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Particles released from a target surface by laser-pulse bombardment normally collide with each other
and, as a result, exhibit three limiting categories of gas-dynamic behavior. One possibility, (a), is that the
particles pass directly into unsteady adiabatic expansion (UAE), a problem for which an analytical solu-

tion already exists. Alternatively, (b), the particles first form a Knudsen layer (KL), then pass into UAE,
and are not subject to recondensing at the target surface if the release pulse terminates, or else, (c), the
particles go through the same sequence of KL formation and UAE but are subject to recondensing.
Closely related to (b) is the behavior of particles that escape into vacuum from a nozzle. We here present
an analytical, one-dimensional, continuum solution for case (b) when the release is pulsed. The KL (like
the throat of the nozzle) is treated as a boundary condition with a nonzero flow velocity. During the
release pulse the solutions take on our previously derived forms for a planar UAE from an infinite reser-
voir. When the pulse ends (or the nozzle closes), there is an abrupt change of boundary condition from
finite to zero flow velocity and from high to intermediate sound speed (thence density); at the same time

the flow pattern breaks up into three regions. These analytical results are finally compared with the nu-

merical solution of the flow equations by Knight [AIAA J. 20, 950 (1982)], with Monte Carlo solution of
the Boltzmann equation by Sibold and Urbassek [Phys. Rev. A 43, 6722 (1991)],and with the explicit
nanosecond-time-scale photography of Braren, Casey, and Kelly [Nucl. Instrum. Methods B 58, 463
(1991)]. The comparison with the Boltzmann equation is particularly important, as the generally good
agreement with the flow equations suggests the latter to be useful in spite of being founded on the as-

sumption of persistent local equilibrium.

PACS number(s): 51.10.+y, 79.20.Ds, 47.55.Ea, 47.45.—n

I. INTRODUCTION

The release (i.e., ablation, desorption, sputtering, or va-

porization) of particles from a target surface due to the
impact of ions, electrons, or photons constitutes an active
contemporary field. Applications include surface
analysis, surface texturing, thin-film deposition, ion for-
mation for mass spectrometry, fundamental surface stud-
ies, and fundamental studies of particle dynamics. Under
some circumstances, such as when laser pulses are in-

cident, the emitted particles exhibit prominent gas-
dynamic effects because of gas-phase collisions. Three
limiting categories of behavior will be recognized in what
follows. In the first, (a), the collisions are those appropri-
ate to the escape of gas from a finite reservoir such as a
gun, the escape being in the form of an unsteady adiabat-
ic expansion (UAE} without a formal Knudsen layer (KL)
[1,2]. This was termed the "outflow" model [3]. In the
second, (b), the collisions are those appropriate when
both a KL and UAE are present. In one form of the
model the particles are not subject to recondensing at the
target surface if the release pulse ends ("effusion" model),
but recondensation is readily taken into account. This
leads to a third possibility, (c), the "recondensation"
model [3]. Closely related to (b) is the behavior of parti-
cles that escape into vacuum from a nozzle. We here
present an analytical, one-dimensional, continuum solu-
tion for case (b} when the release is pulsed. This contin-

ues the work begun in [4], where only nonpulsed situa-
tions were considered. Still to be developed are the solu-
tions for case (c) when the release is pulsed.

A. Escape into vacuum
from a combined KL-UAE or a pulsed nozzle

(eirusion and recondensation models)

Particles that are released by sputtering from the outer
surface of a condensed phase will, when the number of
collisions among them is small (roughly 3 [5,6]), fortn a
KL [7—12]. This can be described as the region in which
the independently emitted particles come to equilibrium
with each other, i.e., become thermalized. For a larger
number of collisions the KL "feeds" a UAE [4,13]. In
some circumstances, as when there is a nearby sink

[7,14], the UAE will evolve into a steady adiabatic flow.
More usually it terminates due to the falling density, with
the particles then going into free flight [4,15] and, de-

pending on the intent of the experimenter, leading vari-
ously to thin-film deposition [16—18], mass spectrometry
[19,20], or time ofPight (TOF} m-easurement [4,11—13].
If the release of particles is pulsed, additional gas-
dynamic effects set in, and one must then make a distinc-
tion as to whether or not recondensation occurs at the
target surface. This leads to the "effusion" and "recon-
densation" models.

Situations in which a combined KL-UAE plays a role
are not confined to the sputtering process. Indeed, the
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FIG. 1. Examples of apparent time-of-flight (TOF) surface
temperatures, i.e., T, ~, vs energy density (fluence) for laser-
pulse sputtering of S~ from CdS. For the lowest energy density
only a fraction of a monolayer was removed per pulse, but for
the highest densities as much as 1.0 nm, i.e., about 4 mono-
layers, was removed and gas-dynamic efFects should be prom-
inent. The laser pulses had a length of 5 ns and a wavelength of
337 nm (3.68 eV). %hat is here significant is that the tempera-
tures measured at 0' and 15 increase with energy density,
whereas the converse change is observed at 45'. The dashed line
labeled "ideal" would apply in the absence of gas-dynamic
effects. Due to Namiki, Kawai, and Ichige [26].

application to sputtering is very recent [4,11—13], with
the historical applications being mainly in connection
with effusion or strong vaporization [7,14,21,22]. Closely
related are nozzle expansions [23—25], except that here,
instead of unit Mach number (M=1) occurring at the
KL boundary, it occurs at the "throat, " i.e., narrowest
point, of the nozzle.

From a more fundamental point of view, what this all
means is that the released particles (whether sputtered or
from a nozzle, and whether continuous or pulsed) do not
give simple information on the surface from which they
come. Rather they reflect the details of the combined
KL-UAE. An important example is a TOF temperature,
deduced by analyzing the data as if there were no KL-
UAE (Fig. 1 [26]). In data of this type the dependence of
the temperature on the angle of observation and on the
amount of material removed can be understood both as a
gas-dynamic effect and as being intrinsic to the sputtering
mechanism, with the relative contributions unestablish-
able without additional information. This fundamental
choice was recognized also by NoorBatcha, Lucchese,
and Zeiri [5]: see their "models I, II, and III" in their
simulation of earlier work by Cowin et al. [27]. It was
also recognized by Namiki, Kawai, and Ichigi [26], but
has been systematically overlooked in many other cases.

Altogether the following effects, not normally relevant
to the sputtering process, can be recognized when a com-

bined KL-UAE forms:
(a) chaotic temperature information as in Fig. 1 [26];
(b} recondensation, such that 18—26% of the emitted

particles return to the target surface if there is a KL
[7,8, 10] and even more return after the release pulse ends
if the system is subject to recondensation;

(c) forward peaking among the particles that do not
recondense. Angular dependences similar to cos 8 are
well known [26,28], even if not always interpreted in gas-
dynamic terms [28];

(d} lack of stoichiometry in both (b) and (c) [29];
(e) condensation, i.e., cluster formation, among the par-

ticles that leave the surface [30—32]. These clusters had
masses (10000 u. Those seen in other work [17,18] by
scanning electron microscopy, on the other hand, were so
massive () 10' u) that condensation can be immediately
excluded;

(f) shock-wave formation when the release process
takes place in an ambient gas [33—36].

B. Escaye into vacuum from a finite reservoir (outiiow model)

An essential aspect of the argument in the preceding
section is that effusionlike release occurs from the outer
surface of the target. There are, however, examples in
which this is not quite true: heavy-ion sputtering of
condensed gases [1,2], laser-pulse sputtering of
YBa2Cu307 „[36],(possibly) laser-pulse sputtering of
III-V and II-VI compounds [37], and (possibly) laser-
pulse sputtering of polymers [33—36,38,39] or biological
tissue [40).

Considering condensed gases, the current view [1,2] is
that each incident ion causes first a cascade, then causes a
transient temperature increase T', and finally, provided
the condensed gas achieves the situation T* & T„,the
material rapidly becomes gaseous and out6ow in the form
of UAE from a finite reservoir occurs. T„is the thermo-
dynamic critical temperature [21] at which the liquid and
gas have the same density. There is no effusionlike
release from the target surface and, therefore, no formal
KL. The underlying problem is like that of the sudden
release of gas from a gun and, although the real dimen-
sionality is axial like a pulsed nozzle, we have achieved
reasonable success in treating it as planar [2]. The conse-
quence to TOF studies [4] is in principle as severe as
when a KL forms, with all the points (a) —(I} given above
remaining valid except (b): such recondensation as occurs
would be due not to the KL, but to the on-going return of
particles to the back surface of the reservoir [1].

Considering the laser-pulse sputtering of polymers or
biological tissue, one of the currently popular models is
that the pulse rapidly severs bonds throughout a given
depth [34,38]. The resulting gaslike particles then, if this
description is valid, began an outflow like that of a con-
densed gas. This example of outflow is, however, tenta-
tive since experiments which might have made a firm dis-
tinction (such as those of [36]) were not performed.

C. Concluding remarks

The probleID of pulsed particle release when a pure
UAE is involved is understood to the extent that, al-
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though it is necessary to assume planarity, the solution
for atoms is complete [2]. The situation is less satisfacto-
ry when there is a combined KL-UAE (or release from a
nozzle), since in that case the solutions for continuous
release are known [4,41] but those for pulsed release have
not yet been discovered. This lack of information for the
pulsed release applies equally whether or not there is
recondensation at the surface [3]. In what follows we in-
tend to elucidate the problem in two respects: (a) to give
a full analytical, one-dimensional, continuum solution of
the problem of a combined KL-UAE when the release is
pulsed and there is no recondensation, and (b) to discuss
relevant numerical [42,43] and experimental [33—36,40]
results. This will include showing a generally good agree-
ment between the Boltzmann equation [43] and the
present results.

We will not consider the recent work of Vertes and
co-workers [19,20]. They made a numerical treatment of
laser-pulse sputtering which in many respects overlapped
the present work rather closely. However, the results did
not resemble those obtained here, a detail which we attri-
bute in part to energy being deposited in the escaping
particles. Our treatment is thus for low laser fluence
(J/cm ) and that of Vertes and co-workers for high
fluence.

II. THE BEGINNING OF THE PULSE

A. Situations with a formal KL

We consider here a pulsed beam of bombarding ions,
electrons, or photons which is uniform in space and time,
and which will in most experimental situations be a pho-

ton pulse from a laser. We suppose that at time t =0 a
pulse begins to strike the target surface and, as a result,
particles abruptly begin to be released. The two most
common categories of such release are thermal (e.g. , with
C[44]) and electronic (e.g. , with A1203 [45]).

If the release is thermal, the particle velocities will be
distributed as a Maxwellian [8,10] characterized by num-
ber density n„pressure p„temperature T„positive ve-
locities (u ) normal to the surface (s), zero flow velocity
u, and zero Mach number M. Although the flow velocity
is formally zero, there is an effective flow velocity (u, ),
arising because v, is positive [4], which we will need for a
comparison of the present analytical results with the nu-
merical results of Sibold and Urbassek [43] (Sec. VI C):

u, = ( v, ) = (2k+ T, /~m )
'/ =0.797 88( k~ T, /m )

'

(la)

If the relapse is electronic, i.e., due to bond breaking, it is
less clear what form the velocity distribution will take.

For high enough emitted particle densities, gas-phase
collisions will occur, the first stage of which is the KL
[7—12] during which the independently emitted particles
come to equilibrium with each other. We have summa-
rized the consequences of KL formation previously [4],
so here indicate only the final results.

(a) The velocity distribution is probably Maxwellian-
like whether the initial release is thermal or electronic
[3]. It will be "circular" with one temperature rather
than "elliptical" with two temperatures [22].

(b) The particles acquire a lower number density nx,
pressure pz, and temperature Tz. For atoms with y=

3

TABLE I. Notation for density, flow velocity, kinetic velocity, pressure, and temperature as used in the present work and in close-
ly related articles.

Quantity

Density of saturated vapor
at target surface'

Density of emitted vapor
at target surface ("real" density)

Density of emitted vapor
at KL boundary

Effective flow velocity
at target surface

Arithmetical mean kinetic velocity'
Flow velocity at KL boundary
Pressure of saturated as well as

emitted vapor at target surface
Pressure of emitted vapor

at KL boundary
Temperature of saturated as well as

emitted vapor at target surface
Temperature of emitted vapor

at KL boundary

Present usage;
also [3,4]

n, orp,

n, /2 or p, /2

nK or pK

u, =(v„)=(v)/2

(u)
QK

px

PK

TK

[43]

no =n, /2

nK

vo=vr/2

vT

&K

pu

TQ

TK

[7]

nL

nL /2

PL

TL

PL

pL /2

PM

~M

PL

TM

n is a number density and p is a mass density, the interrelation being p =mn.
( u„)is proportional to fdv„u„exp(—mv„/2ks T), where u„is the x component of velocity.

'(v) is proportional to f dv u exp( —mv /2k' T), where u is the scalar velocity.



46 GAS DYNAMICS OF THE PULSED EMISSION OF A PERFECT. . . 863

TABLE II. Comparison of the time-diameter ratio for laser-pulse sputtering and for pulsed-nozzle
expansion.

Situation

Excimer laser

Release time
(ps)

0.020
0.020
0.020

Release diameter
(mm)

0.75
0.97
0.030

Time/diameter
(ps/mm)

0.03
0.02
0.7

Reference

[33]
[34]
[58]

Other laser 100
1500

0.12
0.32

800
5000

[59]
[59]

Nozzle 20
1000

0.6
0.2

30
5000

[47]
[48]

we have nx/n, =0.3082, Ttt /T, =0.669 12, and

px/p, =0.3082X0.66912=0.2062 [7,8, 10]. Here

y =C /Cz is the heat capacity ratio ("adiabatic index' ).
(c) The normal velocity v„ is replaced by U„—ux,

where uz is the positive flow velocity and U can be both
negative and positive.

(d) ux is given by

ux =ax =(eke Tx/m)'~ =1.0560(kz T, /m)' (lb)

where az is the sound speed and m is the particle mass.
(The number appearing in this equation was previously
[4] written incorrectly as 1.046 instead of 1.0560.)

(e) The Mach number, defined by M=u /a, is given by
M =1.

Because of the potential for confusion, the present no-
tation is compared with that of other work in Appendix
A (Table I).

III. THE FLOW PHASE OF THE PULSE (0 + t + v, )

B. The pulsed nozzle

A pulsed nozzle expansion is similar in spirit to the
pulsed sputtering of particles from the outer surface of a
target. Although it lacks a formal KL, there is instead,
in the "throat" of the nozzle, a region with M =1.
Differences include the fact that a nozzle expansion is not
initiated by the simple arrival at the target of a laser
pulse, but rather requires the gas to flow roughly one
nozzle diameter (1—4 ps [15,46]). It differs more pro-
foundly in that the nozzle pulse length is typically
10—10000 ps [46—48] compared with 10—30 ns for an
excimer-laser pulse. Since the diameters of the released
material are similar, this means that the length-diameter
ratio is 10 —10 times greater for a nozzle expansion and
the released material is therefore very much more extend-
ed in space. This can also be shown by comparing values
of the time-diameter ratio (Table II). As a result the
geometry will tend to be axial rather than planar [23—25].

bombardment, once the condition M=1 is established
and Eq. (lb) is valid, undergo a planar (i.e., one-
dimensional) UAE. Ytrehus [7] argued that particles
effusing from a porous wall into a vacuum behave in a
similar way. Particles entering vacuum from a pulsed
nozzle, on the other hand, would, as discussed in Sec.
II B, evolve to a state which was more nearly axial than
planar.

For planar, continuum flow, motion is governed by the
pair of equations

Bp 8+ (pu)=0 (continuity equation),
Bt Bx

(2a)

Bu Bu+u +(1/p) =0 (Euler equation),Bp

Bt Bx Bx
(2b)

where p=mn is the particle mass density, p is pressure,
and it is assumed that there is neither viscosity nor heat
conduction. There is in principle a third equation
[19,20,42]

ae ae au ae
p +pu +p = (energy equation),

Bt Bx Bx Bx
(2c)

where e is the internal energy per unit mass and 4 (in the
case of laser-pulse bombardment) is the laser heat input
into the escaping particles in units of I/cm s. In addi-
tion, we introduce the equation of state of a perfect gas,

p =ttktt T=pktt T/m =pa'/y, (3a)

and the condition for the adiabatic, reversible isentropic
expansion of a perfect gas [49],

2/(y —1 ) (3b)

Then it follows from the relation a =(Bp/Bp)&, where S
is entropy, that Bp/Bx in Eq. (2b) is equal to a Bp/Bx.
To simplify what follows we change to dimensionless
variables:

5=x /u&~„ "f=t/w„, A =a/uz, U=u/uz,
A. The flow equations

We have proposed previously [4,13], following the ex-
ample shown in numerical calculations by Knight [42],
that the particles released into a vacuum by a pulsed

where r„is the length of the release process (not neces-
sarily coincident with the laser pulse, whence the nota-
tion r„)or the duration of the nozzle being open. If there
is no laser heat input, 4=0, then it is found with the help
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aU aU 2A aA+ U + =0 (Euler equation) .
aY ax ~ —1 ax (4b)

of Eq. (3b) that the third basic relation, Eq. (2c), contains
no separate information. This leaves Eqs. (2a) and (2b),
which can be rewritten

aW aa (y —I)a aU+U +
aY ax 2 ax

=0 (continuity equation),

(4a)

disturbance would move about 8 pm. In view of the in-
equality 1 pm«8 pm, we see no reason to take the re-
cession into account.

The material up to this point is straightforward in that
it is a simple extension of ideas already worked out for an
on-going planar UAE [4] resembling that for a gun being
fired into vacuum [50]. Interestingly, the corresponding
cylindrical and spherical problems are much more
difficult and were only recently (and even then incom-
pletely) solved [52].

B. Validity of the flow equations

There may appear to be a severe problem in the use of
the flow equations, which assume local equilibrium, for
an expansion which takes place into a vacuum and there-
fore leads to arbitrarily low densities. The usual way out
of this contradiction is to assume that the flow equations
remain valid until the density falls into a critical value
and the particles go abruptly into free flight [4,15]. This
approach, however, is not rigorous. We suggest that a
powerful alternative for establishing to what extent the
flow equations are useful is to compare the analytical
solutions to be obtained here with the Boltzmann-
equation results of Sibold and Urbassek [43]. The com-
parison is made, with favorable results, in Sec. VI C.

C. The flow phase

We will take the situation M =1 to apply abruptly at
X=Y=O, so that the KL phase of the particle release
(Sec. II) is represented as a boundary condition. The
release which occurs in the interval 0~ Y ~ 1, and which
will be termed the flow phase, is discussed here in Sec.
IIIC. The gas-dynamic effects setting in abruptly at
Y&1, and which will be termed the end-of-the-pulse
phase, will be discussed in Secs. IV and V. Thus the
desorption has so-called "top hat" form, assumed also by
Sibold and Urbassek [43].

The solutions for the flow phase, assuming the flow to
take place in vacuum, were previously [4] obtained by
noting the close similarity with those for a one-
dimensional "gun" with an infinite reservoir [50]. [The
reservoir is infinite for the flow-phase solution seen in
Eqs. (5) since only then is the probletn of the reflection of
the rarefaction wave avoided [4]. However, it is finite for
outflow (Sec. IB).] In terms of our dimensionless vari-
ables the solutions are

y
—1X XA=1 — —=1-

@+1 Y 4Y

U=1+ —=1+2 X 3X
@+1 Y 4Y

(5a)

(Sb)

In each of Eqs. (5) we give first the result for general y
and then the form for atoms with y =—,'. This pattern will

be followed throughout.
We have not yet commented on the fact that the sur-

face of the target recedes. In the work of Srinivasan
et al. [39,51], carried out at & 10 J/cm, the typical ex-
tent of recession was &1 pm/pulse. For 500 K and
m =50 u, a is about 4X10 cm/s so, in 20 ns, a gaseous

IV. THE END-OF-THE-PULSE PHASE ( t + v, )

When the release process terminates at Y= 1 the end-
of-the-pulse phase begins and there is an abrupt change
at X =0. Particles cease to flow out of the target (or noz-
zle, as is the case), from which it follows that the bound-
ary condition changes suddenly either from U=1 to
U =0 (absence of recondensation) or from U = 1 to U & 0
(presence of recondensation). We have chosen U =0 for
the present work, a similar choice having been made by
Knight [42] (Sec. VI B), whereas Sibold and Urbassek [43]
chose U & 0 (Sec. VI C). A further characteristic at X =0
will be seen to be a sudden change from A =1 to
0 & A & 1, a condition supported by both numerical stud-
ies [42,43] and which we prove explicitly in what follows.
It is unclear how to make a simple derivation of the
consequences of the condition X = U =0, so we resort to
what Stanyukovich (pp. 121, 151, and 170 of [50]) terms
the "general solution. "

The details of the "general solution" are outlined in
Appendix B. The important relations for y= —', are Eqs.
(Bl) (for all y) and (B5) (y = —',), where g will be taken to
have the form seen in Eq. (B7).

A. Region I: 0&X &X&

By introducing the condition X= U =0 into Eq. (Bl),
it follows that Bill/BU=O. This suggests (though does
not prove) that P for region I has the unusually simple
form of Eq. (B10),so we have immediately

X= UY (tentatively all y ) . (6a)

Substitution of Eq. (6a) into Eqs. (4) now gives

(6b)

where any value of L is acceptable as far as Eqs. (4) are
concerned but the correct value is as shown in Eq. (Cl).
We thus establish the correctness of the condition
0& A &1 at X=0. In particular, the condition is not
A =0, corresponding to the separation of the released
particles from the surface as happens when the particles
go directly into free flight [43].

The solutions seen in Eqs. (6) are tentatively valid for
any y from the surface at X =0 to the first line of contact
(LOC) at Xi, i.e., for what we will call "region I." The
validity is tentative because it is not clear that
g= Co /2, as in Eq. (B10), is the only possible solution.
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B. Region II: X, &X&X

The first LOC is the point of discontinuity where the
solutions seen in Eqs. (6) (region I) meet what we will call
"region II." Region II serves to join region I to the
remanent of the flow phase, region III. To see this we
note that any LOC moves with velocity

dX/dY=U+A .

The first LOC therefore moves with a velocity appropri-
ate to Eqs. (6), is located at

(7a)

or

12AX=12AUY —(3A+U) +4

The second part follows from Eqs. (B5) and (8) as

108A Y= —(3A + U) +9A (3A + U) +12U+16 .

C. Region III: X» &X &2

U= —3A+6AY —(36A Y —36A Y+4—12AX)'i

(9a)

(9b)

(9c)

and is characterized by At=LY 'r ",by U&=X&iY,
and by velocity dXI/d Y. The sec&nd LOC, on the other
hand, moves with a velocity appropriate to Eqs. (5), is lo-
cated at

Region III is just a remanent of the flow phase seen in
Eqs. (5). It begins at X» and ends at X', i.e., at the expan-
sion front, given by introducing A =0 in Eq. (5a):

Y=4Y+1

X„=r+' (Y Y~3 —r)~(r+~~) =4(Y Y~n)
and characterized by velocity

7b

Y
—2(y —1)/(y+1) 4 3Y 1/2

It is clear that, except initially (Y= 1), the two LOC's are
separate and the problem therefore has three regions.

The main obstacle in the present work was to find the
solutions for region II, which we now do for atoms with

3
It is required that A and U for region II match in

magnitude (although not slope) the solutions of regions I
and III. Bearing in mind Eq. (B6) namely,

F(3A + U)
A

(B6)

such matching is equivalent to the following four condi-
tions: (a) F'(2)=0 because of Eq. (Bl) with X& and Ut
substituted for X and U, (b) F'(4) =1 because of Eq. (Bl)
with X&& and U» substituted for X and U, (c)
F(2)= —3A Y= —

—,
' because of Eq. (BS), and (d)

F(4)=0 because of Eq. (BS). Our method of making fur-
ther progress is to propose a trial form for P which is
simple yet mathematically acceptable. It is based on Eq.
(B7):

C3(3A + U)3 Cq(3A + U) Ci(3A + U) Co

A
+

A
+

A
+

A

The four unknowns C„are readily evaluated from the
four conditions, the final result being

(3A+U) — (3A +U)—,C2=0 . (8)
1 1 4

362 3A 9A'

We chose a series beginning with n =3 because it was re-
quired by condition (c) and (with only four conditions)
this made it possible to restrict ourselves to the n values
3, 2, l, andO.

The first part of the solution follows from Eqs. (Bl) and
(8) as

and is characterized by velocity dX«/dY and by the
values

Y—2( y —1)/( y+ 1) Y—1/2
II

(10)

Values of A and U satisfying Eqs. (9) are summarized
in Table III and shown graphically in Figs. 2 —5. Perhaps
the most important detail relates to the abrupt fall of the
sound speed near the surface at Y=1, as it implies an
even more abrupt change in the density (column 3 of
Table IV). Note how the density change is less marked
for molecules than for atoms. We will argue in Sec. VI D
that the density change can be seen in the photographs of
Braren and co-workers [35,36]. We note also that the
sound speed is at first spatially invariant, then increases

hC

O
II

O

lX

0.5—
UJ
CL
V)
CI
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FIG. 2. Calculated values of sound speed ratio A =a/uz vs
distance ratio X=x/uzi. „appropriate to the flow phase of
laser-pulse sputtering for the effusion model. Here u& is the
flow velocity at the KL boundary and ~, the length of the
release process. At zero time ratio Y=t/~, =0 the wall of an
infinite gas reservoir can be regarded as becoming suddenly
porous and forming a KL [7], the outer boundary of which
occurs at X =0. The KL is thus approximated as a boundary
condition. The A values should be governed by Eq. (5a) and are
shown for two values of y. The flow phase ends abruptly at
time Y= 1, when the wall ceases to be porous.
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FIG. 3. Like Fig. 2 but showing flow velocity ratio U= u /uz
vs distance ratio. The U values should be governed by Eq. (5b).
Other details are as in Fig. 2.

with distance, and finally falls to zero at the expansion
front. The existence of the invariant region as we11 as

that where the sound speed increases (but to only a limit-

ed extent) should simplify the treatment of such problems
as the passage to free Aight, deriving temperatures from

I l I I
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FIG. 4. Calculated values of sound speed ratio vs distance ra-
tio appropriate to the end-of-the-pulse phase of laser-pulse
sputtering for the effusion mo'del. At Y=1 the previously
porous wall at X=O is suddenly sealed and as a result the
boundary condition changes abruptly from U = 1 to 0. The flow
breaks up into three regions separated by two LOC's (marked
variously with labeled or unlabeled arrows), region I being
governed by Eq. (6b), II by Eqs. (9), and III by Eq. (5a). Region
III is a remnant of the type of flow shown in Fig. 2, as can be in-
ferred from the dashed lines. Note that the curve for Y=1 has
a vertical segment at X =0 from A =0.667 to 1. The curves are
for atoms with y = —,'.

TABLE III. Values of A and U for region II obtained by trial-and-error solution of Eqs. (9). These equations apply to atoms with

3
For each value of Y the first and last entries apply to the first and second LOC, as marked explicitly for Y= 1 ~ 1 ~

Y
(time ratio)

16

X
(distance ratio)

0.068 80 (Xi)
0.1

0.15
0.2
0.2048 (X„)
0.8252
1

1.5
2

2.3431
2.9603
4
5

6
7
8

8

10
12
14
16
18
20.686
19.301
20
28
36
44
48

A

(sound speed ratio)

0.6458 (A
0.7176
0.8311
0.9429
0.9535 (A„)
0.5291
0.5535
0.6180
0.6742
0.7071
0.4200
0.4464
0.4677
0.4844
0.4957
0.5
0.3333
0.3459
0.3558
0.3627
0.3660
0.3649
0.3536
0.2646
0.2659
0.2768
0.2783
0.2657
0.25

U
(flow velocity ratio)

0.06254 (U, )

0.307 8
0.703 0
1.101 5

1.1396 (U
0.412 6
0.575 1

1.048 2

1.535 0
1.878 7
0.740 1

1.088 3
1.429 1

1.776 6
2.132 5

2.5
1

1.293 2
1.589 6
1.889 8

2.194 7
2.505 9
2.939 3
1.206 3
1.254 1

1.805 5

2.367 0
2.946 3
3.25

Departure of A

from linearity'
(percent)

0.19

1.6

3.3

5 ' 5

8.0

'A is "convex up" to an extent which decreases as Y decreases. For Y=1+AY, A can be taken as accurately linear, as assumed in

Appendix C.
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FIG. 5. Like Fig. 4 but showing flow velocity ratio vs dis-

tance ratio. The details are as in Fig. 4 except that region I is

governed by Eq. (6a) and III by Eq. (5b). Note that the curve
for Y= 1 has a vertical segment at X =0 from U =0 to 1.

TOF spectra, and predicting condensation (i.e., cluster
formation).

FIG. 6. Calculated values of the fraction of particles

Q; = f 2 "dX present in each of the three regions seen in Figs. 4

and 5. Q, is for 0&X&X& Qu for Xr &X&Xu Qrn «r
Xu &X &J, and n stands for 2/(y —1). The curves, except that
for Q„„arefor atoms with y = —,'; that for Q»& is more generally

valid.

V. TOTAL QUANTITIES

For some applications, it is useful to know the frac-
tions Q; of particles present in each of the three regions,
especially in the limit of large Y. The method of obtain-
ing the Q, is basically to evaluate expressions of the type

Q = A 'r "dX.
I

~—(y —1)/2~I 2

' 2/(y —1)

X(

Q„applying to 0&X&X„is the simplest. Referring to
Eqs. (6b) and (7a) we have

a result that is accurately valid for all y in spite of its
simple form and which with Y=1 gives the total quantity

total (1 lb)

Q», applying to Xt & X &X11,follows as the difference:

Qn= 1 —Qt —Qnt .

The Q; for y =
—,
' are shown in Fig. 6. The pattern that

emerges is that the particles are roughly evenly divided
between regions I and II, with the number in region III
insignificant.

2
(y+ i)/(y- i)

(1—T—(r —l)n)
2

VI. COMPARISON WITH NUMERICAL
AND EXPERIMENTAL WORK

f(y)(1 & r —)— (1 la) A. Pulsed nozzles

x y —1 +
Q III

2/( y —1)

TABLE IV. Values of the quantities L, p/pz, and m.

r =&p~&v
5
3
7
5
9
7
11
9

The value The value
of L «p~p~

in Eq. (Cl) for X=O, Y=1"
0.296
0.328
0.340
0.346

The exponent m
in the relation

q=e, ya-
[Eq. (Bl 1)j

'pip& at Y=1 is given by L ' ". See Eqs. (3b) and (6b).

where the factor f (y) equals —,", for y= —,'. This factor is

equivalent to Q1 for large Y.
Q«1, applying to X„&X&X', is also straightforward.

Referring to Eq. (5a) we have

Our analytical solution to the end-of-the-pulse phase is
probably of no significant interest to most studies involv-
ing pulsed nozzles, at least with the present state of valve
construction. This situation arises mainly because the
times that valves are open are enormously longer than
most laser pulses: 10—10000 ps for valves [46—48] vs
10—30 ns for excirner lasers, yet the diameters of the
released material are similar. As already seen in Table II,
this means that the length-diameter ratio is 10 —10
times greater for a pulsed nozzle expansion and the re-
sulting geometry of the released material will tend to be
axial rather than planar.

A less fundamental point is that the valves associated
with nozzles are so mechanically imperfect that the gas-
dynamic solutions presented here are probably too ideal-
ized. In laser-pulse sputtering, however, one encounters
a nearly perfect and very rapid "valve. " Consider a 20-ns
pulse. Then, if an electronic mechanism is involved, the
desorption probably starts within 1 or 2 ns, while for a
thermal mechanism it starts near the end of the pulse
when the temperature is near its maximum [53]. Similar-
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ly, the end of the desorption for an electronic process is
normally thought to be abrupt ( -20 ns in the present ex-
ample) and that for thermal processes to be delayed only
as is necessary for the temperature to fall. This delay can
range from a fraction of the laser pulse length (Fig. 7) to
much greater than the pulse length [sputtering of po-
lymethylmethacrylate (PMMA) [35,36] ].

B. Laser-pulse sputtering of aluminum: Knight [42] (Fig. 7)

Knight [42] solved the flow equations [Eqs. (4)] numer-
ically for a problem very close to that treated here, the
particles being atoms with y =—', . The greater part of the
results relate to what we call the How phase and which we
previously [4] showed to be in good agreement with Eqs.
(5). Important information on the end-of-the-pulse phase
is, however, also available (Fig. 7). We note the follow-
ing.

(a) Temperature The tempera. ture falls from
T/2730=1. 68 at Y=1 to T/2730=1. 13 at Y=1.2, and
then begins an on-going slow decrease. At first sight
these results strongly disagree with what is expected.
Thus, using the ratios Tz/T, =0.66912 from Sec. IIA
and T/Tx=A =(—', ) (1.2) from Eqs. (lb) and (6b),
we expect T/2730=0. 44 at Y=1.2. The problem is that
the temperature in Fig. 7 is that of the solid surface, and

FIG. 7. Numerical solution of the flow equations [Eqs. (4)] by
Knight [42] for laser-pulse sputtering. The situation considered
was that of a rather long release pulse (~„=1ps) delivering 10
J/cm' and directed against a solid surface having the thermal
and optical properties of Al. Atoms with y= —,'were released

thermally with a planar geometry. The temperature ratio
T/2730 rises towards a steady-state value of 1.71. Its subse-
quent fall does not reflect the temperature of the gas, for which
we would expect from Eqs. (1b) and (6b) a ratio 0.44 at Y= 1.2,
but rather that of the solid surface. The Mach number M rises
abruptly to unity, because the existence of a KL is taken as the
boundary condition. It then falls to zero somewhat less than
abruptly, the delay being due to the persisting vaporization
which tracks the persisting temperature.

is the resultant of combined thermal conduction to the
target interior and continued loss of energy to the vapori-
zation which persists from Y=1 to Y=1.2. The gas
temperature is very much lower.

(b) Mach number. The Mach number M=u/a falls
abruptly at Y=1 though it does not reach zero until
Y=1.2. The delay is understandable in terms of the va-
porization, thence the gas density, persisting briefly as
the target surface cools. That M=O is finally reached
agrees with our choice of boundary condition for region
I, namely X = U =0. It was an imposed result, however,
in the sense that it did not follow automatically from the
How equations. Had recondensation been taken into ac-
count, then M & 0 would have been more appropriate.

(c) Pressure. It can also be shown that the pressure
falls abruptly from 185 to about 30 atm at Y=1, falls
more slowly to -4.2 atm at Y=1.2 as the target surface
cools, and then begins an on-going very slow decrease
(Fig. 3 of [42]). The value that would be expected at
Y=1.2 according to the present work follows from two
results: pz /p, =0.2062 from Sec. II A and
p/px =A =(—,') (l.2) from Eqs. (3a) and (6b). We
thus expect p =3.7 atm, a value similar to that observed.
This argument supports our choice 0& A & 1 at X =0,
and also shows that the gas cloud does nat detach from
the surface at Y= l. (Note that the value 4.2 atm is only
approximate as Fig. 3 of [42] is somewhat difficult to
read. )

C. Pulsed desorption according to the Boltzmann equation:
Sibold and Urbassek [43] [Figs. 8(a) and 8(b)]

Sibold and Urbassek [43] present Monte Carlo solu-
tions of the Boltzmann equation for a problem close both
to that of Knight [42] as well as to that treated here.
They treated what we term the "recondensation" rather
than "effusion" model in the sense that they permitted
recondensation at the target surface when the release
pulse terminated. Their results must therefore deviate
from ours near the surface for Y & 1. Their approach au-
tomatically took into account the passage to free flight
but not the Kl., and this means not only that there will
be disagreement near the surface for Y ~ 1, but also that
normalizing the two sets of data will not be straightfor-
ward.

Concerning normalization, we have chosen to change
the distance scale of [43] from xlu, r„to /xu orby
means of the factor 1.324 [see Eqs. (1)]. The temperature
scale of [43] was changed from T/T, to T/Tx with the
factor 0.66912 (Sec. IIA) and the flow-velocity scale
from u /u, to u /uz with the aforementioned factor
1.324. These choices are justified empirically in that the
results of [43] just beyond the surface (i.e., at the KL
boundary) then coincide reasonably well with the analyti-
cal results. That is, coincidence at the KL boundary is
more fundamental than coincidence at the surface.

The comparisons are shown in Fig. 8. We note the fol-
lowing.

(a) Y= 1 —5. Their results for Y= 1 —5 show the tem-
perature [Fig. 8(a)], flow velocity [Fig. 8(b)], and density
[3] to have values at the surface which disagree with ours,
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FIG. 8. Numerical solution of the Boltzmann equation by Si-
bold and Urbassek [43] for a problem close both to that of
Knight [42] as well as to that treated here. The situation con-
sidered was that of an energetic pulse of particles directed
against a target surface from which about 25 monolayers of
atoms with y =

3
were released thermally with a planar

geometry. The length of the release process was ~, . Reconden-
sation was permitted. %'e superimpose the numerical results of
[43] (open points) with our analytical results as summarized in
Table III (lines plus closed points, the points being used only for
segments lacking rigorous linearity). (a) Temperature. There is
general disagreement between [43] and our solutions at the very
surface. Just beyond the surface, however, the points for
'f =1—6 have the form expected from Eq. (Sa) while the points
for Y=2 and 4 have the form expected from Eqs. (6) and (9) ex-
cept that the first LOC as well as region I are lacking. Note
that what is marked as "LOC" is the jtrst LOC and applies only
to the analytical results, whereas second LOC applies to both
sets of results. For large distances a new discrepancy sets in, in
that the temperatures of [43] do not fall to zero. (b) Flow veloc-
ity. There is again disagreement between [43] and our solutions
at the very surface, the u values of [43] being either low or nega-
tive. Just beyond the surface, however, all points have the
values expected from Eqs. (5b), (6), and (9). There is no
discrepancy for large distances like that seen in (a).

a disagreement which is to be expected when the KL is
not taken into account: T and p are too high, u is too
low. Nevertheless, starting just beyond the surface there
is in all cases unusually good agreement between the two
approaches. Except for temperature, this agreement per-
sists to the largest distances considered.

For large distances the density falls to zero [3], as it
should, but the temperature does not [Fig. 8(a)]. This
unusual result is described [43] as being due to a lack of
equilibrium at lower densities, thence lack of validity of
the fiow equations, such that the temperature parallel to
the How falls but that perpendicular to the fIow increases.
Similar results were obtained earlier in analytical solu-
tions to the Boltzmann and moment equations in the
asymptotic limit [23,41].

(b) Y=2 and 4. Their results at X =0 for Y=2 and 4
show the temperature, How velocity, and density to have
values at the surface which disagree with ours: T and p
are too low, u is negative. The reason this time for a
discrepancy is not that the KL was neglected, as there is
no KL for Y) 1, but rather that different surface bound-
ary conditions were used. In [43] the condition, for
Y) 1, was U (0 while in our work it was U =0. Never-
theless, starting at the ftrst LOC (marked in Fig. 8 and in

[3] simply "LOC") there is again unusually good agree-
ment between the two approaches.

(c) The I.OC. Figures 8(a) and 8(b) clearly show the
second LOC. The first LOC, as well as the existence of
region I and its spatially invariant sound speed (thence
temperature and density), are, on the other hand, not
reproduced. The authors explain this as being a natural
result when particles incident on the surface are absorbed
(recondensed) instead of reflected [54].

(d) Detachment. For such low gas densities that a gas-
dynamic description is not appropriate and the initial dis-
tribution (whether Maxwellian or otherwise) persists,
they found for Y) 1 and X=O the boundary condition
p= T = U =0. It follows that the gas cloud has detached
from the surface. This is a fundamental difference from
the high-density case, where the boundary conditions in-
clude 0& A &1 and the gas cloud therefore does not de-
tach [Fig. 8(a)].

D. Photographs of the sputtering of PMMA:
Braren, Casey, and Kelly [35][Figs. 9(a)—9(c)]

Various authors have sputtered either the polymer
PMMA [33,35,36] or biological tissue [40] in air at 1 atm
with -20-ns laser pulses at 193 and 248 nm and have
taken high-speed photographs of the emission process by
firing above the target a second laser (e.g. , 1 ns at 596 nm
[35]) with a known delay. They confirmed a column of
heavy particles (here called "ejecta") and a nearly hemi-
spherical shock wave. Because of the presence of air, the
leading edge of the ejecta constituted not an expansion
front [Eq. (10)],but a contact front [8,49]. Hemispherical
shock waves are well known both in laser sputtering
[33—36,55] and in explosions [56], but are not otherwise
relevant in the present context.

The conclusion of these [33,35,36,40] and other [38,57]
studies of PMMA or tissue sputtering is that the laser
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FlG. 9. Exp»cit photography of laser-pulse sputtered PMMA by Braren, Casey, and Kelly [35]. PMM& targets with a thickness
of 0.7 mm were exposed to single laser pulses (2 J/crn, 248 nm, -20 ns, diameter =970 IMm) in air. The ejecta were photographed by
firing above the target a second laser (596 nm, —1 ns) with a known delay and thereby imaging both the ejecta and the shock wave.
All features that would either absorb or scatter are seen, although there appears to be an imaging threshold. (a) Delay of 1 ps. ~e
recognize a column of ejecta having the width of the laser-irradiated area, an extension of 0.42 mm, and a somewhat ill-defined lead-

ing edge. The average velocity is 4.2X 10 cm/s. There is also a nearly hemispherical shock wave, marked with an arrow, having an
extension of 1.2 mm. The average velocity of the shock wave is 12 X 10 cm/s, which is, as it must be [3,49], greater than that of the
leading edge. (b) Delay of 6 ps. The column of ejecta still has the width of the laser-irradiated area an extension of 1.0 mm and an

4average velocity of 1.7X 10 cm/s. The shock wave, marked with arrows at the top of the photograph, has an extension of 3.3 mm

and an average velocity of 5.6X10 cm/s. (c) Delay of 15 ps. Near the target surface the column of ejecta has suffered an abrupt loss4

of density and, in addition, is imaged preferentially towards the axis. According to Fig. 4 and the corresponding figure for the
outAow model [2], the density change would begin at the target surface and progress as a LOC. The ejecta far from the surface have

a width slightly greater than that of the laser-irradiated area, the extension is 1.8 mm, and the average velocity is 1.2X 10 cm/s. A
shock wave is still present, but is far beyond the field of view.
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pulses are absorbed within a characteristic depth and par-
ticles are released. A selection of explicit images from
[35] is reproduced in Fig. 9 and we recall at this point
that there are various limiting categories of gas-dynamic
behavior as discussed in Secs. I A and I B. If the release
is from the target surface, then there will be a combined
KL-UAE, the description of which in the absence of
recondensation is the object of this article (effusion mod-
el). A similar process exists also in the presence of recon-
densation (recondensation model [3]). If instead there is
rapid bond breakage, the system is subject to outflow
from a finite reservoir (outflow model [2]).

We note the following.
(a) Radial expansion The. radial expansion of the ejec-

ta is quite limited for up to 15 ps [Fig. 9(c)], showing that
a planar geometry as assumed here is acceptable. The
real geometry is, however, probably intermediate between
planar and axial. The existence of a near-planar

geometry is equivalent to laser-sputtered particles show-
ing strong forward peaking [26].

(b) The density "catastrophe. "Between 6 [Fig. 9(b)] and
9 ps (not shown) the column of ejecta shows a remarkable
change in which it loses density near the target surface.
Our interpretation [35] is that the pulse length relevant to
the sputtering (r„)is not the -20-ns duration of the laser
pulse but more nearly -6 JMs, during which there is on-
going release of debris from the PMMA surface. At -6
ps the release process ceases and we arrive at the situa-
tion Y=1, thence an abrupt decrease in density at the
target surface as in column 3 of Table IV. We argue [35]
that, since 6 ps is similar to the heat retention time con-
stant, the relevant model is effusion or recondensation
rather than outflow. This is because the latter would
have been governed by a much shorter time constant,
essentially

'T =2d rater ~a 4 150 ns,

where d„„„is the crater depth and a4 the speed of sound
in the reservoir. It follows that Fig. 4 is relevant, accord-
ing to which the reduced density begins at the surface
and ends with the second LOC.

(c) Perpendicular density variation The pho. tographs
fail to record the rapid decrease in density to be expected
for f &1 (Fig. 2). This result is believed to be a conse-
quence of the ejecta being largely opaque near the sur-
face, so that density variations are not sensed, and not be-
ing imaged at all for the lower densities near the contact
front [35]. In effect, there is an imaging threshold.

The photographs do, on the other hand, show that den-
sity increases with distance for Y) 1 and that the increase
begins near the middle of the column of ejecta at 15 ps.
These are natural results for the effusion or recondensa-
tion model [Fig. 4 and Eqs. (7)) but do not occur for
outflow [2]. Altogether, the relevance of the former mod-
els is indicated in three ways: (i) the value -6 ps for the
release time constant r„;(ii) the tendency, for f) 1, for
density to increase with distance; and (iii) the fact that the
density increase begins the middle of the column of ejecta
[Eqs. (7)].

(d) Detachment For times from 9 to .—30 ps the ejecta

remained "attached" to the surface as they expanded, in
accordance both with our Fig. 4 and with the numerical
solutions [42,43]. This suggests ongoing gas-dynamic in-
teractions which could be said to create a column of ejec-
ta which simply "stretched" with time.

E. Angular e8'ects in the sputtering of CdS:
Namiki, Kawai, and Ichige [26] (Fig. 1)

We showed in Fig. 1 an example of the dependence of
the apparent TOF temperature (T; ) on the ejection po-
lar angle for laser-pulse sputtering of CdS [26]. Refer-
ence to Fig. 8 of [4], but with information for y =

—,
' and —,'

instead of —'„enables values of M to be deduced. For 0'
ejection angle M varies from 0 to 4—5 as the fluence in-
creases, while for 15' the range is 0 to 3—4. At 45', on the
other hand, the results are not compatible with the laws
of ideal gas dynamics in that 1,' should not have de-
creased.

In the same study the angular variation of the yields of
S2 and Cd for a fluence of 0.036 J/cm were shown to
have the approximate form cos 8. Reference to Fig. 4 of
[4], but with information for y= —', and —', instead of —'„
shows that the corresponding value of M is M =4.

We regard the internal consistency as reasonable. His-
torically, it was existence of such results as these that was
the first indication that laser-sputtered particles un-
derwent a UAE [11,27].

F. Energy distributions: Namiki, Kamai,
and Ichige [26] and NoorBatcha, Lucchese, and Zeiri [5,6]

In experiments such as those of [26] and in simulations
such as those of [5,6], among the quantities measured
were energy spectra. An approximate energy spectrum
can be deduced consistent with the effusion model. We
note from Fig. 4 that, for large Y, the profile of sound
speed versus distance becomes flat in regions I and II,
and from Fig. 6 that only these regions are important. A
very similar problem was discussed previously in connec-
tion with systems showing outflow. One postulates the
existence of a critical density at which free flight occurs.
Then the entirety of regions I and II will, at a certain
value of Y, enter into free flight. The particles will have a
uniform temperature and, to reasonable approximation, a
linearly increasing distribution of flow velocities (Fig. 5).
The result is Eq. (9) of [2], an expression which can be
shown to be indistinguishable in width from either a true
Maxwellian or a Maxwellian with flow, at least for nor-
mally emitted particles and with proper respect for the
error bars.

As far as the experimental spectra are concerned, those
measured for normally emitted particles were indeed
Maxwellian in form [26]. The shapes assumed by energy
spectra are thus not a good test of the role of gas dynam-
ics in sputtering.
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cussed [42] and provided a FQRTRAN code for solving the
flow equations. A. Vertes (George Washington Universi-
ty, Washington, DC) contributed arguments and sent
copies of [19,20] prior to publication. A. Miotello (Uni-
versity of Trento, Povo, Trento, Italy) is in the process of
making a numerical test of the solutions obtained here
[60].

APPENDIX A: NOTATION

BU/BA =RA /BU=O.
Equation (84) is satisfied in general by

F(3A + U)
y (86)

where the function F(3A + U) must be determined, as
well as by

C„(3A+ U)" Co r=
n

(87)

where C„and Co are constants and n is unrestricted.
These solutions are easily shown to be acceptable by sub-
stitution into Eq. (84), but we do not know whether Eq.
(87}is less general than (86).

For y & —,', g is more complicated (pp. 151 and 170 of
[50]). For example, for y =—'„instead of Eq. (86) we find

DiSculties arose in this work because of the lack of a
uniform notation for thermodynamic quantities at the
target surface and at the KL boundary. %e therefore
summarize in Table I the usages in the present work
along with with Refs. [3,4,7, 10,43].

F'(5A+ U) F(5A + U)

A 5A

and instead of Eq. (87) we find

5nC„(5A+U)" ' C„(5A+ U)"

(88)

APPENDIX B:
ON THE "GENERAL SOLUTION"

OF STANYUKOVICH [SO]

Equations (4) have as independent variables X and Y.
They are transformed by first making A and U the in-
dependent variables. We take the result of p. 121 of [50],
but with the variable changed from the enthalpy H (i in
the notation of [50]) to the sound speed a using the rela-
tion H=a /(y —1):

aX aY y —1)A aY—U + =0 (continuity equation),
aU aU 2 aA

Co+ (y =-') (89)

as is easily shown by substituting Eqs. (88) and (89) in
(82). More generally, as y decreases, g becomes an in-

creasingly complicated function of F(2A/(y —1)+U)
and its derivatives. Nevertheless, a tentatiue value of g
for region I is easy to establish. The condition X= U =0
can be taken as showing, as already argued in connection
with Eq. (6a), that F(2A/(y —1)+U) is constant, lead-

ing to

aX aV' 2A aV—U + =0 (Euler equation) .

A second transformation results by introducing the an-
satz

/=CO/A (tentatively all y) .

Substitution of Eq. (810) into (82) fixes m:

m =2(2—y)/(y —1),

(810)

(811)
X= UY — (all y),aU

namely

(81) with values as in Table IV. Substitution of Eq. (810) into
(83) yields

A + Y= —m(y —1)CD/2= —(2—y)CO .
3 —

y Bg
(r —1)A aA

2 Bg+ Bg
y —

& aU' aA But since we have A =L"f ' ~ ",Co can be finally
evaluated explicitly:

(continuity equation), (82}

2AY
(Euler equation) .

aA

For atoms with y =—', the above equations become

2 aq a'q a'@
A BA

a
aA

(83}

(84)

It is important to note that in Eqs. (81)—(85), since A

and U are independent variables, we have

Co= — I. ~'i' " (tentatively all y) .1

2 —y
{812)

APPENDIX C:
ON THE RELATION A =I."f

%'e have already noted in Sec. IV A that any value of L
is acceptable as far as Eqs. (4) are concerned. The true

We emphasize that Eqs. (810)—(812) are tentatiue
They will be considered again elsewhere, with the ques-
tion being asked whether Eqs. (810)—(812) are the only
possible solution to the condition X= U=0 [60].
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value of L can be obtained by conserving the number of
particles for a time near Y=1, namely Y=1+b,Y, when

A for region II is accurately linear (column 5 of Table
III). Q, is given by

where XI has been written in the form with explicit L,
i.e., not Eq. (7a) but

(T T(3—y)/2 )I

Since A within X, &X &X» is linear, we have for Qtt

1 —AI
2/(y —1)

II I

hY.(y —1)(2—L)(1 L'r+—" 'r ')

(1 L)(y+—1)

Finally, the fraction Q»& contained within X„&X & X' is

By requiring conservation of particles, Qt+Qtt
+Q»t =Q„„&= I [Eq. (lib)], it follows without difficulty
that L is given by

3—y 2L=
2 3

' (C 1)

with values as in Table IV.
Note that L is not zero, a result that is supported both

by the numerical treatments [42,43] (Figs. 7 and 8) and by
the photographs [35,36] (Fig. 9). L =0 might have been
chosen to accommodate the sudden cessation of flow at
X =0 at instant Y=1,but is wrong.

'This work was completed during a visit to the Dipar-
timento di Scienze Chimiche, Universita di Catania, Viale
A. Doria 6, 95125 Catania, Italy.
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