
with g =0.11, where the biaxial boundary layer is seen to
be -50 A.

In the g &g, range, the surface state at t &0 is always
uniaxial (v =0), and the spatial dependence of u(g) can
be explicitly obtained by integrating Eq. (6) once u, is
known:

u(g)=us- 2f3A

a A —&pA exp()/p()+(1/p a /4v—'p)exp( —&pg)
a=4u~ —1,
P=6us —3us+ t+ —,',

v'p+ [(u, —us ) +a(u, —us )+p]'~
Q~ Qg 2v'P

(8a)

(8b)

(8c)

(8d)

Equation (8) predicts a certain pretransitional behavior
induced by the disordered surface layer (/=0 and u, (0).
This part has been studied experimentally, using the
evanescent-wave ellipsometry technique [7]. The quanti-

ty measured was the phase shift b,P, between the p- and

s-polarized components of a He-Ne laser beam (A, =633
nm) totally reflected from a glass —liquid-crystal interface
at the critical angle 8, . The sample cell was made by
sandwiching a 130-pm 5CB film between a glass prism
(Schott glass LaSF 9 with a refractive index n = l. 84 at
633 nm} and a glass plate. The prism surface in contact
with 5CB was either acid cleaned or acid cleaned and
coated with a layer of n-methylaminopropyl-
trimethoxysilane (MAP) which was not rubbed. The cell
was filled by capillary action with 5CB in the isotropic
phase and loaded into an oven with a +1-mK tempera-
ture stability. The laser beam was incident from the
prism side at 6I, and the totally rejected beam was ana-

lyzed. It can be shown that the observed phase shift is

directly proportional to the integrated birefringence y at
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b,P, =2m.)/L/C y

y= I dg[u(g) —ut)]=in
oo a —2&P(1+ A )

(9)
0 a+2+P(1 —A )

0
where ~=3.37X10 A ' is an experimentally deter-
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FIG. 2. Spatial variation of the order parameters for g =0.11

at t,+=10' and t, = —10 . At t,+, vip)=0 identically.

FIG. 3. Temperature variation of hy. Open squares denote
data. The solid lines represent the one-parameter fits using Eq.
(9). (a) Clean glass substrate. (b) Unrubbed MAP substrate.
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FIG. 4. Spatial variation of the order parameters for g =0.14
at t, =0.0026. At t, =t, —10, the boundary layer is biaxial.
At t,+ = t, + 10, the boundary layer is uniaxial with v =0 iden-
tically.

0.3
g=0.2

mined proportional constant.
For each data run, bP, was measured at a series of

temperatures monotonically approaching the isotropic to
nematic transition at Tz from above. Sufficient time
( )20 min) was allowed for the sample to reach equilibri-
um at each temperature. The bulk phase transition could
be clearly recognized by the sudden increase in scattered
light and change in the critical angle. All data runs were
taken within two days of the assembly of the cell in order
to minimize the efFects of migration of impurities into the
interfacial region. The data were found to be highly
reproducible. The error in b,P, was due primarily to sys-
tem drift, which was no more than 0.5 mrad/day.

Two sets of experimental data were taken. One is for
5CB on clean glass, and the other is on unrubbed MAP-
coated glass. They are shown in Figs. 3(a) and 3(b) as
4y=y —

yo, where yo is the value of y at the highest
measured temperature. The solid lines are the one-
parameter (g) theoretical fits using Eq. (g). The fittings
yield g =0.033 for the clean glass and g=0.036 for the
MAP-coated substrate. The good agreement between
theory and experiment clearly shows that (l) u, and the
surface layer have negative order parameter, indicating a
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(a)

0.28—

dewetting tendency and (2) the surface layer thickness in-
creases as t ~t, from above so that y becomes more neg-
ative. The fact that y stays finite shows that the dewet-
ting is only partial. In both cases, g &g, so that t, coin-
cides with the bulk transition.

The transition at t, =0 has been noted to involve a
director orientational transition from t/i=0 to P=vr/2.
This part of the theoretical prediction has also been
verified by experiment since below t„a multidomain
structure, each with director parallel to the substrate,
was observed. This is in contrast to the case if the direc-
tor were to remain perpendicular to the substrate, which
would imply homeotropic alignment.

At g =g, =0.12, the first-order transition line starts to
deviate from t=0, and it terminates at a critical point
with g=0.24 and t=0.03. For g, &g &0.163, the first-
order transition separates the uniaxial boundary layer at
t & t, from the biaxial boundary layer at t (t, . This is il-
lustrated in Fig. 4 for g =0. 14. At g =0. 163 and
t =0.007, an additional second-order transition line
emerges on top of the first-order transition line. There-
fore, for 0. 163 (g (0.24 the boundary layer at t )0 has
two transitions. The lower temperature one is first order
and separates one biaxial boundary state from another.
This is illustrated in Fig. 5 for g=0.2. The higher-
temperature one is second order and separates the uniaxi-
al boundary state from the biaxial state. This second-
order transition involves v only. The variation of u is
smooth across the transition. Beyond g =0.24 only the
second-order transition persists.

All the rich behaviors described above can be summa-
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FIG. 5. Spatial variation of the order parameter for g=0.2
at t, =0.01645. Both u(g) and v(g) experience first-order tran-
sitions.

FIG. 6. Variation of u, and v, as a function of t, for g varying
from 0.03 to 0.3 in increments of 0.03. The dashed lines de-
lineate the coexistence curves of u, and v, .
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FIG. 7. Spatial variation of u and U at t =10 ' and —10
The flat portions of the order parameters at t = 10 ' indicate an

uniaxial wetting layer whose thickness increases as ~lnt~ and

whose uniaxial axis nlk.

axial in nature. %hat is striking, however, is that as
t ~0 from above the bulk phase in fact nucleates from
the boundary layer through complete wetting. This is il-
lustrated in Fig. 7. It is seen that at t =10, there is an
uniaxial section (with g=vr/2 so that —us /2, v =uz/2)
of the boundary layer, characterized by their flat varia-
tion as a function of g, which increases in thickness as
~lnt~. As g increases beyond this section, however, the
boundary layer again acquires biaxial character until at a
certain point u vanishes, and the boundary layer returns
to being uniaxial. The uniaxial boundary-layer section
eventually becomes the bulk uniaxial state as t reaches 0.
The value of g =g, =0.12 therefore separates partial wet-
ting for g (g, from complete wetting at g & g, .

Since the phenomena described above depend crucially
on the magnitude of g, it is noted here that while g is
directly proportional to 6, the substrate —nematic-liquid-
crystal interaction strength, it is also inversely propor-
tional to 8 . Therefore an alternative way of increasing g
is to choose liquid crystals with a weak first-order
nematic-isotropic transition (small B). It should also be
remarked that the phenomena predicted by the present
substrate —nematic-liquid-crystal interaction differs from
those resulting from a US 5(z)-type interaction [12] with
a positive U. In that case there mill also be a disordered
surface layer, but instead of a negative order parameter
the value of S in the surface layer is positive. The experi-
mental results shown in this work indicate that even if
the US -type interaction is present, it is not the dominant
one.

rized by plotting u, and u, as a function of t for different
values of g. This is shown in Figs. 6(a) and 6(b). It is to
be noted that for g )g, =0.12, variation of u, and u, at
t =0 exists only in their slopes across t =0, i.e., the tran-
sition is second order in nature. For t (0, the g=m. /2
bulk state is always favored, and the boundary layer is bi-
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