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Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation

Leh-Hun Gwa
Department ofMathematics, Rutgers Uniuersity, New Brunswick, New Jersey 08903

Herbert Spohn
Theoretische Physik, Universitat Munchen, Theresienstrasse 37, D-8000 Mu'nchen 2, Germany

t,'Received 31 January 1992)

We approximate the noisy Burgers equation by the single-step model, alias the asymmetric simple ex-

clusion process. The generator of the corresponding master equation is identical to the ferromagnetic
Heisenberg spin chain with a purely imaginary XY coupling. We Bethe diagonalize this nonsymmetric
Hamiltonian. We show that the gap between the ground state and first excited state scales as N ' for
large system size ¹ The gap between the largest and next-largest eigenvalue scales as N '. This proper-

ty hints at conformal invariance. We also explain the connection to the six-vertex model.

PACS number(s): 05.40.+j, 05.50.+q, 64.60.Ht

I. THE NOISY BURGERS EQUATION
AND AN ASYMMETRIC SPIN HAMILTONIAN

The noisy Burgers equation appears in a variety of
problems in nonequilibrium statistical mechanics. Origi-
nally [1],Burgers was looking for a simple model in tur-
bulence and proposed a one-dimensional version of the
incompressible Navier-Stokes equations. Denoting the
velocity field by u (x, t) his equation reads

—u = u +v u(+ noise),a a 2
a'

Bt Bx

with v the viscosity. Burgers studied the noiseless equa-
tion with random initial data (for more recent progress,
see [2—6]). In turbulence one often considers a randomly
stirred fluid. In analogy one would have to add space-
time white noise to (1.1) [7]. Here we are interested in

the case where u is locally conserved. Therefore the noise
is of the form 8/c}xi}(x,t) with g space-time white noise.
Equation (1.1) is then a prototype for a driven diffusive

I

system [8]. If we reinterpret u = h
' as the slope of a

(one-dimensional) surface, then (1.1) becomes the
Kardar-Parisi-Zhang equation, which governs the shape
fluctuations of various growth models, e.g. , of the Eden
and the Williams-Bjerknes model [9,10]. Of course, the
properties to be studied will depend on the particular ap-
plication. However, from a theoretical point of view the
central issue is the behavior of the stationary correlation
( u (x, t)u (0,0) ) —( u(0, 0) ) for large x and t

For many purposes it is useful to have a discretized
version of (1.1), keeping only the essential elements,
namely, the local conservation law together with a non-
linear systematic current, dissipation, and noise. There
are many ways to discretize (1.1), all with their own mer-
its. Perhaps the simplest version is to put x on a lattice
and to have u(x, t) take only values +1. We can think
then of a spin configuration o(j, t), cr(j, t)=+1, which
changes according to a stochastic time evolution. In or-
der to respect the conservation law we update a pair of
neighboring spins during short time interval dt as fol-
lows:

o (j, t },o (j + 1, t) with probability 1 —
—,
' [1+cr(j, t)E]dt

cr(j + l, t), o(j, t) with probability —,'[1+a(j,t)e]dt, (1.2)

+ocr(j +1)]p,(o."+')
—[1—cr( j)a (j + I )+co (j)

—eo.(j +1)]p,(o )], (1.3)

~e~ ~1. Pairs of neighboring spins are updated indepen-
dently. Let p, be the probability distribution of spin
configurations at time t. With the rule (1.2) it is governed
by the master equation

where cr~'J+' is the spin configuration 0. with spins at site

j and j + 1 exchanged.
In the probabilistic community (1.2) is known as the

asymmetric simple exclusion process [11]. If + corre-
sponds to a particle and —to a vacant site, then particles
hop with rate —,'(1+F. ) to the right and rate —,'(1 e) tothe-
left, provided the final site is empty. In surface growth
(1.2) is known as the single-step model [12,13]. If we
define height variables through h (j + 1, t) —h (j,t)
=[o(j+I, t)+cr(j, t)]/2, then the rule (1.2) describes
how material attaches to and evaporates from the sur-
face.
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To give our model a quantum-mechanical Aavor,
we denote a spin configuration by Io ) and a state by
f=g p(o )Ia ). Introducing the standard Pauli matrices

a, =(oj., o. ~~, oj) at site j satisfying [o",of]=5,2io' plus
cyclic permutations, we can write the generator in the
master equation (1.3}as

(1.4)

Here and in the following we assume periodic boundary
conditions, i.e,. crz+ i=cr, (.o Ie

' Ia') is the (proper-
ly normalized) transition probability from the spin
configuration 0. to e' in time t. We note that H is non-
symmetric and reduces to the ferromagnetic Heisenberg
chain for a=0.

Since H is a real matrix, eigenvalues come in complex-
conjugate pairs. They all lie in the positive half plane.
The "ground state" has eigenvalue zero and is N-fold de-
generate. If we fix the number of up-spins, say M, then in
the ground state every spin configuration has equal
weight. Let us denote this state by IO) M. The correla-
tion function of interest can then be written as

pens already in the two magnon sector, where there are
modes with a decay rate proportional to 1/X but a pre-
factor smaller than implied by (2.2). Still it can be proved
that the energy gap E~ (i.e., the energy of the first excited
state, since Eo =0) satisfies the bounds

2 (E ( 2'
~2 — N —~2 (2.3)

N

lo) =P I», I»=M M ~ . ] (2.4)

Since PNt commutes with H and cr' we write (1.5) as

t,T I a(')e

Rotating each (', ) to (o) can transform
I

1 ) to

(2.5)

The upper bound follows from (2.2). The lower bound is
proved in [14]. Since this result seems to be essentially
unknown, we repeat its proof in Appendix A.

There is another way to understand why only spin-
wave excitations contribute to (2.2). Using a projection
operator (to M up-spins) PM the state IO) ~ in (1.5) can be
written as

M & Ol aoe (1.5)

To avoid boundary effects we first have to take the limit
N~ao with the spin density m =(2M N)/N ke—pt
fixed. We would like to understand the behavior for large
Ijl and t.

It is rather obvious that our discrete version of the
noisy Burgers equation has dissipation and an essentially
uncorrelated random current. Let us check then on the
systematic current. For fixed magnetization m the
steady-state current is j(m)=e(1 —m )/2; in fact, it is
even quadratic as in (1.1). As additional evidence, the
noisy Burgers equation has spatial white noise as a formal
invariant measure, which corresponds to the fact that in
the stationary measure for (1.3) spins are independent.
Therefore we expect the noisy Burgers equation and the
spin exchange dynamics (1.2) to be in the same universali-
ty class.

II. STATIONARY CORRELATIONS AND SCALING

The large-scale asymptotics in (1.5) is more easily dis-
cussed through the dynamic structure function defined by

S(k, t}=ge'" (~(0 aleO~'~ ojlO) —(OloolO) ), (2.1}

where fixed m is understood. For the symmetric case
e=O, (Olooe ' a~lO) satisfies a discrete diffusion equa-
tion. Therefore

S(k, t)=(1—m )exp[ —(1—cosk)ltl] . (2.2)

Now, for a system of finite size N, (2.2) indicate that the
slowest mode should decay as exp( t 2m. /N ). Of-
course, there could be modes with an even slower decay
whose matrix elements with o.' vanish, however, and
therefore do not contribute to S(k, t). In fact, this hap-

Il)= e 0 (2.6)

Let U be the corresponding unitary operator; U trans-
forms between the z representation and the x representa-
tion Uo. 'U =0.". By rotational invariance of H, we have

[ U, H] =0. Therefore (1.5) becomes

( ll eao' o 1 UPM Ul 1 ) —( 1laoUPM Ul 1 ) (2.7)

But cro creates a single spin excitation in the all up state
( 1 I and, by conservation of magnetization, e ~'~ leaves
the subspace of single spin excitations invariant. Thereby
we obtain (2.2).

For eAO a variety of theoretical arguments and exten-
sive numerical simulations [10,13] suggest that the struc-
ture function has the scaling form

S(k, t)=(1—m )e '"' 'g([e (1—m )]' kltl }

(2.8)

Here g is a universal scaling function with g(0}=1 and

g (x)=g ( —x), and decaying at infinity. Unless there are
strange cancellations we expect then that for @&0 and
Iml (1,H has an energy gap

(2.9)

for large ¹ (Since H is nonsymmetric, we mean here the
real part of the energy of the first excited state).

The main goal of our paper is to show how (2.9) fol-
lows from the Bethe diagonalization of H in the particu-
lar case a=1 and m =0. We will also have a look at the
top of the spectrum. Such high-energy states are of no
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relevance for the large-scale behavior, but they could be
of interest in understanding whether the conformal in-
variance at e=O extends to the nonsymmetric case. It is
known that H commutes with the transfer matrix of the
six-vertex model [15,16]. We will exploit this connection
in more detail in order to arrive at novel predictions for
the polarization correlations.

III. THE BETHE ANSATZ

We label the configurations by the location of the +
spins m (m( m2, m ), 1 m( m2« ' m„
& N. In this basis a state is expanded as

~ (t &

=g~(m)~m& and the right eigenvalue equation
HI P &

=El g & reads

[e+[1—5(m. +, —m, 1)][f(.. . , m +1,. . . )
—f(m„. . . , m„)]

j=1

+e [1—5(m, —m, „1)][f(. . . , m, —1, . . . )
—f(m„. . . , m„)] ) =Ef (m, , . . . , m„) . (3. )

Here 5(m, n) is the Kronecker symbol and e+= ((1+e)
The Bethe ansatz tries to solve (3.1) through a generaliza-
tion of the plane-wave ansatz for a single particle. One
sets

the eigenvectors constructed above are also eigenvectors
of the momentum P. We have

(3.8)

f(m)= gA(P) g (z~(, )) ',
p j=1

(3.2)
in particular,

E= g(1—e+z —e z ').
j=1

(3.3)

The expansion coeIIicients A(P) are now fixed by taking
two particles next to each other in (3.1). This yields the
relation

where the summation is over all permutations
P=(p(1), . . . ,p(n)) of (1, . . . , n). z( are complex num-
bers. There is no reason for them to be of the special
form e', k real. Still, for convenience, we refer to them
as wave numbers.

If particles are at least one spacing apart, the eigenval-
ue is given by

g(z ) =1.
j=1

(3.9)

If [z~] is a solution to the Bethe equations (3.7) with

energy E and momentum P, so is the complex conjugate
[zj. J with energy E and momentum P. Also, i—f [z, I is a
solution for the Hamiltonian with bias e, so is [1/z ] for
the Hamiltonian with bias —e, which is just the adjoint
of H. Thus the right and left eigenvectors of H are relat-
ed in a simple fashion. As we know already, the normal-
ized ground state is just

(3.10)

A(. . . ,p, q, . . . ) = W(z, z )A (. . . , q,p, . . . )

with

(3.4) This corresponds to z = l,j=1, . . . , n and A(P)=1.
The ground state has zero energy and momentum.

Zj E+ZjZl E
W(z, ,zt ) =-

Zl E'+Zj Zl E
(3.5) IV. THE COMPLETELY ASYMMETRIC,

HALF-FILLED SECTOR

By combining (3.6) with (3.4) we arrive at the Bethe equa-
tions

Zj- E+Zj Zl

Zl E+Zj Zl E'
(3.7)

j=1, . . . , n. Any solution to (3.7) with distinct wave
numbers [z,j = 1, . . . , n ] gives a right eigenvector of H
with energy (3.3).

Let e' be the operator of left translation. It satisfies
e ' = 1 because the system has N sites. Since [H, P] =0,

Equations (3.4) and (3.5) determine recursively A(P) up
to an overall phase factor. Finally considering a jump be-
tween sites N and 1 in (3.1), we must have

A(p(1), . . . , p(n)) =(z~(„) A(p(2), . . . , p(n), p(1) ) .

(3.6)

n Z —1
(1+Z )N

—
n( I Z )n 2N g

j=1 j
I = 1, . . . , n, with energy and momentum

(4.1)

The Bethe equations (3.7) are a set of n nonlinear cou-
pled equations. As discussed at the end of Sec. II, for the
symmetric case only single spin excitations, i.e., n =1,
have to be studied. The Bethe ansatz reduces then to
plane waves and yields the structure function (2.2). For
e+0 we must solve the coupled Bethe equations, howev-
er.

Fortunately for e= 1 the Bethe equations simplify to a
nonlinear equation for a single complex variable, which is
further simplified by considering the half-filled system
2n =N. It is convenient to introduce the shifted wave
numbers Z—:2z —1. Then for a=1 the Bethe equationsj j
(3.7) become
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1+Z.
iP

1
2

(4.2)
the half-filled a=1 case is determined by the parameters
a ~ 0 and 8E [ —

m /n, n. /n ), which satisfy
n

The corresponding eigenfunction can be written as a
determinant. To verify this we note that for @=1

a;0—e
4

l(m)

1 Zl(m)+1
(4.9)

W(z, ,z()= —w(/w. , w. =—1 —z. ' . (4.3)

(w )J (n +()/2
p gg Np(j)

j=1
(4.4)

with 5p the signature of the permutation P. Thus the
eigenfunction is given by

f(m)=XA~II" ((w, (,))' """'"'(z
equivalently

f =deal@, JN, (=(z() '(1 —z) ')J (("+" ) . (4.5)

The right-hand side of (4.1) is independent of the index
l. If we now require that N =2n, then we obtain the sin-
gle polynomial equation

(1—Z )"=Y. (4.6a)
It has 2n solutions. Out of them we pick Z„.. . , Zn. Y
has then to be determine through

Zj —14" II
1 Zj+1 (4.6b)

[We remark that for a fractional filling n =(q/p)X, q and
p are the integer and the relative prime, and the quadratic
Z polynomial in (4.6a) would be replaced by a polynomi-
al of degree p.]

Let us label explicitly the solutions to (4.6a). We set
Y= —a "e'", a ~0, 6)P [ n!n, n!n)—and denote the
roots by

i 8 2ni[m —(1/2)]/n
ym Qe e (4.7)

y are evenly spaced on a circle with radius a. In fact, it
mill be a more natural to regard y as lying on a two-
valued Riemann surface. Therefore we set m = 1, . . . , 2n
with y „.. . , yn located on the first sheet and

yn+„. . . , y2n located on the second sheet. The 2n solu-
tions to (4.6a) are then given by

Choosing the standard normalization for A(P) [15], we
have

A (P)=5@II [—W(z ( ),z (,) ) ]'
j(l

=e ' II [(z )
—1]

m=1

II ( y(( (4.10)

where we used (4.2) and (4.9). The products on the left-
and right-hand sides of (4.10) are defined on the two-
value Riemann surface. Thus equating phases yields

P= —g [1(m)—m] (mod2m. ) .
"m ——1

(4.11)

There is a simple pictorial rule that reproduces (4.11), cf.
Fig. 1: We indicate the solution set by putting "markers"
at the labels of the corresponding roots. For example, in
the ground state the n markers are at the labels 1 to n
with the labels n +1 to 2n empty. Another eigenstate is
characterized by some other marker configuration. The
momentum of this state, in units of 2m /E, is then just the
total signed number of shifts (—1 for each clockwise and
+1 for each counterclockwise shift) necessary to move
the markers from the configuration corresponding to the
ground state of the configuration corresponding to the
state under consideration.

Here l(m) is strictly increasing and Z(=(1—y&)' is
defined on the two-valued Riemann surface as explained
after Eq. (4.8).

In the following, pairs such as Z and Zn+ will play
a special role. We note that Z +Zn+ =y —1 and
Z +Zn+ =0. Therefore each pair Z, Zn+ contrib-
utes a factor 1 to —Y!4",a factor y /4 to expiP, and a
summand 1 to E.

The momentum of a solution set [Z&] follows from

n Z, ( )
—1

II ( —y-) =a"""'=4"II Zl[ )+ 1

Z =(1— (4.8)
(a) (b)

m =1, . . . , 2n. If y is on the first (second) sheet, we
take the phase of Z to be between —m/2 and n/2 (be-
tween vr/2 and 3m/2. ) Note that Z = —Z„+ . For a
particular solution of the Bethe equations we have to
select n roots. Therefore we introduce a strictly increas-
ing function i on ( 1, . . . , n ), taking values in ( 1, . . . , 2n ).
There are („")such functions. A solution is then the set
[Z&( ), m =1, . . . , n]. Once l(m) is fixed, we insert in
(4.6b) and obtain a nonlinear equation for Y, i.e., for the
amplitude a and the phase 0.

To summarize, a solution to the Bethe equations for

(c)

FIG. 1. The roots y„.. . ,y2„on the two-dimensional
Riemann surface and marker configurations. (a) Ground state
P =0; (b) first excited states P =+2m. /N; (c) next-highest states
P =0 (n odd), n. {n even); {d) a state with P =9(2m. /N).
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The ground-state eigenfunction is constant. This
corresponds to taking the first sheet, i.e.,
1(m)=m, m =1, . . . , n in (4.9). Solving for Y yields the
amplitude a =0. A natural guess is that the first excited
state is obtained through a minimal modification of the
ground-state configuration of markers. On our two-
valued Riemann surface the minimal shifts are n to n +1
and 1 to 2n. This yields the solution sets
[Z,m =2, . . . , n —1 j and either Z„Z„+„orZ„, Zz„.
Since a pair contributes a factor 1 in (4.9), both sets have
the same amplitude a and phase 0. A pair contributes a
summand 1 to the energy. Since the remaining roots are
equal in both sets, this implies that they must have the
same energy. Eigenvalues come in complex-conjugate
pairs. Therefore, unless there is some further degeneracy,
the eigenvalue of the first excited states must be real,
hence 8=0. By (4.11) the total momentum of the first ex-
cited states is +2m/N. We verified our rule for the first
excited state by solving numerically the Bethe equations
for small size systems (up to N =20). One may further
guess that the wave numbers of the first excited state are
close to those of the ground state. This is not the case.
In fact the amplitude will be shown to be a = 1+0 (1/n ).

The state with largest energy corresponds to taking the
second sheet, i.e, to l (m ) = n +m, m = 1, . . . , n Our .nu-
merical results indicate that the next-largest states (in
~E~) correspond to [Z„+,m =2, . . . , n —1] and either
Z, , Z~„, or Z„+1 and Z„. In contrast to the first excited
state, this is not a minimal shift. To understand the
difference we note that the contribution to the energy
from a pair is always 1. However, for the high-lying
states the average energy per particle is greater than —,'.
Therefore, to obtain minimal changes in energy in the
upper portion of the spectrum, it is more important to
avoid pairs than to make small shifts on the Riemann
surface. The two next-highest eigenstates are nondegen-
erate and have complex-conjugate eigenvalues.

The degeneracy of eigenvalues is closely related to the
number of pairs. For example, in the ground state and in
the highest state there are no pairs and both states are
nondegenerate. On the other hand, if all Z&'s are paired
(n even), then E = n /2 always, which is the state with the
highest degree of degeneracy.

In the following two sections we will compute the ener-
gies for the first excited state and the two highest states
as n ~~. For this purpose it is convenient to convert
the logarithm of (4.10) and the sum in (4.2) to complex
contour integrals by using the following identity [17]:

f (j ) = J dt f (t)+ —,
' [f(m)+f (n)]

mj=m

Z =+Ql —y for m =1, . . . , n and Z = —Ql —
y

for m =n +1, . . . , 2n, where the real part of the square
root is positive. The results of the asymptotic analysis
are given in (5.26) for the first excited state, in (6.9) for
the highest state, and in (6.29) for the next-highest state.

V. FIRST EXCITED STATE—THE n GAP

According to our discussion above we set
Z =++1—y, m =2, . . . , n —1, and 8=0. Let us
define

q(m)=ace~(m —~i~~~)~n h(m)=+I —q(m)

Then, according to (4.9),

' h(m) —1

~ h(m)+1

(5.1)

(5.2)

equivalently,

n —1

n ln4 —n lna = g (21n[1+h (m)] —ln[ —q(m)]] .

(5.3)

n 1n2=1na+ g ln[1+h (m)] —ln(1+h
&

)
—ln(1+h„),

(5.4)

where h i
=h (1) and h„=h (n). The energy is given by

2E =n —g h (m)+hi+h„.
m=1

Substituting (5.4) and (5.5) in (4.11) we obtain

n ln2=1na+ ln 1+ 1 —
q

1 dq
2l E C

—
—,'[ln(1+h, )+ln(1+h„)]+J, ,

(5.5)

(5.6)

2E =n — J &1—
q + —,'(hi+h„) —Jz . (5.7)

1 dq
2lE, C q

The contour of integration C is from q(1) to q(n) coun-
terclockwise along the circle with a branch cut [1,0o )

along the real axis, cf. Fig. 2. J, and Jz are the right-
hand integrals in (4.12a) with f (x) equal to ln[1+h (x)]
and h (x), respectively. The parameter s is defined

Using —q=qe ', the second part of the sum on the
right-hand side is simply (2—n)lna and therefore (5.3)
reduces to

F(n, t) —F(m, t)
p ~ 27rf

(4.12a)
(5.8)

where

F(s, t)= —[f(s+it) f(s it)] . ——1

21
(4.12b)

Also, we shall do an analysis on the
complex y plane with a square-root branch cut and write

To evaluate the integrals (5.6) and (5.7), we close the con-
tour C by adding a contour Cz from q (1) to q (n) around
the branch cut if a ) 1, cf. Fig. 2. Denoting the closed
contour as C, , we have C =C, +Cz. Since there is only
a simple pole inside C, for either integral, their values
follow from the residue theorem. Thereby n ln2 and n in
(5.6) and (5.7), respectively, are canceled.
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der in c,, we need that

q(j)=1—c(+i —P)+0(c ),
h, =+i c' &P+i +0 (c ~ ), (5.18)

A A A A A AA hh Ah A hh A)k h j+i =—+ic'~ &p t Wi—+0(c ),
2

FIG. 2. Complex contour integration.

Next we want to show that a~1 as c.~0. Note that
the integral J& is o (1) because of (4.12b) and because

q 1+—=ae"'it
2

j =1,n, where the upper sign is taken for j =n and the
lower sign for j =1. Note that opposite signs are due to
the appearance of the branch cut. Also, to order c,
lna =cP+ 0 ( c ),

(5.19)
ln(1+h, )+ln(1+h„)=cP+(h &+h„)

+—,'(h i +&„)+0(c ) .

Since a =1, we expand q around 1 for the integral along
Cz. For arbitrary s, s )0, we have

d " h'+'
1 q = dA

2C~ q h)

e 2~i —C(i +t)
2

(5.9) A'+
+ + 0 ~ ~

s+2 s+4

'
h„

h)

Now suppose that a —1=0(1). Then

1 dq ln 1+ 1 —
q2sg &2 q

0(c '), a )1
—1n(1+&1—a )+o(1), a (1 . (5.10)

(5.20)

Finally expanding the logarithm in the integrand in (5.6)
and using the above yields

ln(1+&'I —
q ) = —cP— (h„—h, )

1 dq 2 3 3

lB C 3l 6

An 0(c ') term cannot be balanced in (5.6), hence the
first case cannot hold. For the second case, the 0(1)
solution for a is 1, which contradicts the assumption
a —1 =0 ( 1). We will set then

(h„—h, )+0(c ) .
15ic

(5.21)

Substituting (5.19) to (5.21) in (5.6) gives

a = 1+cP, (5.11)

with P=O(1).
As will be shown, (5.6) and (5.7) can be expanded, re-

spectively, in the forms

—,'(h, +h„)+ (h„—h t )+—,'(h (+h„3)
3tc

+ (h —h )
—J =0(c, ).4

15
(5.22)

o=c'"A (P)+c'"a(P)+
2E =c' A (P)+c D(P)+

Let P=PO+cP&. Then (5.12) becomes

0=c'"A (P,)+c'"[&(13,)+P A '(Po) ]+
which implies

A (po) =0, 8 (po)+pi A'(po) =0 .

(5.13)

(5.14)

(5.15)

2E =c'~'[D (Po) —& (Po ) ] . (5.17)

Thus P, is not needed explicitly.
In order to evaluate (5.6) and (5.7) to the required or-

Expanding also the energy in (5.13),

2E=c'i A (Po)+c i [D(P )+OP, A'(Po)]+ . , (5.16)

and therefore, by (5.15),

Similarly, substituting (5.20) in (5.7) results in

2E= —,'(h, +h„)+ . (h„—h, )
1

+ . (h —h ) —J+0(c).n 1 2 (5.23)

Note that both h, and h„are 0 (c'~2). Thus we are half-
way in showing (5.12) and (5.13).

It remains to analyze J& and J2. Since J& and Jz are
given by the right integral of (4.12a) with f (x) equal to
ln[1+h (x)] and h (x), respectively, and since h (x) is
small, we can expand the logarithm in J

&
as

J, =J~ —
—,'J3+ —,'J4+0(c ), where J3 and J4 are given by

the same integral with integrand f (x) equal to h (x) and
h (x), respectively. The leading order of J3 vanishes and
only J2 =0 (c' ) and J4 =0 (c ~

) are of relevance.
Thus the 0(c'~ ) terms in (5.22) and (5.23) are the same,
as claimed in (5.12) and (5.13). Using (5.18) in (5.22) the
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0 (c'/ ) equation A (Po) =0 becomes

Re[(2PD+5i }QPo+i ]

Qi3o+ t i—Q—po t ——i
=3 Ref dt, , (5.24)

0 vrt

which determines Po. As explained in (5.12) to (5.17),
only the leading order of the diff'erence between (5.23)
and (5.22) is relevant for the leading order of E. There-
fore,

6E=J~—
—,'(h, +h„)— . (h„—h) )

3/2 ( + t i)3/2 ( t t')3/2

Re 5 f dt —(2PD+ 7i)()bio+ t')3/~
5 0 nt (5.25)

Evaluating (5.24) and (5.25) numerically, we obtain

Po = l. 119068 8. . . , E = (2.301 345 96. . . )n

(5.26)

VI. HIGHEST AND NEXT-HIGHEST
STATES—THE n ' GAP

Reversing the sign of the Harniltonian H turns it into
an asymmetric antiferromagnetic spin chain. Although
the connection with the fluctuating Burgers equation is
lost, it could still be of interest as a non-Herrnitian gen-
eralization of the XXX model. In particular, since the
XXX spin chain and the anisotropic XXZ chain have been
used as a paradigm for conformal invariance [18,19], one
could raise the question whether this property extends to
non-Hermitian operators such as the asymmetric spin
chain. Since a mass gap of order 1/N is characteristic of
conformal invariance, we shall examine the top of the
spectrum in the asymmetric spin chain.

The ground state and the first excited state for —H are
just the highest and the next-highest eigenstates for H, re-
spectively. The highest state is determined by the Bethe
equation

around the square-root branch point, resulting in a half-
integer exponent. Here, the analysis involves an expan-
sion around a regular point and hence an integer ex-
ponent should be expected.

Let us first consider the highest state. We repeat the
steps leading from (5.2) to (5.4) and obtain

ao
n ln = g ln[1+h(m)] .

2
1

(6.5)

ao
ln

1 'o dq 1+i )/q —1
ln +o 1

2m 1 rq 1 —j q
—1

(6.6)

2ED =2n + —f &q —1+0(1),n 'o dq
77 1 q

(6.7)

Using the identity (4.12) we transform (6.5) and (6.2) into
contour integrals. Again, the term corresponding to the
last integral of (4.12a) is of order o (1). Due to a change
of sign the 0 (N) terms do not cancel in either equation.
Therefore to leading order only the contour integrals are
relevant. As before, we close the contour along the
branch cut and obtain n ln2 and n. Therefore, Eqs. (6.5)
and (6.2) become, to leading order,

ao

4

n

i 27'.[m —(1/2) j/nh (m)+1
, h(m) —1

(6.1)

where for the contours along the branch cut we have used
&1—

q = +i &q —1 for the one below the cut and
&1—

q = i&q ——1 for the one above, cf. (5.18). After
simplification and evaluation of the integral in (6.7), we
obtain

2Eo=n+ g h(m) .
m=1

(6.2}

The two next-highest states form a pair related through
complex conjugation. We consider only one of them,
which is determined by

ao 2 1 dx
ln =— arccosx,

4 m. '/' x0

Eo 1 1 1=—+—Qao —1+arcsin
n 2 7T Qao

(6.8)

n

h(n) —1
" ' h(m)+1

4 h(n)+1 ) h(m) —1

iii i2vr(m —i)/2)]/n
q mI —a1e e

n —1

2E) =n —h (n)+ g h (m),

(6.3)

(6.4)

and therefore

ao =6.595 724 l. . . , Eo = ( l.380 280 23. . . )n . (6.9)

Our next task is to compute the difference between E,
and Ep. We denote the variables associated with the
highest state by a subscript 0. We have

m=1

where h (m ) =U'1 —
q (m ), as before. The asymptotic

analysis of the first excited state used an expansion

q (m)=a e' " ' " h (m)=+1 —qo(m) .

(6.10)
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We divide (6.3) by (6.1) and subtract (6.4) from (6.2) to ar-
rive at

dq~ h —1

q 2 h+1 2h
(6.19)

al

aQ

'n 2
h (n) —1

h(n)+1
Substituting back into (6.16) and dropping terms of order

g, we have

h (m)+1
ho(m)+1

ho(m) —1

h(m) —1

nna+in8=-
27Tl

ho(j) —1

2 ho( j)+1 2ho( j)

n

2(Eo EI )—=2h (n)+ g [ho(m) —h (m)] .
m=1

(6.11}

(6.12)

ho(n) —1

ho(n)+1 2 ho(n)

+O(g ) .

1

ho(1)

(6.20)

Equation (6.11) determines the asymptotic behavior of a
&

and 8, which will be computed first. Note that
8& [ m/—n, ~/n) is a small parameter. In addition, a

&

and ao, as well as q(m) and qo(m), are asymptotically
identical. Therefore we define the small parameters a
and g by

al =1+a,
aQ

q(m) I+~
qo(m)

(6.13)

Then g =i 8+a ,' 8 . Th—e —following gives the asymptot-
ic analysis in detail; the main results are (6.23) and (6.24)
for 8 and a, and (6.27) —(6.29) for Eo E, . —

Expanding h (m) around ho(m) we have

"0(J) 1 . 8 . 1
ln =+2i P —, tI}=arcsin

ho(j)+1 ns
' (6.22)

j =1,n, where the + sign is taken for j =n and the-
sign for j =1. Substituting the above in the right-hand
side of (6.2) we arrive at the asymptotics of 8 and a,

The leading orders of ho(n) and ho(1) are, respectively,

m.aQ maQ
ho(n) =is+, ho(1) = is+— , s =Qao —1 .

2sn
'

2sn

(6.21)

Hence

h (m)=ho(m) —
—,')X[qo(m)]+O(g ),

2

X(q)=++ ~q
4h' '

and hence, dropping the arguments,

2 1+hh+1 "o 1 g kqo 0 1 o

hQ+ 1 h 1 hQ 4hQ 2hQ

(6.14)
1+ n8=4$, —1+ n a=n8 m-2h s 24 2 n 8

2 ~ 4m.

i.e., approximately

(6.23)

n9=1.275 1403. . . , n a= —1.3449829586. . . .

(6.24)

(6.15)

Substituting (6.13) and (6.15) in (6.11) and taking loga-
rithms, we get

ho(n) —1

ho(n)+1 ho(n)
+

The mass gap will be computed as a function of n 0 and
n a. Applying (4.12) to the sum in (6.12) and using (6.14)
for the remainder, we obtain

2(E E, ) = —f X(q)4' so~I ~ q

+ ~[X(qo(l ))—3X(qo(n))]
—

g g b,(qo(m))+O(g ),
m=1

(6.16)
+2ho(n)+O(g ) . (6.25)

where

b, (q) =—— +
h 2h 4h'

We apply (4.12) to the sum in (6.16) and obtain

(6.17)

The integral can be evaluated in closed form. We have,
using (6.21),

f X(q)= ~ —2 [ho(n}—ho(1)]dq

g b,(qo(m))= . f h(q)
2m &o[I]

1

2 ho(n)
1

ho(1)

+—,
' [b (qo(1)}+h(qo(n ) )]+ 4is+ig(s ——s ') . (6.26)

The integral can be evaluated in closed form, i.e.,

(6.18)
Similarly substituting (6.21) in the remaining terms of
(6.25) we arrive at
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n8Im(E —E }=s 1—0 1 (6.27)

n 2g2 Q0 sn cx
Re(EO E—, )n = (s+s ')+ (m.—n8)

8m 2s 2m

(6.28)

VII. RELATION TO THE SIX-VERTEX MODEL

Let us consider the standard six-vertex model on a
square lattice [15,20,21]. We denote the spin (vertical ar-
row) configuration in the row n by cr'"' (in the ferroelec-
tric interpretation this would be the vertical polarization
configuration in row n) Th.e transfer matrix T goes from
row n to n + 1 in the positive y direction and has matrix
elements &

cr'"'l Tla'"+"). As remarked already, T com-
mutes with H of (1.4) provided the vertex weights satisfy

56 (~1 ~4)(2 ~3 } (7.1)

cf. Fig. 3. The asymmetry parameter 6 is given by [15]
—

(CO2CO' 4 COtCO3)l(CO2CO4+CO~CO3) . (7.2)

Since &cr!T!cr'') )0 and &0 le
' tcr') )0 in a sector a

fixed magnetization and since [T,H]=0, Tand e ' have
the same maximal eigenvector by the Perron-Frobenius
theorem. Thus

y &ZITI~ &=h(m}. (7.3)

In approximation, h(m)=e " for large N with suitable
A, depending on the vertex weights. Therefore, in the pa-
rameter subspace defined by (7.1), the free energy of the
six-vertex model depends linearly on m (i.e., on the verti-
cal polarization).

Since in (7.3) h depends only on the conserved total
spin,

p(cr~cr')=h (m) '&crt Ttcr') (7.4)

is a properly normalized transition probability. We iden-
tify then the y axis as time direction and interpret the
six-vertex model as a Markov chain with transition prob-
ability (7.4). In the usual parlance, the condition (7.1)
defines a codimension one manifold of disorder points for
the six-vertex model [22,23]. The Markov chain (7.4) has
a direct particle interpretation: Arrows pointing to the

FIG. 3. Six-vertex weights.

Combining (6.9}, (6.21), (6.22), and (6.24), we finally ob-
tain

Eo E, =(—3.28883935. . . )n '+i(1.885456427. . . ) .

(6.29)

FIG. 4. A space-time history for the six-vertex model.

right and upwards form the world lines of particles, cf.
Fig. 4. Each history has a probability given through the
normalized Boltzmann weight of the six-vertex model.

Our way of viewing the six-vertex model is strongly
reminiscent of the noisy Burgers equation. In particular
we may anticipate that the stationary correlations have
the same large-scale asymptotics. To offer some credibili-
ty we must however identify the parameters appearing in
the structure function (2.8). The prefactor is just the stat-
ic susceptibility. Since spins are uncorrelated, it is again
(1—m ). The remaining parameters are given through
the steady-state current j(m). The speed of propagation
is j'(m ) and the dissipation time scale is set by lj"(m ) l

[for the master equation (1.3) we have
j(m)=6(l —m )/2 and hence j'(m)= —6'm]. j(m) is
the average distance traveled by the particles in one time
step. In order not to interrupt the main line of reasoning
we defer this one-step calculation to Appendix B. The
final result is

j (m) =2(1+m)/[a (1—m)+(1+ m)], (7.5)

for small k and large t.
It is a small step to translate (7.6) to the six-vertex

model. We consider the correlations in the vertical polar-
ization between two points with relative distance r and
slope 1/j (m). (We again emphasize that in the equilibri-
um ensemble m is fixed. ) Then, if E=0, these correlations
decay as r ' whereas for EAO they decay as r ~ . In
the nearby cone, one sees the scaling function g of (7.6)
and away from the special direction, the correlations de-
cay exponentially.

The horizontal polarization in the six-vertex model

corresponds to the current for the Burgers equation. Be-
cause of the conservation law 0/Btu +0/Bxj =0 the
large-scale behavior of the stationary current-current
correlations follows from (7.6}. From this we conclude
that to leading order the horizontal correlations decay
just as the vertical ones.

with a =co, (co2 —co3)/co2(co, —co4).
If e=O, then j(m)=1+m. The Burgers equation with

this systematic current is linear and up to the factor
exp[i(1+m)kt] we recover the structure function (2.2).
For 6') 0, j(m) lies above and for 6 (0, j(m) lies below
the 6=0 current. In particular j"(m)%0. Thus the
structure function is of the form

S(k t)=(1—m )e'" ' "g([j"(m) (1—m )]' kit! ) .

(7.6)
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As noted in [24—26] another way to set up the
correspondence between the six-vertex model and the
Burgers equation is by considering the diagonal transfer
matrix. We choose the 45' diagonal as the time axis and
space axis orthogonal to it. The particle (or spin) inter-
pretation is as before. Note that now the dynamics is just
the familiar parallel updating. We block the spatial lat-
tice in cells of two sites each and update each cell in-
dependently. In the next time step the blocking is shifted
by one lattice spacing. Clearly we have to assign the
probability 1 to the vertex configurations c01 and c02. If
p(q) is the probability to jump to the right (left), then
c03 q and co4 =p. In order to conserve probability we
must set c05=1—

q and c06=1—p. Thus we have the two
constraints

C05 C02 C03 C06 C0 1 C04 (7.7)

which we recognize as a particular case of (7.1). Ifp =q,
then e=O, as to be expected. In the stationary measure
for the diagonal transfer matrix, spins are independent
with period 2 [26]. Correlations propagate at most with
speed 1 [27]. Thus a given spin is uncorrelated with its
"spacelike" spins. This is consistent with our previous
findings, which show that on the "light cone" there are
no correlations.

VIII. CONCLUSIONS
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As our main result we have shown that the dynamical
scaling exponent for the stationary correlations of the
noisy Burgers equation is z =—,'. Certainly, this comes as
no surprise. Still it is gratifying to understand how the
dynamical scaling exponent follows from an exact Bethe
diagonalization of the generator in the master equation.
(In a one-page announcement, such a result was claimed
before [28].) We used here a particular discretization. It
would be of interest to understand whether the Fokker-
Planck equation associated to the noisy Burgers equation
can also be handled by the Bethe ansatz. In fact, if one
converts the noisy Burgers equation via the Cole-Hopf
transformation to the (imaginary time) Schrodinger equa-
tion with a space-time random potential, then in the re-
plica solution the 5-Bose gas appears [29]. As is well
known, it is solved again by the Bethe ansatz. Possibly
this solution translates back to the noisy Burgers equa-
tion.

As we demonstrated, the Bethe ansatz can be used to
compute some properties of a spin chain with a nonsym-
metric Hamiltonian. Of course, the connection to quan-
tum mechanics is lost. But it is of interest to speculate
how much of the structure obtained for quantum spin
chains persists as we let the coupling constants wander
off into the complex plane.

APPENDIX A: SPECTRAL GAP
FOR THE FERROMAGNETIC HEISENBERG

HAMILTONIAN

For any two sites we introduce the exchange operator
T; =(o; crJ + 1)/2 and note that

Tji= Tii'+1T;+1i+2. . . Tj 1j Tj 2j 1. . . Ti'i'+1

By telescoping we have then

Tij
—1=(T;;+i—1)T;+ii+2

+(T(+ il. +2 1)T(+2i+3

+(T,, +,—1) .

(A2)

(A3)

We apply both sides to
If ), square, and use the Schwarz

inequality,

(A4)

Finally, we sum over the ring employing the shortest dis-
tance between i and j,

(2 —+1
4 g (f I( T„„+,—1)

If } . (A5)

Using spin operators (A5) becomes

'2
N+1

~
+I f))5 (flHlf l

(A6)

We recognize on the left-hand side the square of the total
spin operator. Since f is orthogonal to the subspace with
total spin j =N/2, the left-hand side is bounded below by
N( f If ). This proves (Al).

APPENDIX B: STEADY-STATE CURRENT
FOR THE SIX-UERTEX MODEL

We follow the notation in [15,16] for the transfer ma-
trix of the six-vertex model. The transfer matrix T can be
written as an X-fold product of 2X2 matrices, whose
basis vectors are the horizontal-arrow state, labeled by
IR ) and IL), in order to be distinguished from the
vertical-arrow state I+1). Each matrix has entries con-
sisting of spin operators referring to a single site only.
For simplicity, we use left-left boundary conditions; since
T is applied only once, this results in an error of order
1/X for the average current per site. The total current
operator for the transition from configuration o. to
configuration 0' is given by

We consider only the case e=O and want to prove that
for any function f orthogonal to the zero subspace

(Al)
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The current is then
(B1)

N

J(cr, o')= g j (cr' —o ) .
j=1

It is simpler to use a grand canonical average. Therefore
we fix the magnetization through an external field h. The
average current per site is then given by

j~= (LI A, A IL )
NZ Ba a=O

(B5)

N

Xexp h g o +aJ(o, o')
j=l

~ IT I~a

a=O

a=O

with

0 co,e

0

co eh+~ e "

co,e h

co5e
"

N4e +C02e

(B6)

(B2)

P, (+)=exp[+(h —a )], lb (+)=exp[+aj] . (B3)

Since the states in (B2) as well as the transfer matrix are
of product form, one can carry out the summation over 0.

and o'. At site j this yields the matrix

eh+ e
—h e

—he2a

(B4)h —aj + —hA =

Here Z is the normalization, i.e., the double sum for
a =0. The two-vectors p and lb are given by

h —h
lnZ ie ~2e

ah ~,eh+~2e " (B8)

We diagonalize 3 and obtain the eigen values
A. + =co&e "+co2e and A, =co3e "+co4e". Without loss
of generality we assume that A, + )k . Since
( X+ I BI l(, + ) =0, the leading term for large N is

2&a+I@Ii )&a IL, )
g jA,~+ 'k J . (B7)

NiP~(A, + L J=)

Equation (7.5) is obtained by carrying out the algebra and
using
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