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Mutual and self-diffusion in fluids undergoing strong shear
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We derive a Green-Kubo relation for the mutual diffusion tensor (MDT) of a binary fluid mixture sub-
ject to a strong Couette shear field. We calculate the MDT of a Lennard-Jones (L)) mixture and the
self-diffusion tensor (SDT) of a pure LJ fluid as functions of state point and strain rate. The qualitative
dependence of the diffusion tensors upon these variables is explained in greater detail by analyzing the
velocity and mass current autocorrelation functions. Finally, we compare the zero-color field color con-
ductivity with the SDT. For nonzero shear rates we find that the color conductivity and the SDT are
different, confirming the prediction by Evans, Baranyai, and Sarman [Mol. Phys. (to be published)], ac-
cording to which these two transport coefficients should only be related at zero shear rate.

PACS number(s): 03.40.Gc, 02.50.+s, 51.10.+y

I. INTRODUCTION

When a fluid is subject to a simultaneous Couette shear
field and a concentration or temperature gradient, Curie’s
principle [2] states that the shear field, being a tensorial
quantity, cannot affect vectorial quantities such as mass
or heat currents. However, when the shear rate is large,
nonlinear effects become important and Curie’s principle
breaks down. Then the shear field modifies (but does not
generate) the mass and heat fluxes. Furthermore both
diffusion and thermal conductivity coefficients need to be
replaced by second-rank tensors, with elements that vary
with the imposed strain rate, reflecting the symmetry of
planar Couette flow.

The earliest attempt to calculate the self-diffusion ten-
sor (SDT) of strongly shearing fluids by nonequilibrium
molecular dynamics (NEMD) was made by Heyes et al.
[3]. These authors conjectured, but did not derive, Ein-
stein relations between the mean-square displacements
(MSD’s) and the diagonal elements of the SDT. In a
series of papers [4-6,1] we have derived both Einstein
and Green-Kubo (GK) relations for diagonal and off-
diagonal elements of both the self-diffusion tensor and the
thermal conductivity tensor for single-component fluids
undergoing strong shear.

In the case of self-diffusion, one can inspect the expres-
sions for the microscopic MSD’s and compare them with
the macroscopic ones obtained from the convective
diffusion equation [4,6]. The MSD’s can then be
transformed to integrals of the velocity autocorrelation
functions. A limitation of this method is that it is only
possible to obtain GK relations for the diagonal elements
of the SDT. A more general and rigorous method [5] is
to derive microscopic analogs of the mass or energy con-
tinuity equations expressed in Lagrangian convected
coordinates. These equations can be combined with con-
stitutive relations (such as Fick’s law or Fourier’s law) in
a manner that is surprisingly similar to the nonshearing
case [7], leading to both GK and Einstein relations for
the complete diffusion or thermal conductivity tensors for
fluids under shear.

It is well known that the most efficient methods for cal-
culating the linear transport coefficients employ
nonequilibrium-molecular-dynamics algorithms. These
algorithms use fictitious mechanical fields that interact
with the system in question, generating irreversible ther-
modynamic currents (or forces). The form for the in-
teraction between these fictitious fields and the system is
chosen so that the currents generated by the fictitious
fields are trivially but exactly related to the same currents
generated by real Navier-Stokes forces (e.g., temperature
or chemical potential gradients, strain rates, etc.). The
proof of the correctness of these algorithms [7] is based
on the known GK relations for the Navier-Stokes trans-
port coefficients and on a formal analysis of the linear
mechanical response of the system to the fictitious exter-
nal fields. In general, the NEMD algorithms permit
much more efficient calculation of the Navier-Stokes
transport coefficients than does a direct calculation of the
transport coefficients from the GK relations themselves.

It may be thought that since GK relations are now
known for a number of weak vector processes taking
place in strongly shearing fluids, NEMD algorithms
could likewise be derived for these nonlinear far-from-
equilibrium systems. Unfortunately, it has recently been
proved [1] that this is not the case. When a system is
simultaneously subject to a strong shear field and a weak
mechanical vector field (the fictitious field), the linear
response of the system to this weak field is a sum of two
terms: one takes the form of the desired GK expression
for the relevant transport coefficient but the other term
involves a complicated derivative of a time correlation.
This means that for all practical purposes, NEMD
methods do not exist for weak vector processes taking
place under strong tensorial fields.

In this work we give a derivation of the GK relations
for the various components of the mutual diffusion tensor
(MDT) of a shearing fluid. We present the results of
computer simulations of the SDT and the MDT for fluids
under shear. We also compare the SDT and the color
conductivity tensor (CCT) of pure Lennard-Jones (LJ)
fluids and of LJ mixtures in order to explore the effects of
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the shear field upon the self diffusion and color conduc-
tivity. We evaluate the difference between the zero field
CCT and the SDT at different state points in order to ver-
ify the conclusion in Ref. [1]. The paper is organized as
follows, in Sec. II we review the necessary theory, in Sec.
III the results are presented and discussed, and finally we
present our conclusion in Sec. IV.

II. THEORY

A. Equations of motion

The system that we study consists of N, particles of
component 1 with mass m; and number density n; and
N, particles of component 2 with mass m, and number
density n,. The total number of particles in the system is
N=N,+N,. The volume of the system is V, the number
density is n =N /V. The mass densities are p;,=n ;m,
py=n,m,, and p=p,+p,=n;m,;+n,m,. The position
coordinates and the momenta of particle i of species v are
denoted by r} and p}, respectively. The system is subject
to a Couette strain field y =0du, /dy, where u, is the
streaming velocity in the x direction. The equations of
motion for such a system are given by the Sllod equa-
tions, so named because of their relationship to the Dolls
tensor algorithm [7]

v
1

.V . . v Vv . v v
r,= +iyy?, p;=F/—iyp, —ap;. (n

v
In these equations r} is the laboratory position of particle
i of species v, F} is the interatomic force on particle i of
species v due to the other particles, and i is the unit vec-
tor in the x direction. At a low Reynolds number, the
streaming velocity at the position of the particle i of
species v is iyy/;", so the peculiar velocity of the particle is

J

N
chchy sz/n + 2 (Fi'pi_’ypxipyi_ciFi'Jcm/n)

i=1

a= N
S (p;—ce;mY /n)?

i=1

It is important to note that heating effects can be neglect-
ed only in the linear regime, i.e., for low shear rates and
color fields. Far from equilibrium, e.g., when a high
shear rate is applied, the thermostatting mechanism has
to be fully specified because it also influences the proper-
ties of the system.

B. Self-diffusion tensors for fluids subjected
to Couette strain fields

When a single-component fluid is subject to steady pla-
nar Couette flow the self-diffusion coefficient becomes a
self-diffusion tensor with shear-rate-dependent com-
ponents. In Cartesian coordinates the steady-state
diffusion tensor can be written as

Y/m.. The Gaussian thermostatting multiplier a is
pl v g p

given by

a= . (2)

The equations of motion for a one-component system can
be recovered by setting N, =N and N, =0.

We also studied the color conductivity [7] of a one-
component system subject to simultaneous Couette strain
fields and color fields. In this case the equations of
motion become

=2 tiyy,,
m
p;=F,+¢,F —iyp,—alp,—c;mlI./n),

where
1 N
J = D
P~ Z‘,l ¢ipi @

is the color current, ¢; =(—1)"is the color charge and ¥,
is the color field. The system is color neutral, i.e.,

N
> ¢;=0. (5)

i=1

In this case the Gaussian thermostatting multiplier re-
quired to keep the peculiar kinetic energy
1 N
Ey=5 -3 (pi—cmIc/n )2 (6)

i=1

constant is given by

%)
[
D, D, 0
D= D, D, O |. (8)
0 0 D,

The xz, yz, zx, and zy are identically zero because of sym-
metry. In a previous work [5] the following Green-Kubo
relations for the various components of this tensor were
derived

1 o
Da3=—m—2fo (pa(t)ppl0)),dt 9)

where a,B=x,y,z. The ensemble average is taken over
shearing steady states, hence the subscript y. We can
operationally define this ensemble by considering some
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equilibrium ensemble at = — o, being subject for all
subsequent time, to thermostatted planar Couette flow
[Egs. (1) and (2)]. At =0 the system is assumed to have
completely relaxed to a steady state. Thus the time
correlation function referred to in (9) correlates the
Cartesian components of momentum at times 0,7 long
after the transients leading to the establishment of the
steady state have decayed.

Note that the p, in this equation are the peculiar mo-
menta of (1). These relations can be integrated to give
the Einstein relations for the mean-square displacement.
The diagonal components become

(qa(t)z)},:ZDaat , (10)
where

pi(s)

q(t)=r/(0)+ fo’ds (11)

m,

is the convected Lagrangian position of particle i. (In a
one-component system the species index v can be omit-
ted.) It is not possible to obtain separate Einstein rela-
tions for the two nonzero off-diagonal elements of the
diffusion tensor [6]. It is only possible to obtain an Ein-
stein relation for the sum of these two elements,

(q,(t)g,(t)),=(D,,+D, )t . (12)

In general the self-diffusion tensor for a fluid under
Couette flow is nonsymmetric. The x mass current gen-
erated by a y concentration gradient is not necessarily
equal to the y current generated by an x gradient. How-
ever, it is easy to prove that by measuring the time depen-
dence of concentrations alone, it is only possible to deter-
mine the symmetric part of the diffusion tensor [6].

An alternative route to the GK relations for the diago-
nal components of the SDT is to derive the above MSD’s
from the macroscopic convective diffusion equation
[8,4,6]. One then assumes that the macroscopic and mi-
croscopic MSD’s are the same and GK relations are thus
recovered from the MSD’s instead of the other way

|

1 , (Jg(1)),
— lim C = 1 lim ————
Bn 3,0 7 g cir{l,ml,n:o o t>o
— lim L
t—

The GK integral on the first line of this equation is the
equal to the self-diffusion tensor (9). The second line is
the color field derivative of the steady-state time correla-
tion function (SSTCF). The subscript ¢ means that the
color field is turned on at time zero in a system while the
shear has been acting since time minus infinity.

It is very time consuming to calculate the derivative of
the SSTCF numerically, so the evaluation of the self-
diffusion tensor from the color conductivity cannot com-
pete favorably with the direct evaluation of the GK rela-
tion (9). We know of no way of reducing this term to a

t d
fodsach<Jm(0)ny( 5))

around. Unfortunately, it is not possible to derive any
GK relations for the off-diagonal elements by this
method.

One can consider subjecting a shearing steady state to
a color field [Egs. (3)-(7)]. For this purpose we again
consider an equilibrium ensemble at = — oo being sub-
ject to thermostatted shear flow for all time. At t=0 we
assume that the system has fully relaxed to a shearing
steady state. At t=0 we now turn on a color field and
study the system as it relaxes to a steady state under the
combined influences of planar Couette flow, the color
field, and the thermostat. In this work we will be con-
cerned with the situation where the shear rate is large but
the color field is weak. In this case we expect a linear
response to the color field. We can define a steady-state
color conductivity tensor C with the Cartesian com-
ponents a,f3 as

C, 5= lim &;(—t))—y . (13)
t— © CB

At zero strain rate ¥y =0 the color conductivity tensor is
isotropic and in the limit of the zero-color field the con-
ductivity is related to the self-diffusion coefficient

D,_y=-— lim C

v Bn Fea™0 aaly=0)

1 ©
=Ffo ds (J,o(s W e(0)) = - (14)

B=1/kgT, kg is Boltzmann’s constant and T is the abso-
lute temperature. Away from equilibrium we define T as
the kinetic temperature, i.e., T=E;/3Nky. Unfor-
tunately, it has been proved [1] that Eq. (14) or any sim-
ple generalization is not valid when a system is subject to
large strain rates. From the results in [1], one can derive
the following relation:

.1 p
=— lim = [ ds (7,0 —5)),

. 15
Ve :7£=oy (15)

[

form suitable for easy computation. Note that the form
of (15) is not only valid for color and shear fields; the
color field can be any kind of vectorial field and the shear
field can be replaced by any second-rank tensorial field.

C. Mutual diffusion tensor

The mutual diffusion tensor (MDT) is more complicat-
ed than the self-diffusion tensor because the MDT con-
sists of a product of a thermodynamic factor and an in-
tegral over a time correlation function. The derivation of
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the GK expressions for the MDT of a shearing fluid is
essentially the same as the derivation of the correspond-
ing relation for an equilibrium fluid. It is convenient to
consider an equilibrium grand canonical ensemble at
t=—o0, which is subject to thermostatted planar
Couette flow for all subsequent time. We again assume
that at # =0 the system has relaxed to a shearing steady
state.

To begin with, it is useful to define the instantaneous
number density of species v, evaluated using Lagrangian
coordinates

NV
n,(q,t)= 3 8(q;(t)—q) . (16)

i=1

Using the thermostatted Sllod equations of motion, the
derivative with respect to time is

Mnqt) 3 .,
% o f§16(qi(” q)

N
=—V- 3 8(qU(r)—q)a (1)
i=1
1
=V > 8(qj(t)—q)p;(t)=—

v i=1

Ly .
m,
(17)

This is the continuity equation expressed in Lagrangian
coordinates. The influence of the thermostat in this (and
the following) equation(s) is subtle. The time dependence
of the phase functions in this equation is generated from
the thermostatted Sllod equations of motion. This is in
spite of the fact that the thermostatting multiplier a does
not appear explicitly in the equation(s). Note also that
the time derivative of a function of the Lagrangian coor-
dinates is equal to the hydrodynamic streaming deriva-
tive, i.e.,

dn,(q,t)
ot

_ dn,(r,1)
)

+u-Vn (r,t) . (18)

r

q

In order to derive a Green-Kubo expression for the
MDT of a binary mixture we have chosen work in the
center-of-mass frame with the mass fraction as the con-
centration unit. The mass fraction of species 1 is related
to the number densities

nym; _ P

w, = = .
nimytn,m, p;+p,

(19)

If we consider a small change of the mass fraction dw; we
have

_ oén, Oon,
Sw, =ww, |———— (20)
ny n2
and
S, =ww, |———— 21
n, ()

When the local forms of these expressions are Fourier

transformed with respect to the space coordinates one ob-
tains

on (k,t)  bn,(k,t)
Sw,(k,t)=w,w, —

ny n;

Ji(k,t)  JXy(k,t)
=iw,w,k- -
P1 P2
=K 5 (k0. (22)
p

Note that this relation is valid for any value of k; it is not
an approximation for small k.

We assume a frequency- and wave-vector-dependent
macroscopic constitutive relation

J(k,0)=pDy,(k,0),ikd@,(k,0) , 23)
where
Flo)= [ " f(r)e™tdr 24)
0

denotes the Fourier-Laplace transform with respect to
time. Combining (22)-(24) leads to

i08@, (k,0)— 8w, (k,0)= —k-D ,(k,0), k8@, (ko) .
(25)

We will now relate the frequency and wave-vector-
dependent MDT to shearing, steady-state time correla-
tion functions. By construction, the ¢t =0 appearing in
(25) refers to a time after which the initial transients that
generate the shearing steady state have decayed. As men-
tioned above for ¢ >0, all averages are assumed to be sta-
tionary. Because the thermostatted Sllod equations of
motion conserve particle number N, the zero-wave-vector
number and composition fluctuations are a constant of
the motion and retain their initial (1 = — «) equilibrium
grand canonical values.

Multiplication of both sides of Eq. (25) with
dw,(—k,0) and averaging over our initial grand canoni-
cal ensemble gives

in"(k,w),,*c(k,O)y:—k-f),z(k,a))y-kﬁ(k,w)y , (26)
which can be rewritten as
c(k,0),
ck,o),= , 27

ia)+k'f)12(k,a))y'k
where c(k,t)y is defined as
c(k,t)y=(8w1(k,t)8w1(—k,O))y . (28)

As discussed above, the distribution of phases I'(0),
N,(0), and N,(0) used to perform this average is generat-
ed from an initial equilibrium grand canonical distribu-
tion of phases at t=— o0, namely I'(—), N;(—),
and N,(— o). The system evolves forward in time via
Egs. (1) and (2) until # =0 when the averaging is per-
formed. At =0 the system is assumed to have relaxed
to a time-independent thermostatted shearing steady
state characterized by the fixed values of the state vari-
ables N,N,,V,v,Ex. We note that our equations of
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motion (1) and (2) preserve particle numbers so that
N,(—ow)=N(¢)for all t,v.
Defining

D(k,1),=—E(k,t),= (8w, (k,1)8w,(—k,0)),

=—;12—kk:(11(k,t)11( —k,0)),

(29)

D i L (71.(k=0,0)J15(—k=0,0)),
2a800 ™ 0% 52 (6w, (k=0,0)6w,(—k=0,0)),

we find
@(k,w)y=iw[c(k,0)y—iw8(k,w)y] . (30)
Eliminating ¢(k,w) from (27) gives
@(k,w)y
c(k,0),—[D(k,0),/io]

k-Dyy(k,0), k= (31)

Using (28) and (29) the components of the zero frequency
and wave-vector mutual diffusion tensor are given by

1 nm(J,a(O,t)JIB(O,O»,,dt=L2 fow(Jla(t)Jw(O)),,dt

o* (8w,(0,0%), P> (5w,(0,0?),
o 0°°<J,,,(t)11,9(o>>,dt= fﬁw(Jla(t)Jw(O))ydt
Pt (8w,(0,07?),, pP(B8w)eq
= 1 — [ (T 50)) dt . (32)
2w2w2< N, _ N, > 0
pwiw; <Nl ) <N2) eq

We have carried out the derivation of the final form of
(32) rather slowly in order to make the various steps more
obvious. In the first line we simply set k to zero. This is
possible because both the numerator and denominator
are finite and nonzero at k=0. In the second line we take
the =0 value of the temporal Fourier transform and
write the product zero-wave-vector mass fluxes in terms
of the global currents defined in (21). In the third line we
note that because the equations of motion conserve the
composition, the second moment of the zero-wave-vector
composition fluctuation is independent of the shear rate
and can be evaluated from the generating grand canoni-
cal equilibrium ensemble. We also replace the zero-
wave-vector expression for the fluctuation. Then finally
the last form of the equation shows the composition fluc-
tuations explicitly.

Alternatively the mutual diffusion coefficient can be
written in terms of integrals G ., of nonequilibrium pair-
correlation functions (PCF) g:ﬁ(rl,rz ), between one par-
ticle at r; of species u and another particle at r, of species
v under steady thermostatted shear N, V,y,Eg

Gy= [dr,[g2(r;,ry),—1]. (33)

We know that under shear g(2)(r},r;), 782 (r},13), =0,
however, from the above arguments it is clear that the in-
tegrals G, are independent of y. The mutual diffusion
tensor can be written as

N - fn“’ua(t)JB(O))ydt
lZaB(Y)_Nwlw2mlm2 [1+n1x2(G11+G22_2612)] .
(34)

Since the G, take on their equilibrium grand canonical
values, the MDT can be written in terms of the composi-
tion derivative of the equilibrium chemical potentials as

D _ y? Iy . I,
12af(y) lemz awl awl eq
X [ " (Ia(1)75(0)),dt (35)

where p, and u, are the chemical potentials of the two
species at equilibrium (i.e., t=— o). This expression is
remarkably similar in appearance to the corresponding
equilibrium expression to which it reduces when y =0.

In our present numerical work we have not attempted
to evaluate the “thermodynamic factor.” Further, we as-
sume that the grand canonical ensemble averages em-
ployed in the time correlation functions in (35) can be re-
placed by canonical ensemble averages carried out at the
most probable composition predicted by the grand
canonical ensemble.

D. Technical details

In this work we deal with a pure LJ fluid and a binary
equimolar LJ mixture. In the mixture a particle of
species p interacts with another particle of species v via
the following pair potential:

12 6
o o
uv uv
uypy=4¢ , (36)
L uv | 12 »6
where o, is the zero of the potential, €,, is the depth of

the attractive minimum, and r=|q*—q"|, the scalar dis-
tance between the particles. In order to decrease the
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computational effort, the potential has been truncated,

ury(r)—uyy(r,), r<r,

u(r)= |, (37

rzr.,
the parameter r. being the cutoff radius beyond which
the interaction potential is set equal to zero. The
different parameters in the potential have been chosen to
model an argon-krypton (denoted 1-2) mixture with
0,;=3.405 A, 0,,=3.633 A, ¢g,/kz=119.6 K,
£5,/kp=167.0 K, op,=(0,,1t0,)/2, and ¢,
=(g,,€,5,)""%. The potential was truncated at r, =2. 50 4
i.e., the cutoff radii are slightly different for the different
kinds of interactions. The masses of the two different
species are m; =39.95 u, m,=283.80 u. The LJ diameter
and the mass of the argon atom, o; and m, have been
used as length units and mass units, respectively. The
time unit 7 has been taken to be o,(m, /g;,)!/?, which is
equal to about 2 ps. In the pure LJ system we used all
the 1 or 1-1 parameters, i.e., those parameters that are
adjusted to model pure argon. The number of particles
was 256. The equations of motion of the pure triple-point
LJ fluid, except at a shear rate of 1.077 !, were integrated
by using a fifth-order Gear corrector-predictor method
with a time step of 0.004r In all the other systems, in-
cluding the pure triple-point LJ fluid at a shear rate of
1.07~ !, we used a fourth-order Gear predictor-corrector
method with a time step of 0.0027. The error bars have
been calculated by dividing the simulation runs into four
equal parts and taking the standard deviation of the
subaverages.

III. RESULTS AND DISCUSSION

We have simulated two different systems, a pure LJ
fluid, and an equimolar LJ mixture. The pure LJ fluid
and the mixture were studied at their triple points and
one low-density high (supercritical) temperature state
point. The temperatures and densities are given in Table
L

One of the major aims of this work has been to esti-
mate the difference between the SDT and the zero-color-
field limit of the CCT. Therefore we have calculated
these quantities for the pure triple-point LJ fluid at vari-
ous shear rates. The results are summarized in Table II.
All the data in these tables, except the self-diffusion
coefficient of the pure triple-point LJ fluid at a shear rate
of 1.0r7!, have been obtained by using run lengths of
8007 and the upper limits in the GK integrals for the
self-diffusion coefficients, (9) has been taken to be 4.0r.
The corresponding values for the exceptional case are
40007 and 2.07.

TABLE I. Systems and state points.

System kpT /ey, n,o3;

Pure LJ fluid 0.722 0.8442
2.000 0.3000

Equimolar LJ mixture 0.965 0.7137
2.500 0.3000

One can immediately make the following observations.
The difference between the SDT and the CCT in the
zero-color-field limit varies from state point to state
point. For the triple-point LJ fluid the components of the
CCT are ~20-25% smaller than the corresponding
SDT values. Since the calculation of the difference term
is very difficult these results underline the rather pes-
simistic conclusion drawn in our previous paper [1] about
the feasibility of an efficient NEMD algorithm for the
evaluation of transport coefficients for weak vectorial
fluxes in the presence of strong shear fields or other dissi-
pative tensorial fields. At small shear rates the match of
the SDT and CCT values not unexpectedly becomes
better.

One can draw a number of conclusions about the
dependence of the SDT and CCT upon color field and
shear rates. For the triple-point LJ fluid the diagonal ele-
ments of the SDT and the CCT increase with y until y7
~1.0-1.5. For higher shear rates they fall off again.
When the color field is very high, ~3.0, the CCT de-
creases with the shear rate.

In Fig. 1 the various components of the SDT as a func-
tion of y for the high-temperature low-density state point
of the pure LJ fluid are displayed. The run lengths have
been 40007 and the upper limit in the GK integral has
been 4.07. In this case the xx component of the SDT in-
creases with the shear rate up to y7=0.8, then it falls off
again. The maximum of D, is only about 10% higher
than the equilibrium value. The D,, and the D,, elements

09 a N

3
[a] ° -
o [ ]
0.7 —
o »
(a) o
0.6 L 1 " 1 IS R |
0.0 0.2 0.4 0.6 0.8 1.0
T
0.0 §c T T T T T T T T T
——
o
-0.1 - e a -
] o o o
0.2 = i
a
a i -
0.3 + . -
[ ]
0.4 + s
H(b)
-0.5 1 | " 1 s 1 " 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0
T

FIG. 1. (a) Diagonal elements of the self-diffusion tensor as a
function of the shear rate for a pure Lennard-Jones fluid at the
low-density high-temperature state point. The element D,, is
depicted by open squares, D,, with open circles, and D,, with
filled squares. (b) Off-diagonal elements of the self-diffusion ten-
sor for the same system as above. The element D,, is depicted
by open squares and D,, by filled squares.
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TABLE II. D,, and C,, values as a function of strain rate and color field for the pure Lennard-
Jones liquid at its triple point. The error is +0.002. At this state point the off-diagonal elements are

less than 0.01.
Shear rate (y) 0.0 0.5 1.0 1.5 2.0
Color field
Color conductivity tensor elements
(computed by NEMD method)

0.5 xx 0.032 0.042 0.047 0.048 0.046
yy 0.032 0.041 0.045 0.046 0.038

zz 0.032 0.038 0.039 0.039 0.035

1.0 xx 0.033 0.043 0.048 0.048 0.045
»y 0.033 0.042 0.045 0.045 0.038

zz 0.033 0.039 0.041 0.039 0.038

2.0 xx 0.042 0.048 0.052 0.049 0.046
»y 0.042 0.044 0.045 0.047 0.042

zz 0.042 0.041 0.042 0.040 0.038

3.0 xx 0.066 0.054 0.053 0.050 0.047
yy 0.066 0.050 0.046 0.046 0.044

zz 0.066 0.049 0.043 0.041 0.038

Diffusion tensor elements
(computed by GK method)

0.0 xx 0.031 0.052 0.0626* 0.063 0.062
»y 0.031 0.051 0.0578* 0.056 0.050

2z 0.031 0.043 0.0502* 0.051 0.048

2Calculated from 1 million time steps with errors of +0.0006.

decrease monotonically with y, and D), is smaller than
D,.
In the triple-point LJ fluid (but not in the hot dilute
fluid) D,, >D,, > D,, and C,,>C,,>C,,. This behavior
seems to be correlated with the anisotropic kinetic-energy

distribution, which is T, > T}, > T, where

T = 1 X piza
® Nkg & 2m ’

(38)

One can see that this is the case by looking at the diago-
nal components of the velocity autocorrelation function
(VCF) depicted in Fig. 2(a). At equilibrium the equiparti-
tion principle states that the kinetic energy of each
translational degree of freedom is equal to 1kpT, thus
(v,(0)v,(0))=kzT/m independently of a. However,
one can see in Fig. 2(a) that {v,(0)v,(0)) is different for
different a’s. It is reasonable to believe that if the kinetic
energy is higher in one direction, then the diffusion in
that direction should be enhanced. One has to be cau-
tious when one tries to attribute some meaning to the rel-
ative magnitudes of the diagonal elements of the SDT
and the CCT because the kinetic-energy distribution is in-
duced by the thermostat; in this case we have used a
Gaussian thermostat that removes heat isotropically from
the system. It is likely that other kinds of thermostats
produce other kinetic-energy distributions and other rela-
tive magnitudes of the elements of the diffusion tensor.
The only off-diagonal elements that are different from

zero are C,, and C,,. The element C,, is greater than
C,,. This means that the current in the y direction, gen-
erated by a field in the x direction, is larger than the
current in the x direction generated by a field of the same
magnitude in the y direction. The off-diagonal elements
are smaller roughly by an order of magnitude than the di-
agonal elements for the pure triple-point LJ fluid. The
cross-coupling coefficients D,, and D), were so close to
zero that we could not calculate them for this system.
However, since the correlation functions (v, (#)v,(0))
and (v,(¢)v,(0)) shown in Fig. 2(b) are different, the two
cross-coupling elements are not identical. Figure 1(b)
shows D,, and D), as a function of y for the pure LJ
fluid at the low-density and high-temperature state point.
Here |D,,| <|D,,| as previously, although they are nega-
tive. In this hot dilute system the off-diagonal contribu-
tion is substantial.

The diagonal elements of the SDT can be calculated by
either GK relations (9) or by Einstein relations (10). We
have calculated the mean-square displacements (11) as a
function of time for the hot dilute system. The result is
displayed in Fig. 3. In Table III we compare the values
of the elements of the SDT obtained from the mean-
square displacements with the corresponding GK values.
The run length used to calculate these data was 40007.
As one can see, the agreement is very good. Note that it
is only possible to obtain the sum of the off-diagonal ele-
ments by evaluating the mean-square displacements.
However, this sum agrees very well with the sum of the
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FIG. 2. (a) Diagonal velocity autocorrelation functions
Z oo(t) =0 (t)v,(0)), a=x (full curve), y (dotted curve), and z
(dashed curve), for the triple-point Lennard-Jones fluid at a re-
duced shear rate y7=1.0. (b) Off-diagonal velocity autocorrela-
tions Z,,(£)={v,(t)v,(0)) (full curve) and
Z,.()=(v,(t)v,(0)) (dotted curve) for the same system as
above.

individual off-diagonal elements from the GK evalua-
tions. These results provide a good cross check of the
programming accuracy.

The variation of the SDT with the shear rate can be
understood in greater detail by considering how the shear
field changes the VCF’s and the structure of the fluid.
Firstly, we note that at equilibrium the fluid is isotropic
and the atoms are surrounded by spherically symmetric
coordination shells. Secondly, at high densities the VCF
consists of a large positive part for short times immedi-
ately followed by a negative tail at longer times. The neg-
ative region is due to backscattering when an atom col-
lides with its neighbors in the first coordination shell.
The self-diffusion coefficient, which is equal to the time
integral of the VCF, is greatly reduced by this back-
scattering.

All this changes when the fluid is subjected to a shear
field. The nearest-neighbor coordination shell becomes

TABLE III. Green-Kubo vs mean-square displacements.

Green-Kubo Mean-square displacement
D, 0.883+0.009 0.89410.008
D, 0.632+0.003 0.628+0.007
D, 0.681+0.0005 0.681+0.006
D, — 0.142+0.005
D,, — 0.407+0.004
D, +D,, —0.56+0.01
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FIG. 3. Various components of the mean-square-

displacement tensor as a function of the shear rate for a pure
Lennard-Jones fluid at the low-density high-temperature state
point and a reduced shear rate y7=1.0. From top to bottom,
([g<(1?), ([q.()*) {[g,()]*), and {q,(t)g,(¢)) as functions
of time.

ellipsoidal rather than spherical. This decreases the
backscattering, so the negative part of the VCF’s is great-
ly reduced. This can be seen in Fig. 2(a), where the diag-
onal elements of the VCF are displayed. The net effect is
that the magnitude of the diagonal elements of the SDT
increases. This effect is important at high densities. At
lower densities there is no negative part of the equilibri-
um VCF, so the change of the SDT with shear is more
moderate.

Another effect that becomes important as the shear
rate increases is due to the high pressure. This causes the
VCF to decay faster and thus the GK integral and the
SDT decrease. Eventually this effect will dominate over
the reduced backscattering, so there will be a maximum
of the SDT as a function of the shear rate. The mecha-
nism is likely to cause the decrease of the yy and zz com-
ponents of the SDT of the hot dilute LJ fluid. In Fig. 4,
where the VCFs of this system are displayed, one can see
that the yy and zz VCF’s decay faster than the xx VCF.
The equilibrium VCF, which has not been displayed, is
located between the xx and the yy VCF.

Although in this paper we do not calculate the thermo-
dynamic factor, we note that because it is the same for
every element in the mutual diffusion tensor, the calcula-

T

FIG. 4. Velocity autocorrelation functions Z,4(t)
=(va(t)uﬂ(0)), a,B=x,x (full curve), y,y (dotted curve), z,z
(short-dashed curve), x,y (long-dashed curve) and y,x (dot-
dashed curve), for the low-density high-temperature pure
Lennard-Jones fluid at a reduced shear rate y7=1.0.
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TABLE 1V. Mutual diffusion tensors.

yr 0.0 1.0 0.0 1.0

kT /€y, 2.5 2.5 0.965 0.965
no} 0.3 0.3 0.7137 0.7137
L,, 0.10 0.11 0.016 0.024
L, 0.10 0.09 0.016 0.023
L, 0.10 0.08 0.016 0.019
L, 0.00 —0.01 0.000

L 0.00 —0.05 0.000

tion of the GK integral yields information about the rela-
tive magnitudes of the various components and the sym-
metry of the diffusion tensor. Also, because the LY mix-
ture is a very nearly ideal mixture, the thermodynamic
factor can be expected to be fairly close to unity.

The values of the integrals of the mass current auto-
correlation functions

Log= [ " (J1a(0)]15(0))dt (39)

of the triple-point mixture and the hot dilute mixture are
displayed in Table IV. The run lengths have been 16 0007
and the upper limit in the GK integral above has been
6.07 at the triple point and 4.07 in the low-density high-
temperature system. The error is about *1 in the last di-
git given in the table. The increase of the diffusion

Cagl®
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FIG. 5. (a) Diagonal mass current autocorrelation functions
Coot)=V{J1o(t)12(0)) /kp, a=x (full curve), y (dotted
curve), and z (dashed curve), for the triple-point Lennard-Jones
mixture at a reduced shear rate y7=1.0. (b) Off-diagonal mass
current autocorrelation functions C,,(t)= V{J, ()T ly(O))/kB
(full curve) and C,,(¢)=V(J,,(¢)J,,(0)) /kp (dotted curve) for
the same system as above.

tr

FIG. 6. Mass current autocorrelation functions C,g(t)
=V{J (1) 50) Y/kg, a,B=x,x (full curve), y,y (dotted
curve), z,z (short-dashed curve), x,y (long-dashed curve) and y,x
(dot-dashed curve), for the low-density high-temperature pure
Lennard-Jones fluid mixture at a reduced shear rate y7=1.0.

coefficients for this triple-point mixture at y7=1.0 com-
pared to equilibrium value is quite modest, only about
50% for the xx and yy components and even less for the
zz component. The shear-induced shift of the various
diffusion coefficients of the hot dilute mixture follow the
same pattern as the self-diffusion coefficients of the pure
LJ fluid. The xx component increases slightly and the yy
and zz components decrease with the shear rate. The xy
and yx elements are negative and different so the MDT is
nonsymmetric at this state point. We also have
IL,,|< lLyx |, which is similar to the behavior of the self-
diffusion coefficients.

The diagonal mass current correlation functions
(J1o(t)J1,(0)) of the triple-point LI mixture at y7=1.0
are displayed in Fig. 5(a). They are very similar to the ve-
locity autocorrelation function of the pure LJ fluid at the
same shear rate. This is not unexpected because when
the two species become equal the mutual diffusion
coefficient is the same as the self-diffusion coefficient.
The off-diagonal correlation functions (J,,(¢)J,5(0)) are
depicted in Fig. 5(b). It is impossible to determine the
sign of the time integral of these functions, so one can
conclude that the MDT is almost diagonal at the triple
point.

Finally, in Fig. 6 we show the mass current correlation
functions of the hot dilute mixture at y7=1.0. These
correlation functions are also very similar to those of the
pure LJ fluid. The explanation for the behavior of the
different momentum current correlation functions is basi-
cally the same as the discussion above on the VCF’s.

IV. CONCLUSION

We have derived a Green-Kubo relation for the mutual
diffusion tensor of fluid mixtures subject to strong
Couette shear fields when Curie’s principle and local
thermodynamic equilibrium have broken down. At first
sight this derivation might seem to be rather difficult. In
the absence of shear the familiar GK relation for mutual
diffusion consists of a product of a thermodynamic factor
and a nonequilibrium time correlation integral. Under
strong shear, however, when the local thermodynamic
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equilibrium approximation has broken down, the thermo-
dynamic factor has in fact no known thermodynamic
meaning. Instead this term is expressed as a sum of in-
tegrals of steady-state equal-time pair-correlation func-
tions. In our theory there is in fact no need to attach
thermodynamic meaning to this term. Furthermore if
the nonequilibrium shearing steady state was generated
from an initial grand canonical distribution by advancing
time using equations of motion that conserve the molar
composition of the mixture, the thermodynamic factor
must also be a constant of the motion. Our GK relation
reduces to the familiar expression for the mutual
diffusion coefficient when the applied shear rate goes to
zero.

In the vicinity of phase boundaries we expect that the
wave-vector dependence of both the MDT and the ther-
modynamic factor may become quite complex. In such
circumstances our use of zero-wave-vector information
may not be relevant to the discussion of experimental re-
sults for coexistence regions exhibiting complex long-
wavelength structures.

We verified that the zero-field color conductivity does
not equal the SDT. The immediate consequence of this is
that a useful synthetic NEMD algorithm for efficiently
computing the diffusion tensor of shearing fluids does not
exist.

We have also examined the behavior of the SDT, the
MDT, and different velocity and mass current autocorre-
lation functions as functions of the shear field. We found
that at the triple point, the diagonal elements of the SDT

of the pure fluid and the MDT of the mixture increased
with the shear rate. The off-diagonal elements were
negligible. The increase of the diagonal elements can be
attributed to the diminished possibility of backscattering
at high shear rates.

At lower densities the behavior is somewhat different.
The xx element of the SDT increases to a maximum that
is about 20% higher than the equilibrium value, then it
decreases again. The yy and the zz components decrease
with the shear rate. The off-diagonal elements of the
SDT are negative and their magnitude increases with
shear rate. Even in this case the qualitative behavior of
the SDT of the pure fluid and the MDT is very similar.
The reason for this is that when the two species of the
mixture become identical the MDT and the SDT are the
same. In our LJ mixture the potential parameters have
been adjusted to model an argon-krypton mixture, which
means that the two components of the mixture are fairly
similar.

Finally, we note that to observe large effects of the
diffusion tensor (i.e., a factor of 2 change from equilibri-
um close to the triple point), the applied shear rate must
be of the order of unity in reduced units. This means that
for the inert gas fluids, the effect of shear on the diffusion
coefficient for even the highest shear rates achievable in
the laboratory is minute. In order to see in the laborato-
ry the effects revealed in our computer simulations, one
should look at fluids that are observed to be non-
Newtonian, since by definition, reduced shear rates of
unity are easily observable for these fluids.

*Permanent address: Laboratory of Theoretical Chemistry,
Eo6tvos University, Budapest, Muzeum krt 6-8., Hungary.
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