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Gravity in one dimension: Stability of periodic orbits
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The failure of the one-dimensional gravitational system to relax to equilibrium on predicted time
scales has raised questions concerning the ergodic properties of the dynamics. A failure to approach
equilibrium could be caused by the segmentation of phase space into isolated regions from which the sys-
tern cannot escape. In general, each region may have distinct ergodic properties. By numerically inves-

tigating the stability of two classes of periodic orbits for the N-body system, we have unequivocally
demonstrated that stable regions in the phase space exist for N& 10. For populations 11 ~N ~20 we

find numerical evidence for multiple, chaotic, invariant regions. Thus the failure of large systems (say,
N & 100) to equilibrate may be a result of microscopic dynamical restrictions, rather than imposed mac-
roscopic contraints.

PACS number{s}: 05.45.+b, 98.10.+z, 03.20.+ i, 95.10.Ce

I. INTRODUCTION

During the past three decades, the one-dimensional
(1D) self-gravitating system has been the subject of in-
teresting theoretical predictions and extensive numerical
simulations. The motivational factors for studying the
one-dimensional system are numerous. Years ago Oort
[1] and Camm [2] suggested that the system may be an
appropriate model for the motion of stars in a direction
normal to the disk of a highly flattened galaxy. Cuper-
man, Hartman, and Lecar [3] used the system to test con-
jectures concerning the mechanism for violent relaxation.
Eldrige and Feix [4] have shown the relevance of this sys-
tem to plasma physics. It has served as a source of in-
sight into processes in gravitational systems. Perhaps its
chief attraction is in the simplicity and accuracy with
which it can be dynamically evolved.

Numerical simulations have been performed by a num-
ber of investigators in order to ascertain the relaxation
time to equilibrium of the one-dimensional self-
gravitating system. In one of the first numerical studies,
Hohl [5] suggested that the system should relax on the
order of N t„where N is the system population and t, is
the characteristic time which is approximately the time
for a member to make an oscillation of the system.
Hohl's assertion was the accepted view referenced in the
literature for nearly two decades. However, in the early
1980s Wright, Miller, and Stein (hereafter WMS) [6], us-
ing statistical tests based on the exact velocity and posi-
tion equilibrium distribution functions derived by
Rybicki [7], did not reach the same conclusion for the
evolution of the initial states that they investigated.
Their results indicated that one-dimensional systems do
not even appear to approach relaxation after 2X t, . A
few years later, research by Luwel, Severne, and
Rousseeuw (hereafter LSR) [8] suggested that, for a
specific class of counterstreamed initial conditions in the
p(x, v) space and an initial virial ratio of 0.3, relaxation
takes place within Nt, . To test their conjecture, we stud-
ied the evolution of an assortment of initial states [9—12)

including the conditions suggested by LSR. Relaxation
was clearly not found for the majority of the cases [9].
Evidence against relaxation was found for the initial state
suggested by LSR, but it was weaker. Using both a long-
run (4000t, ) simulation of a single system [10,12] and an
ensemble average of 500 systems [11] for 25t, we con-
cluded that the system in question enters a macrostate
that mimics equilibrium and slowly drifts away from it.

Fundamental to relaxation is ergodicity. If a system is
to experience relaxation then at a minimum it must ex-
plore its entire phase space; that is, as t ~ ~ the time
averages of the dynamical quantities must converge to
their equilibrium values. In earlier research [12], we
found the existence of long-term weak correlations in po-
sition and velocity of the system members. The correla-
tions appeared to last indefinitely with a lower bound
=2000t, . If the system has strong ergodic properties and
progresses towards equilibrium on a finite time scale,
then the correlations must decay [13]. For small-N sys-
tems (N~ 10) Froeschle and Scheidecker (hereafter FS)
[14] studied the rate of divergence of nearby orbits and
found no integrable orbits for N) 5. They conjectured
that these systems are "ergodic. " This was supported by
Benettin, Froeschle, and Scheidecker (hereafter BFS) [15]
who calculated Lyapunov characteristic numbers for
N 10 and demonstrated an increasing stochasticity with
increasing N. The conclusions reached by FS and BFS
were later supported by research performed by Wright
and Miller (hereafter WM) [16]. They studied systems
for N & 10 and found for N & 4 that relaxation seemed to
occur in a time much greater than N t, ( = 10 t, ).

In the research performed by us and others to date, the
point in phase space used to initiate a simulation was
chosen "randomly, " i.e., by sampling a specific distribu-
tion. FS used an algorithm devised by Henon to directly
sample the microcanonical distribution. In contrast, our
group, and later LSR, determined the initial particle
coordinates and velocities by independently sampling
specific single-particle distributions in the p space. FS
concluded that, for N~6, the integrable region of the
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phase space was nonexistent or "too small" to be detect-
ed.

A central question then concerns the existence of a
critical population, say N„above which the system is
completely chaotic. In this context, chaotic means that
the system dynamics is mixing and that the entire energy
surface comprises a single ergodic component. A famil-
iar example of such a system is Sinai's billiards [17]. If
N, does not exist, then the observed failure of the system
to relax could be due to the existence of multiple invari-
ant regions on the energy hypersurface in phase space.
Although one of them may be dominant, it may be
separated into weakly connected "lobes" by the boun-
daries of the other segments. The failure to relax would
then result from the slow "Arnold" diffusion of a trajec-
tory between the lobes [18].

In order to gain a better understanding of the geometry
of the phase space of the one-dimensional system, we
have constructed specific families of periodic orbits and
examined their stability. These periodic orbits were per-
turbed, and we looked for the possibility of an empirical
relationship between the population N and the size of the
perturbation that leads to instability. Stability was deter-
mined by calculating the largest Lyapunov characteristic
exponent of a trajectory. A strictly positive Lyapunov
exponent indicates an unstable orbit. If the system is
amenable to the methods of statistical physics, i.e., if it
approaches equilibrium and correlation functions decay
in time for almost every initial location on the energy hy-
persurface in phase space, then the space has a single
connected ergodic component and every possible trajec-
tory is unstable. If, on the other hand, the space is seg-
mented into invariant components, stable or unstable,
then it may not be a good candidate for this approach,
and the meaning of equilibrium and finite memory will
have to be defined in a di6'erent, more restricted, context.

In the following we examine two classes of periodic or-
bit which can be constructed analytically for every value
of ¹ One class, which resembles a "breathing" mode for
the system, is always found to be unstable. For popula-
tions N ~ 10, the other class is stable and our results indi-
cate that the size of the perturbation that produces insta-
bility decreases logarithmically with increasing popula-
tion. However, for X) 10 this periodic orbit is no longer
stable. In fact, a perturbation =10 go leads to instabili-

ty, whereas for N =10 a perturbation of approximately
l%%uo is required. Although it is tempting to conclude that
the entire phase space becomes connected for N & 10, this
is not the case. Our computations clearly indicate that,
through N =20 (the largest system considered) the
Lyapunov exponent associated with each type of orbit is
radically different, demonstrating that the phase space
consists of at least two invariant components. Thus, at
this juncture, we can state with confidence that N, & 20.
Complete details of our research follow.

N

E=(1/2N) g v,. +(2m 6/N') g lx, —x;l, (2)

where U; and x; are the velocity and position of the ith
particle, respectively.

The equilibrium velocity and position probability den-

sity functions have been developed by Rybicki [7] for this
system. In the limit that N ~~ these functions are

e(g) = vr
' exp( —

rt ) (velocity),

p(g) = ( —,
'

) sech g (position),

where

g=(v /2)(3M/E)'i

and

(3)

(4)

g=(3m.GM /2E)x .

U, x, M, and E represent the velocity, position, total sys-
tem mass, and total system energy, respectively.

A convenient dynamical characteristic time t, has been

employed in order to follow the chronological evolution
of a one-dimensional self-gravitating system. Physically,
this characteristic time represents the dynamical time re-
quired for a particle to traverse the system, and has been
expressed by LSR [8] in terms of the maximum value of
the equilibrium distribution function p(g),

t, =(GMp, „/m ) (7)

III. LYAPUNOV CHARACTERISTIC NUMBERS

In a stochastic region of phase space, nearby orbits of
dynamical systems diverge exponentially [19]. This ex-

ponential divergence may be determined by calculating
the largest Lyapunov characteristic number [a general
discussion is provided by Lichtenberg and Lieberman
[20) (hereafter LL)]. This procedure has been described
and used extensively by Contopoulos and Barbanis [21],
Contopoulos, Galgani, and Giorgilli [22], and BFS [15].
The largest Lyapunov characteristic number is defined as

freely along the x axis and accelerate as a result of their
mutual gravitational attraction. The ith sheet experi-
ences a uniform gravitational field that provides a con-
stant acceleration given by

3;=(2m. G/N)( N —2i+1),
where N ' is the mass of a sheet and 6 is the universal
gravitational constant. When an encounter occurs be-
tween two sheets, they pass freely through each other.
For simplicity the sheets are referred to as particles and
treated as mass points. The energy of the system is ex-
pressed as

II. DESCRIPTION OF THK MODEL

The one-dimensional self-gravitating system consists of
N identical mass sheets, each of uniform mass density
and infinite in extent in the (y, z) plane. The sheets move

L = lim [ ln(d/do)/t],
do~a

where d and do are the separations between two nearby
orbits at times t and 0. For stable orbits the Lyapunov
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characteristic number is zero; it is strictly positive for un-

stable orbits. In stochastic regions of the phase space, the
use of Eq. (8) to determine the Lyapunov characteristic
number will eventually lead to an overflow in numerical
simulations. This can be avoided if we periodically reset
the location of the perturbed orbit so that its separation
from the reference orbit is, once again, do. The
Lyapunov characteristic number is then given by [20]

L = lim (I/nb, T) g [ ln(dh/do)]
pf ~00 j—

1

(9)

(where hT is the time interval between rescalings and
n = t /5 T). In practice, the value of L obtained is insensi-
tive to the choice of hT over a large range.

The separation in phase space of a particular reference
orbit and some nearby orbit is given by

' 1/2

dc=k g [(Xo,, —xo, ) +(Vo,,—uo~) ] (10)

Here, xo;, and vo, , refer to the initial position and veloci-

ty, respectively, of the ith particle of the reference orbit.
Similarly xop and vop represent the initial perturbed or-
bit. The constant k is dependent on X. After some time
6T the two orbits are separated by

N

dh i=k g [(X;„—x; ) +(V;„—u,z) ]

1ht'2

The perturbed orbit is then rescaled according to

x, =x,, +(do/dj, )(x;~ —x;„),
u; =u;„+(do/dh, )(v;~

—u;„),

(12)

(13)

IV. SELECTED PERIODIC ORBITS

As mentioned in the introduction, previous investiga-
tors have studied the evolution of one-dimensional (1D)
systems where the initial conditions were randomly gen-
erated within some macroscopic constraints [3—6, 8 —12].
For a particular population N, if only one orbit is stable
then the system is not chaotic, regardless of how small
the stable region is in the phase space. Since mechanical
systems often have periodic modes of vibration that are
stable, we wondered whether this is also true of 10 gravi-
tational systems. We have selected two particular period-
ic orbits for study which are shown in Figs. 1(a) and l(b).
In one of the orbits (breathing mode), all of the system
particles remain separated (do not cross) until they all
simultaneously encounter each other at the origin. In the
alternate mode (mode 1), encounters occur between adja-
cent pairs only. Three or more particles cannot occupy

where x; and vi, respectively, represent the rescaled po-
sition and velocity of the ith particle. The evolution of
the orbits is then resumed and rescaled after each interval
of hT. The reference orbit is considered to be stable if
the Lyapunov characteristic number in Eq. (9) converges
to zero and unstable if it converges to some positive num-
ber.

(a)
Breathing Node

Five Particles

(b)
Node 1

Six Particles

FIG. 1. Illustration of the collision sequence for the breath-

ing mode and mode 1.

\
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/
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(a)
Five P arti cl es —Breathing Mode

(b)
Six Particles —Mode 1

FIG. 2. p(x, U, )-space trajectories for the breathing mode and
mode 1.

the same position. The motivation for this choice came
from our earlier dynamical study of a system of three
particles [16,23,24]. There it was found that orbits
characterized by simultaneous triple encounters are
divergent, whereas those which contained only pairwise
crossings are stable.

Figure 1(a) illustrates what we refer to as the "breath-
ing mode" for a five-particle system. Initially, all parti-
cles start from rest at appropriate locations on the x axis.
After some time T the particles simultaneously converge
at the origin. The particles pass through each other and
after an additional time increment T the system, except
for particle labels, returns to its initial configuration.
Similarly, the periodic orbit, which we refer to as "mode
1," is shown in Fig. 1(b) for a six-particle system. Initial-

ly particles 1 and 6 have zero initial velocity, particles
2-5 have appropriate nonzero initial velocities, and the
two "internal" pairs are crossing. After a specific time all
three adjacent pairs cross simultaneously. The system
then returns to the initial configuration. The initial con-
ditions necessary for each mode as a function of N were
determined analytically using basic kinematics.

It is difficult to conceptualize the orbits in a (2N)-
dimensional phase space. However, if we project the
phase-space orbit onto a two-dimensional space, p(x, u),
we obtain a comprehensible illustration of the periodic
orbits. Figure 2(a) shows the p(x, v)-space trajectory of a
five-particle system in the breathing mode. The trajecto-
ry is essentially two pairs of parabolas with a point at the
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origin. The point at the origin results from the central
particle which has a net force of zero acting on it and ini-
tial conditions of iLi(0, 0). Increasing the number of parti-
cles will increase the number of "pairs of parabolas. " An
odd number of particles wi11 always have a stationary
point at the origin. In real time, the positions of the par-
ticles trace out a rotating line in p space. The trajectories
of the particles only cross when the line is parallel to the
v axis ("vertical" ), when they all occupy the same posi-
tion (the origin x =0).

Figure 2(b) depicts the trajectory of a six-particle sys-
tem in mode 1. The orbit is a closed, approximately
oval-shaped curve consisting of a set of parabolic seg-
ments. Increasing the number of particles will smooth
the slope discontinuities at the crossing points. For an
odd number of particles, the central particle, which ex-
periences zero acceleration, will follow a straight-line
path of constant velocity in p(x, v) space. In real time,
adjacent pairs of particles cross at the same time.

V. SCALING, SIMULATION, AND PERTURBATION

All initial positions and velocities were scaled accord-
ing to Eqs. (5) and (6) with M =1 and 2~G =1. This re-
sulted in a characteristic time of 2~ and forced a total di-
mensionless energy of three-fourths for all systems. This
is important since all systems for a given X are then on
the same energy surface in phase space. The evolution of
each system was simulated using an exact code with up-
dating occurring at each encounter. Most simulations
were followed through 50000t, and the nearby orbits
used for calculating the Lyapunov characteristic numbers
were rescaled according to Eqs. (12) and (13) every 0. 1t, .
As a check, some orbits were also rescaled every 0.01t„
but as expected there was no significant difference in the
Lyapunov characteristic numbers. All calculations were
performed in double precision (16 significant figures) on a
VAX 6310 computer, and energy was conserved to better
than one part in 10' .

All perturbations to the periodic orbits were construct-
ed to lie in a hypersphere of radius r around an initial
point in phase space. For a particular perturbation P )0,
the perturbed positions and velocities were selected as
follows:

that has been perturbed and scaled. The relative size of
the perturbation S, using the scaled system, is then

—1/2N
S=r k g [(X, „;,d;, ) +(V, „;,d;, ) ]

VI. DATA AND RESULTS

For mode 1, two methods of perturbation were used.
In a "compression" perturbation, only positive signs were
used in Eqs. (14) and (15). Thus, when the perturbed po-
sitions and velocities were scaled to a total energy of —,',
the net effect was to compress the positions closer togeth-
er and increase the velocities. For an "alternating" per-
turbation, the signs in each equation were simply alter-
nated. One sign was not alternated in order to avoid sym-
metry.

The central idea was to find the maximum (critical)
perturbation for a given orbit that would remain in the
same stable segment of the phase space. Essentially a
bisection procedure was carried out to obtain the result.
Initial large and small perturbations of a mode-1 orbit
were selected. These perturbed orbits were allowed to
evolve until the Lyapunov characteristic number for each
orbit converged. If the Lyapunov characteristic number
(LCN) converged to zero for the smaller perturbation and
to some positive number for the larger perturbation, then
the average of the perturbations was used as input for a
new larger perturbation. The process was repeated until
we had two perturbations, fairly close together, that
sandwiched the critical perturbation between them. This
critical perturbation was not determined exactly, but was
at most off by 1%. Figure 3 illustrates this process for a
system of six particles with a compressed perturbation of
the mode-1 orbit. For a perturbation of 9.59% the orbit
remains stable, while a perturbation of 10.38% leads to
instability. The critical perturbation is estimated to be
10.0% which is the average of the two.

Critical perturbations for both the compression and al-
ternating modes are summarized in Table I. The data for
alternating perturbation suggest that the critical pertur-
bation decreases logarithmically with increasing N (see
Fig. 4). However, this empirical relationship is valid only
through X =10. Evidently, )V=11 represents a "critical

and

i perturbed i periodic'. (1+P

i perturbed i periodic' '—. (1+P

(14)

(15)

-2.0

-2.5

10.38% Perturbation

These perturbed velocities and positions are then uni-
formly scaled so that the total energy of the perturbed
system is —', . The "radius" of the hypersphere in phase
space is then given by

N
2X l ( i periodic Xip scaled )

i =1
1/2

2+ ( ~i periodic ip scaled

)
O

CL
O

D

O

30 Ii

-3.5

-5.0
2

~ ~ Sg

9.59'/

log ( t/tc)

where the subscript "ip scaled" represents the ith particle
FIG. 3. Critical perturbation for six particles experiencing a

compression perturbation in mode 1.
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TABLE I. Critical perturbation as a function of system population for mode-1 periodic orbits using both compression and alter-

nating perturbations.

Compression perturbation
(%)

Alternating perturbation
(%)

System
N

3
4
5
6
7
8
9

10
11
12
14
20

Zero
LCN

79.29
30.27
16.33
9.59
6.26

Not taken
Not taken

3.22
None found
Not taken
Not taken
Not taken

Positive
LCN

79.36
30.71
17.22
10.38
7.4

3.66
8X10

Critical
perturbation

79.3
30.5
16.8
10.0
6.8

3.4

Zero
LCN

136.0
27.76
17.44
9.74
5.60
2.39
0.80
0.40

None found
None found
None found
None found

Positive
LCN

None found
29.75
19.07
11.87
7.21
3.97
2.42
1.61

8X10 '
8X10
8X10
8X10

Critical
perturbation

28.8
18.3
10.8
6.4
3.2
1.6
1.0

dimensionality. " A perturbation =8X10 % resulted in
a positive Lyapunov characteristic number. This pertur-
bation also gave positive Lyapunov characteristic num-
bers for systems containing 11, 12, 14, and 20 particles,
which are shown in Fig. 5.

Similar results were obtained for the compression per-
turbation. The critical dimensionality was N = 11; howev-

er, the logarithmic relationship, although evident, was
not quite as perfect for N & 10. Both the alternating and
compression perturbations of 8X10 %%uo converged to
the same Lyapunov characteristic number of 0.031 for
N=11. It is also of interest to note that no positive
Lyapunov characteristic number was found for three par-
ticles that suffered an alternative perturbation as high as
136%%uo. Apparently, this stable orbit occupies a very large
region of the phase space.

For the breathing mode we examined system popula-
tions of N =3, 5, and 7 particles. The Lyapunov charac-
teristic numbers for the exact orbits are 0.293, 0.420, and
0.475, respectively, which indicates that these orbits are
very unstable. Alternate perturbations from the exact or-
bit resulted in smaller, positive Lyapunov characteristic

numbers. For N = 5 three perturbed orbits of
9.5X10 %%uo, 0.96%, and 31.6% were examined. These
orbits converged to approximately the same Lyapunov
characteristic number of 0.07. The exact results are
0.070, 0.072, and 0.067, respectively. The 31.6%%uo pertur-
bation was the maximum possible perturbation without
changing the initial ordering of the particles. Similarly,
for N =7 perturbations of 8.8 X 10 %, 0.88% and
16.0% resulted in roughly the same Lyapunov charac-
teristic number. These are 0.097, 0.076, and 0.081, re-
spectively. Again, a perturbation greater than 16.0%
destroys the initial ordering of the particles. In the case
of three particles, convergence to a common Lyapunov
characteristic number was not found for all perturbations
examined. Lyapunov characteristic numbers of 0.029,
0.027, and 0.00049 were obtained from respective pertur-
bations of 5.8 X 10 %, 0.58%, and 57.2%. A perturba-
tion greater than 57.2% results in a reordering of the ini-
tial system.

-1.0

~O0

o
O

C3

6)
CL

10

io' .-

100 ;

OP

-1.2-

-1.3 "-
0
CL i (

O -1.4

O

-1 5

Twenty Particles

e 4 ~ eee 44eaa= Fourteen Particles

Twelve Particles

Eleven Particles

10 '
2

Number of Particles

-1.7
2

log 0(t/t, )

FIG. 4. Critical perturbation vs system population for alter-
nating perturbations of mode 1.

FIG. 5. Lyapunov characteristic numbers for SX 10 % al-
ternate perturbations of mode 1 for N= 11, 12, 14, 20.
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VII. CONCLUSIONS

The combined results of research by FS [14],BFS [15],
and WM [16] suggest that 1D systems with a population
6 ~ N 10 are ergodic and could reach the exact equilib-
rium distributions derived by Rybicki [7] after an evolu-
tion time =10 t, . However, these results are based on
orbits that have been randomly initialized within some
macroscopic constraints. In this research we have shown
that in the neighborhood of a specific, periodic orbit
(mode 1) stability is maintained for system populations of
3 ~ N & 10. Evidently for N ~ 10, 1D systems are not er-
godic. The size of the stable region in phase space ap-
pears to decrease logarithmically as a function of N and
must be very small for N= 8, 9, and 10. It should be men-
tioned that FS [14] did not rule out the possibility of very
smal1 stable regions that could not be detected by their
method.

A critical dimensionality for the region of phase space
surrounding the mode-1 periodic orbit is apparently
reached at N =11. Any perturbation, regardless of how
small, results in an unstable trajectory. Mode 1 for ten
particles has a critical perturbation of about 1% while a
perturbation of 8X 10 % leads to instability for 11 par-
ticles. This rapid change to stochastic behavior is
surprising. In 1984, WM [16] studied the relationship be-
tween the encounter sequence and rate of divergence of
proximally initialized pairs of trajectories. They found
that trajectories which contain nearly multiple en-
counters diverge rapidly in phase space and the propor-
tion of these encounters increases with N. Although
there are no multiple encounters in mode 1, there are
pairs of simultaneous encounters. The number of these
pairs increases with an increase in N. As suggested by
WM, the sudden onset of the "ergodic type" of behavior
may be the result of near multiple encounters produced
by the perturbations. It may be possible to test this
multiple-encounter hypothesis by constructing a periodic
orbit that contains no more than a single encounter
(crossing) at any given time. If the multiple encounters
are the source of stochasticity, then such a system might
be stable for large N. We are presently examining this
possibility. However, we can in no way infer from this
research that 1D systems with N) 10 are ergodic. Al-
though the orbits in the vicinity of the mode-1 periodic
orbit are unstable for N &10, the largest Lyapunov ex-
ponent obtained by perturbing this orbit is an order of
magnitude less than the Lyapunov exponent computed
for the breathing mode. Thus, the phase space remains,
segmented for N ) 10 as well. For a few of these mode-1
orbits we have recently studied the effect of increasing
the perturbation on the value of the Lyapunov exponent.
We find that it is possible to enter a region with a
Lyapunov exponent that is different from that associated
with either periodic orbit. Thus, the general conclusion
that the phase space remains segmented through N=20
is inescapable.

All orbits for the breathing mode were found to be un-

stable. This supports the idea of near multiple en-
counters as a source of ergodic behavior. Multiple en-
counters are fundamental to the breathing mode. Con-
vergence to different Lyapunov characteristic numbers,
depending on the size of the perturbation, for the case of
three particles, lets us conclude that the phase space is
segmented. An apparent convergence to common (but
different) Lyapunov characteristic numbers for perturba-
tions to systems of five and seven particles in the breath-
ing mode suggests that all the perturbed orbits lie in the
same stochastic region for this mode with N ~ 5. Howev-
er, complete validation of this conclusion will require
longer simulations with larger systems and of greater
duration to ensure convergence to a common Lyapunov
characteristic number for each case.

A recurring theme of this work is the identification of
the physical source of chaos in the system. Froeshle and
Sheidecker suggested that the encounters between the
mass sheets are responsible for "ergodic" behavior. As
discussed above, the work of Wright and Miller suggested
a refinement of this idea, i.e., that only those trajectories
associated with multiple encounters are unstable. The
work reported here supports this observation but, in ad-
dition, shows that for N ) 10 trajectories with simultane-
ous pairwise encounters are also unstable.

In an interesting recent work, Kandrup [25] has used
projection techniques introduced by Gurzadyan and Sav-
vidy [26] to study the ergodic properties of the system.
Besides utilizing the system dynamics directly, this ap-
proach introduces additional assumptions concerning the
statistical distribution of likely trajectories in the phase
space. In contrast with all other investigators, Kandrup
concludes that the crossings provide a stabilizing
inAuence on the dynamical evolution of the system, while
the system motion between crossings is destabilizing.
This seems especially surprising because, between en-
counters, the phase point is simply undergoing constant
acceleration in the 2X-dimensional phase space. For this
simple force law it is easy to show that nearby orbits do
not exponentially diverge in time, but rather separate at a
rate less than t'. Consequently, the Lyapunov exponent
associated with a constant acceleration vanishes identi-
cally. Kandrup's analysis should not be dismissed be-
cause of this apparent discrepancy, as it strongly suggests
that the phase space is predominantly mixing for N & 6, a
result which is consistent with the work of Henon's
group and our earlier work. Rather, it symbolizes the
fact that there are important questions concerning this
apparently simple system which remain unanswered.
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