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Approximation scheme for the three-particle propagator
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The three-particle (ppp) propagator, which is that component of the three-particle Green's function

describing triple ionization, is investigated. In particular, a second-order approximation scheme for this

propagator is presented, suitable for the calculation of triply charged electronic states. Two different

methods are used to derive the explicit working equations. The first method is purely algebraic and is

based on the connection of propagators and effective Harniltonians. The second is the well-established

algebraic-diagrammatic-construction method, which makes use of Feynman diagrams. These methods

lead to equivalent working equations represented in different forms.

PACS number(s): 31.15.+q, 31.10.+z, 71.10.+x, 21.60.—n

I. INTRODUCTION

The theoretical study of positively charged ions is very
unequally distributed among singly, doubly, and triply
charged cations. Most of the research is directed to the
investigation of singly charged systems and to the inter-
pretation of single-ionization spectra. The study of dou-
bly charged cations and of double-ionization processes in-
creased drastically in recent years because of the develop-
ment of new experimental techniques and the advent of
larger computers which allow the theoretical description
of such processes. Very little attention has been paid to
the theoretical study of triply charged systems and of
processes of triple ionization. One reason can be found in
the enormous amount of states which have to be calculat-
ed for the description of triply charged systems.

On the other hand, triply charged states represent the
final states of many electronic processes. One example is
given by the so-called Auger satellite lines which can be
experimentally detected in the Auger spectroscopy [1,2].
The assignment of these lines can be of fundamental im-
portance for a correct interpretation of the normal Auger
spectra. The Auger satellite lines arise when the initial
core vacancy in the molecular system (the initial state of
the Auger transition) is accompanied by simultaneous
ionization of a second electron, usually from an orbital in
which the electron is weakly bound. This "shakeoff" pro-
cess results from a sudden change in the nuclear potential
due to the rapid change in the electron shielding. The
shakeoff process takes place with subsequent Auger emis-
sion and the final electronic state of the transition is tri-
ply positively charged.

Other processes which involve triply charged cations
are dissociation processes of multiply charged molecules.
Most of the information about these processes comes
from photoionization experiments or collision spectro-
scopic methods involving the study of electron-capture or
electron-loss processes in ion-neutral collisions [3—5].
Coulomb explosion [6] and mass spectroscopic experi-
ments have also provided information about the dissocia-
tion and fragmentation properties of triply charged mole-

cules. It should also be mentioned that the understand-
ing of the internal structure of multiply charge cations
can be of great interest itself, since it can offer a deeper
insight into the nature of the chemical bond.

In recent years the development and refinement of the
above-mentioned experimental techniques have led to an
increase in the amount of experimental data on multiply
charged systems and triple-ionization (direct or indirect)
processes. This is not yet sufficiently counterbalanced by
accurate theoretical studies, which can be of great help in
the correct interpretation of the experimental results.

The calculation of triple-ionization energies by means
of conventional methods such as self-consistent-field cal-
culations lacks accuracy because these methods cannot
account for possible strong correlation changes due to the
loss of three electrons. More-sophisticated methods such
as configuration-interaction (CI) methods present the
problem of a very large numerical effort, owing to the
necessity of calculating a great amount of states. Less-
conventional or "direct" methods based on Green's func-
tions [7,8] can therefore be viewed as very suitable
theoretical instruments for the investigation of multiply
charged electronic states. One advantage of these
methods is that they allow for the direct calculation of
the transition energies without resorting to separate cal-
culations for the initial and final states.

Within the Green's functions the quantity suitable for
the analysis of processes in which three electrons are
ejected is the three-particle (ppp) propagator which can
be obtained from the more general three-particle Green's
function [9,10]. The purpose of this work is to present an
approximation scheme for the happ propagator consistent
up to second order of perturbation theory. We should
mention that an approximation scheme for this propaga-
tor based on the first-order approximation of the Bethe-
Salpeter equation has been presented by Liegener [11].
The working equations of our second-order scheme are
derived by means of two different and complementary
methods. The first one is based on the perturbation ex-
pansion of a closed-form algebraic expression for the ppp
propagator. This closed-form expression contains the ex-
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act neutral ground state of the system as the only un-
known quantity and its perturbation expansion is thus
straightforward. This purely algebraic method has been
recently presented and applied to the pp propagator for
the theoretical investigation of double-ionization process-
es [12]. The second method used to derive the second-
order working equations for the ppp propagator is the
well-established ADC method (ADC denotes algebraic
diagrammatic construction) [13—15]. The ADC ap-
proach is based on the diagrammatic representation of
the perturbation expansion of the propagator. It should
be mentioned that a closed-form formulation of the ADC
approach has been recently presented [16]. Relevant in
this context is also the work in Ref. [17].

II. DEFINITIONS

The most general form of the three-particle Green's
function (six-point Green s function [9,10]) is given by a
time-ordered expectation value of three creation and

three annihilation operators in Heisenberg representation
in the exact N-particle ground state

~ Vo ) of the system:

G &„s„= i—(%0 ~TIa a&a,a asa„] ~%0 ) . (2. 1)

The creation (a ) and annihilation (a ) operators are re-
lated to a suitable basis [ ~p, ) J of single-particle states.
For example, in dealing with molecular systems it is com-
mon to choose the set [ ~gr ) ] as the set of the molecular
orbitals which derive from a self-consistent calculation
for the ground state of the neutral molecule. In Eq. (2.1)
the variables a,P, . . . , p are supposed to include time; for
example, a =a (t ). The operator T is the Wick's
time-ordering operator [8].

Depending on the possible time ordering of the
creation and annihilation operators, the three-particle
Green's function can be divided into a ppp and a pph part.
The ppp part describes transition processes from the N-
particle system to the (¹3)-particle system [10]. The
ppp part reads as

G~Jg ~s„=iB(t tt3t„t tst„—) g (%$~T[a a&a„]~%
+ )(4 + ~T[ata~sa~ ]%0 )

iB(trtst—„t t&t, ) g—(+O~T[a~asa„] ~% )(4 ~TIa a&a, J ~%0 )

8(t fttt„t tst„)=—

In this work we are interested in the theoretical description of the simultaneous attachment or ejection of three parti-
cles from the N-particle ground state. For this purpose we introduce the "ppp propagator. " This quantity can be ob-
tained from G~&" [Eq. (2.2)] by a particular choice of the time arguments: the time arguments of the variables within
each factor composing G~~~ are equal. The ppp propagator is defined as follows:

lim G~g, s„t, t-, t «t
f , fg, f —+ f

= —iB(t t') g(%0 ~a (—t)a&(t)a (t)~% + )(4 + ~a~(t')as(t')a„(t')~%'0 )

=GuuI~+i +GtJI~
—

)

Here ~%
* ) are the exact eigenstates of the Hamiltonian in the (N+3)-particle space. The function B(t tttt, trtst„)—

is a generalized step function defined as follows:

1 for t, t&, t, & t, t&, t„,
0 for t, tp, t & t, t~, t„. (2.3)

+iB(t' t) g (%'O~—a~(t')as(t')a„(t')~'II )(4 ~a (t)a&(t)a, (t)~'Po )

(2.4)

In this equation we indicated explicitly the time arguments of the creation and annihilation operators. By definition,
the ppp propagator depends on two time arguments only. The first and the second terms in Eq. (2.4) describe the simul-
taneous attachment and removal of three particles from the ground state ~%0 ), respectively. This becomes more ap-
parent by considering the spectral representation of the ppp propagator in energy space, which can be obtained by
Fourier transformation of Eq. (2.4). For a time-independent Hamiltonian the ppp propagator is a function of the time
difference ( t —t ') only and its spectral representation reads as

(%0 ~a a&a„~%
+ )(4 +

~a atsat ~40 ) (%0 ~atasa„~% )(4 ~a~a&a, ~+0 )
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The infinitesimal quantity g appearing in this expression
is only needed to guarantee the convergence of the
Fourier transformation and will be omitted in the follow-
ing. The poles of the ppp propagator

+3—EN for m go+3
m N N —3m EN EN —3 for m~X —3

(2.6)

give the energy differences between the (N+3)-particle
states

~
4 * ) and the N-particle ground state

~ %0 ) . The
residues

(ql + ~atagt~+0) for mCN+3,
~m (4 ~a a&a, ~+0) for IEN —3, (2.7)

8,= y e.a'.a. . (2.9)

The interaction term 81 is composed of a nondiagonal
one-particle part k and of the Coulomb interelectronic
interaction P':

8,=k+f', (2.10a)

k= g W~pa~ap, (2.10b)
a, p

X I aprsa~a+say
a,p, y, 5

Choosing 80 as the Hartree-Fock operator, e, in Eq.
(2.9) is the energy of the ath molecular orbital and the
one-particle term &assumes the following simple form:

X X(I akpk I'~kkp)aaag (2.11)
a, p k

(2.10c)

where the sum over k runs over the occupied orbitals of
the unperturbed N-particle ground state ~4O ) (Hartree-
Fock determinant). The approximation scheme for the
ppp propagator which we present in the following presup-
poses this form of R. The transformation to any other
choice of 80 and hence of &is easily done.

III. APPROXIMATION METHODS

The perturbation theoretical analysis of the ppp propa-
gator has been performed by means of two conceptually
different methods. The first one is a pure algebraic ap-
proach, which has recently been presented and applied to
the pp propagator for the theoretical description of
double-ionization processes [12]. The second one is the
well-established ADC scheme (ADC denotes algebraic di-

represent the corresponding transition amplitudes.
The purpose of the present work is to carry out a per-

turbation theoretical analysis of the ppp propagator [Eq.
(2.5)] and to present the working equations for a second-
order approximation scheme. The perturbation expan-
sion is usually defined with respect to a Hamiltonian of
the following general form:

8=8,+8, . (2.8)

Here 80 represents the unperturbed Hamiltonian, diago-
nal in the chosen single-particle basis [ ~y ) ]:

agrammatic construction), based on Feynman diagrams
[13—15]. Both methods represent general approaches
and can be applied to any Green's function with slight
natural modifications.

The major difference between the algebraic and the
ADC methods lies in the following fact: in the former we
make use of the connection between Green's functions
and effective Hamiltonian [18,19]. The propagator of in-
terest is reformulated as a closed-form expression which
contains the exact N-particle ground state ~%0 ) as the
only unknown quantity [12]. This closed form is ob-
tained by means of a unitary transformation which acts
on the Hamiltonian matrix of the n-particle space. %'ith
n we indicate here the number of particles contained in
the system after the transition has taken place. In the
case of the ppp propagator n is %+3. Starting with this
closed-form expression one obtains approximation
schemes at each order of perturbation by expanding ~ %0 )
with the usual RSPT (Rayleigh-Schrodinger perturbation
theory [8,20]). A characteristic of the approximation
schemes obtained by the algebraic method is that the final
equations can be expressed in "configuration form" [12],
i.e., by matrix elements of the Hamiltonian taken with N-
and (N+3 )-particle electronic configurations (Slater
determinants).

As already mentioned, the ADC approach [13,14] is
based on the diagrammatic perturbation expansion of the
Green's function under investigation. This can be carried
out in terms of Feynman diagrams. By comparing order
by order the power expansion of a general algebraic form
with the corresponding diagrammatic expansion one ob-
tains the matrices of the so-called effective interaction
and effective transition amplitudes. These two matrices
contain at each order of perturbation the same informa-
tion as the matrix 0 of the exact energy differences [Eq.
(2.6)] and the matrix X of the transition amplitudes [Eq.
(2.7)], respectively. In ADC the working equations are
obtained in "orbital form, " i.e, in terms of products of
two-particle integrals V pz& and orbital energies e .

The approximation which results from the algebraic
closed-form expression for the propagator by expanding
~%'o ) via RSPT is equivalent to that of the ADC and can
be viewed as one of its algebraic formulations. In princi-
ple, other schemes can be obtained from the algebraic ap-
proach by employing different approximations for ~+o ).
The explicit working equations obtained with both
methods used here have a different appearance. Each set
of working equations, in configuration form or in orbital
form, may have its own advantages in numerical im-
plementations. Another reason why we derived the ap-
proximation scheme of the ppp propagator by means of
two methods is that the derivation of the approximation
schemes for the ppp propagator is quite involved because
of the appearance of six creation and annihilation opera-
tors in the definition [Eq. (2.4) and (2.5)]. Thus, the
derivation of the working equation by means of two fun-
damentally different methods guarantees the correctness
of the results. Vr'e should mention that by transforming
the equations of the algebraic method into orbital form
one obtains the ADC working equations.

In the next two sections we briefly discuss the algebraic
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and the ADC approaches. For more details the reader is
referred to Ref. [12] for the former and to Refs. [13—15]
for the latter. We will carry out the discussion and ex-
plicitly present the approximation scheme up to second
order for the second term II' ' of the ppp propagator
which described triple ionization. It should be mentioned
that the derivation of the working equations for the first
term II'+' can be performed independently and in an
analogous way. Furthermore, the equations for II'+' fol-
low by a few manipulations from those of II'

IV. ALGEBRAIC METHOD AND WORKING
EQUATIONS IN CONFIGURATION FORM

In this and in the next section we will consider the part
II' ' of the ppp propagator. Whenever unambiguous, the
superscript (

—
) will be omitted. According to the

definitions in Sec. II we rewrite this propagator II in ma-
trix form as follows:

(4.1)

Here H is the Hamiltonian of the system defined in Eqs.
(2.8)—(2.11). Alternatively, we can introduce in Eq. (4.2)
a complete set of configuration states {~4 &] and ob-
tain

II*(co)=Y [(co—E() )1+H] 'Y, (4.3a)

where H denotes the usual Hamiltonian matrix in the
(X—3)-particle configuration space

where 0 is the diagonal matrix of elements 0 and X is
the matrix of the transition amplitudes [see Eqs.
(2.5) —(2.7)].

The matrix 0 of the exact energy differences can be
viewed as (Eo H) repr—esented in the basis of its own
eigenstates ~%' '& and is thus diagonal. The complete-
ness of the set { ~V &] allows us to write the propaga-
tor in the following "representation-free" form:

II & s„=((I(o(arasa„(co Eo+H) —'a ac(a„~+0"& .

(4.2)

=aUb . (4.4)

In this equation we indicated with a the first subset

{~@q(3$) & ] and with b the sets complementary to the first
one. The above classification is made with respect to the
Hartree-Fock determinant

~ 40 & (ground state of 80 ).
With mh(m —3)p we indicate how many holes (h ) and
how many particles (p ) have been created, respectively,
in the occupied and unoccupied orbitals of

~ 40 &.

Consistent with the notation used in Ref. [12] and Eq.
(4.4), we introduce now the following block structure for
the configuration-interaction matrix H:

Haa Hah

Hb, Hbb
(4.5)

Moreover, we introduce the following sets of auxiliary
functions:

A = {a, ajak ~+() &, i &j & k],
%={a„a,a, ~eg&, i &j],

C={a„a,a, ~(p~~&, u (U],
2)={a„a„a ~(I(&, u &U(w] .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

Here and in the following we specify with the indices
i,j,k, l, . . . and u, U, w, . . . the orbitals which are occu-
pied and unoccupied in the Hartree-Fock determinant,
respectively. Taking into account the definition of the
auxiliary functions [Eqs. (4.6)] and the splitting of the
configuration states into the classes a and b [Eq. (4.4)],
the matrix Y of the residues [Eq. (4.3c)] can be represent-
ed as a block matrix with the following structure:

aA am ac~ Yax)
Y=

Yb~ Ybg YbP Ybg)
(4.7)

The central point of the algebraic method is to intro-
duce in Eq. (4.3a) a unitary transformation T which
transforms the Hamiltonian matrix H and the matrix Y
according to the following equations:

and Y is a rectangular matrix of elements

(4.3b) H=T HT,
Y=T Y.

(4.8a)

(4.8b)

Y, c(„=(4, '~a apa, , ~'0() & . (4.3c)
The ppp propagator thus takes on the following appear-
ance:

Equations (4.1) and (4.3) are two different but equivalent
representations of the general form in Eq. (4.2). In the
former equation the Hamiltonian is represented in the
eigenbasis and the Hamiltonian matrix is diagonal. In
the latter equation the Hamiltonian matrix is built up on
a suitable complete basis set of configurations and is non-
diagonal.

The starting point of the algebraic method is the non-
diagonal form in Eqs. (4.3) of the propagator. For later
purposes it is reasonable to consider the configuration set

& ] appearing in Eqs. (4.3) as composed of the so-
called 3h, 4h 1p, Sh 3p, . . . configuration states:

II"(co)=Y [(~ E() )1+H] 'Y —. (4.9)

The reason for the introduction of the unitary transfor-
mation T is the following: To obtain the triple-ionization
energies one has to diagonalize the Hamiltonian matrix
H [Eq. (4.3b)] or equivalently the transformed matrix H
[Eq. (4.8a)]. For the matrix H [which represents the
configuration-interaction (CI) matrix in the (X—3)-
particle space] the dimension of the eigenvalue problem
can be easily determined, depending on which "order of
consistency" is required for the results. We could re-
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quire, for instance, that the triple-ionization energies for
transitions to (N —3)-particle states with large 3h com-
ponent should be consistent at the second order of the
perturbation theory. In this case a perturbation theoreti-
cal analysis shows that the configuration space of the ma-
trix 8 must comprise the configuration classes 3h, 4h 1p,
and 5h2p. The major characteristic of the transforma-
tion matrix T introduced in Eqs. (4.8) is that for a given
order of consistency the eigenvalue problem of 8 re-
quires a smaller working space than the matrix H. In
particular, to achieve consistency at second order for the
triple-ionization energies for transitions to 3h states the
necessary working space of H is composed only of the
classes 3h and 4h lp. In general, the matrix H allows us
to calculate the triple-ionization energy by means of an
eigenvalue problem which is the smallest possible for
each required order of consistency. The fact that the
working space is smaller than the working space of a
comparable CI is a common characteristic of the approx-
imation methods based on Green's functions and thus
also of ADC [13-15].

The unitary transformation matrix T possesses the
same block structure as the Hamiltonian matrix H [Eq.
(4.5)] and reads as [12,21]

T—U( UtU )
—1/2 (4.10)

where

pression for the normalization matrix (UtU) ' j which
appears in the definition of T [Eq. (4.10)]:

1+ZZt 0—1 j2—
0 B (1+Z Z)B

P 0
0 (4.13a)

&+o ~akajal a(am an ~'po &

jjk, lmll
( & @ N( @b)& ~2

(4.13b)

Bearing in mind that H and Y have, respectively, the
same block structure as 8 and Y, one obtains for the
transformed Hamiltonian

H„=P[(H„—ZHb, )—(H, b ZHbb—)Z ]P,
H, b =P[(H„—ZHb, )Z+(H, b ZHbb —)]Q,

Hb, =Q[(ZtH„+ Hb, )
—(Z H,„+Hbb )Z ]P,

Hbb Q[( Hga+Hba )Z+(Z Hab+Hbb

(4.14a)

(4.14b)

(4.14c)

(4.14d)

We can now write the transformed matrix H [Eq. (4.8a)]
and the residues Y [Eq. (4.8b)] in closed form. In partic-
ular, one finds that P has a simple appearance as a
ground-state expectation value, since the following rela-
tion holds:

I Z 1 0
—Z~ 1 0 B

1 ZB
—Z 8 (4.11)

and analogously for the transformed matrix of the resi-
dues

The elements of the matrix Z appearing as the o8'-

diagonal block in U satisfy the following relation:

& e,"(„)3)a,a, ak iq g&
0 'jk

& q)N~1Ijbj&
(4.12)

I@,"(»')&=I@";,k '&=a;a, akI@o& j&j «.

Here p represents a cumulative index for the classes
4h lp, SAN, etc., i.e., for the configuration classes of the
space b. The triple of indices [ijk] can be considered a
label for the configurations of the subset a, since for any
~C q(3b) & we can write

Y,~ = &4() i'Ij() &( I+ZZt)' j

Y,g= P(Y,g ZYb~)—,

Y, =((PY, —
( ZYb( ),

Y,r) =P(Y,z)
—ZYbz)),

Yb~ =0,
Y,g=Q(Z Y,g+Ybm),

Y, =(Q(Z Y, (+Yb )(,

Y,r)=Q(Z Y,g)+Ybr)) .

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.15f)

(4.15g)

(4.1511)

Equation (4.12) shows that the matrix Z depends on the
exact S-particle ground state of the system only. It is im-
portant to note also that the matrix B and thus U and the
whole transformation Inatrix T contain the exact ground
state as the sole unknown quantity. The explicit deriva-
tion of Eq. (4.12) and of the matrix B is discussed in de-
tail in Refs. [12,21]. For the present purposes it is only
sufhcient to observe that the matrix 8 possesses a zeroth-
order (which can be identified with the unit matrix lb in
the space b) and a vanishing first-order contribution.
The second and higher orders of the matrix 8 contribute
to the perturbation expansion of the propagator only in
fourth order and beyond. Thus for a second-order ap-
proximation scheme of the propagator the matrix B can
be set equal to lb.

For brevity of notation we introduce the following ex-

It is interesting to observe that the block Yb~ of Y van-
ishes identically. The above equations represent exact ex-
pressions for H and Y which depend only on
Therefore the perturbation theoretical expansion of Eqs.
(4.14) and (4.15) does not present problems of "intruder
states" [22] or "dangerous denominators, " i.e., denomi-
nators given by zeroth-order energy differences between
degenerate or quasidegenerate states.

By means of Rayleigh-Schrodinger perturbation theory
(RSPT), which is well defined for ~%'o+&, we will carry out
in the following the calculation of the second-order ap-
proximation scheme for the @pe propagator. As already
mentioned, for a second-order approximation scheme the
working space of the transformed Hamiltonian 8 has to
contain the configuration classes 3h and 4A, Ip. Thus, we
can identify the space b in Eqs. (4.14) and (4.15) with the
class 4h lp of the (X—3)-particle configuration space.
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) ~)I((ow)+~q(()w)+~)II(2w)+. . . (4.16)

The only necessary quantity for the perturbation expan-
sion of the propagator is the RSPT for ~%o ). This can be
formally written as

Hba Z HOaa +HIba HObb Z

(I)
Hbb =HIbb

H(1) ( H(1))1'
ab ba

(4.21c)

(4.21d)

(4.2 le)

H=H' '+H'"+H' '+ . =H' '+H

Y=Y' '+Y"'+Y' '+ =Y' '+YI .

(4.18a}

(4.18b)

It is easy to see that the zeroth-order contribution H' ' to
H is identical to the zeroth-order contribution to the
configuration-interaction matrix H:

The explicit form of the contributions ~%o' up to third
order can be found for instance in Ref. [12(a)]. As usual,
each of the ~)IIo' ) can be expressed as a linear combina-
tion of configurations ~4 ). Analogously to the
classification introduced for the (N —3 )-particle
configuration states, we subdivide the set [ ~4~ ) I into
classes according to

[ic',"&
I
= [Ie,"&

l U [ie„„&I, (4.17)

where the set [ ~
4 (r) ) J contains the configuration classes

lh lp, 2h 2p, . . . . Using the expansion (4.16) of
~ %o ), we

can write the perturbation expansion of the transformed
matrices H [Eq. (4.8a)] and Y [Eq. (4.8b)] as follows:

Taking into account that the matrix Z'" vanishes identi-
cally for (M=4h lp, if the unperturbed state ~%o ) is the
Hartree-Fock determinant [see Eq. (4.12)], it follows that
the transformed Hamiltonian matrix is identical to the
configuration-interaction matrix, i.e.,

Y(I) (4.22}
0 Y(I) 0 0

In order to write the nonvanishing blocks of Y' ' in expli-
cit form one has to consider the first-order contribution

) to the N-particle ground state:

Hqq =(4q (8&~4 ) for q q C3h 4hlp . (4.21f)

The first-order coupling block Hb", vanishes for the
higher classes of configurations (sh2p, 6h3p, . . . ) of the
space b.

The transformed matrix of the residues in first order
takes on the following form:

0 0 Y,"p 0

H(o)
0aa

0 bb

I,',"=
& C "-'~8o ~e",-'&S,

H' ' is diagonal and its matrix e1ements read as

(4.19a)

(4.19b)

~

q((1)N) —y (1)~@N)

q

(4.23)

If I@o ) is the Hartree-Fock determinant, only the 2h2p
configurations contribute to ~%o(

' ) (Brillouin theorem).
The nonvanishing elements of the matrix Y"' can thus be
written as

In this equation 5 ~ represents the Kronecker symbol. It
should be mentioned that the equality H and H in zeroth
order holds in all (N —3)-particle configuration sub-
spaces. The zeroth order of the transformed matrix of
the residues Y is given by the following matrix:

(4.24a)

(4.24b)

In the latter equation we used the label [uijkl ] to indi-
cate explicitly the 4h 1p configuration state

I 0 0 0
0 0 0 0 (4.20) ~+q(4~'(, )

&
= ~+".;,~('& =~.'u;uju~~(~+o &

At first order the matrix H' "reads as

(&) (1)H„H,b
H( )

H(I) H(I)
ba bb

(4.21a)

To complete the second-order approximation scheme
for the ppp propagator we further need the second-order
contribution H„' of the transformed Hamiltonian in the
subspace a and the second-order contributions to the first
row of blocks of the matrix Y, i.e., the blocks Y,'~, F,'+,
Y,'&', and Y,'&. The blocks Hbb and Hb, of H and the
second row of blocks of Y are needed only up to
first order (see below).

One obtains for the transformed Hamiltonian
We remember that the space b can be identified with the
class 4h 1p only. The matrix elements of H'" can be easi-~

~ ~

~

~

~

1 obtained by Eqs. (4.14) in terms of the Hamiltonian
=A'o+Bl and the matrix Z: +Z'"H Z""

Obb
(4.2Sa)

(1)
Haa HIaa (4.21b) or, explicitly,
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(H(2)) — &)I/(/)Nla tata ta a a l)I/())/v)(& @/c 3l+— l(y/v
—3) + &

g)N —3lp l@N~~~ 3)—)

+ g &'Po(""laka,'a I@,"(„)'&&@,"(„)'l&rl@g .'&+ g &@";,k 'l&pl~ („)'&&@,(„)'&la/a a. l+(')""&

(4.25b)

It is interesting to observe that this expression contains a
sum over the configurations p of the subspace b. It is
easy to see that this sum can be restricted to the class
p=5h2p only. Furthermore, only the first-order term of
l)I/o ) contributes.

The second-order contributions to the matrix Y neces-
sary for the second-order approximation scheme are
given by the following expressions:

(Y A)'jk, / &@0 l+0 )fi~/fij 5k

+—'& q/'" la/ta ta,ta/a a„ l)I/'" ) {4.26a)

(4.26c)

(4.26d}

To calculate these matrix elements it is now necessary to
evaluate the second-order contribution

l
q/o( ' ) to

l %o ).
To generally make clear which term of H and Y con-

tributes to which order of the propagator we expand the
matrix [(co—Eo )1+H] ' of Eq. (4.9) in power of
(col E' 1—+H ) '(H/ Eo c). —We note that
H =H' '+ HJ and bear in mind the RSPT expansion of
the neutral ground-state energy E0:

E(ow+E())N+E(2w+. . . E(o)N+Ex (427)0 0 0 0 0 O, I

(Ya~)/, k, u~n
= &~'ijk 'la. a a. l'Po""& (4 26b) One obtains the following expression:

II'(co)= Y [[(co—E() ' )1+H' ']

—[(co—Eo ' )1+H' '] '(H E)[(co——E() ' )1+H' ']

+ [(~—E ' "}I+H")]-'(H —E" )[(~—E"'")1+H'"]-'

X(Hr E}[(co——E' ' }1+H' '] '+ ]Y . (4.28)

By means of this expression we can determine which
blocks of H and Y are necessary to obtain a consistent
representation of the propagator at a given order of per-
turbation theory. In particular, a glance at Eqs. (4.19)
and (4.20} is sufficient to demonstrate that for a second-
order approximation scheme the only second-order con-
tributions needed are those of the block H„and of the
upper row of blocks of the matrix Y.

In summary, in our first-order approximation the ppp
propagator is given by Eq. (4.9), where the space of the
matrices spans the 3h configurations (subspace a). The
effective Hamiltonian H is just given by H,','+H,",' [see
Eqs. (4.19b) and (4.21b)]. The matrix of the effective resi-
dues Y is nonvanishing only in the blocks of columns la-
beled A and C. Up to first order the block Y,~ can be
identified with the unit matrix [see Eq. (4.20)], while the
block Y,@ has the simple form as given in Eq. (4.24a).

In the second-order scheme the space of the matrices
in Eq. (4.9} spans the 3h and the 4h lp configurations.
The latter constitute the first configuration class of the
subspace b. The second-order term of the effective Ham-
iltonian H„ is given by Eq. (4.25). The coupling block
H~, and the block Hb~ are needed only at first order and
are equal to the Hamiltonian matrix H [see Eqs. (4.21}].

The needed matrix Y has second-order contributions
only in the first row of blocks according to Eqs. (4.26). In
the lower row of blocks the first-order contributions are
sufBcient for a consistent second-order approximation
scheme of the propagator. Here there are nonvanishing
terms only in the block of coluinns labeled S [see Eqs.
(4.22) and (4.24b)].

Finally, we note that in our algebraic method the expli-
cit formulation of the perturbation scheme is given in
"configuration form, " i.e., the formulas resented in this
section for the contributions H" and Y' are expressed in
terms of matrix elements of the Hamiltonian between
configuration classes of the (X—3)-particle space and of
coefficients c~ [see Eq. (4.23)]. The latter are essentially
matrix elements of the Hamiltonian matrix in the N-
particle space. Writing explicitly the states which com-
pose the different configuration classes in terms of
creation and annihilation operators acting on l4o ) and
using the second quantization form of the Hamiltonian
[Eqs. (2.8 —(2.11)],the formulas in configuration form can
be transformed into products of two-particle integrals
V & & and orbital energies e . The procedure is, in prin-
ciple, quite simple but lengthy. An example showing the
technical characteristics is illustrated in Ref. [12(a)]. We
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have carried out this transformation into orbital form.
The results are the ADC equations which are presented
in the following section.

V. ADC APPROACH AND WORKING EQUATIONS
IN ORBITAL FORM

It is well known that the perturbation theoretical
analysis of any Green's function can be carried out in
terms of Feynman diagrams [7,8,20]. ADC is a well-
established method of constructing approximation
schemes for Green's functions and propagators based on
Feynman diagrams. The diagrammatic expansion at nth
order of the complete ppp propagator [Eq. (2.4)] can be
obtained by drawing all topologically distinct diagrams
which contain n interaction vertices and 2n +3 arrowed
solid lines (free Green s-function lines). All Feynman dia-
grams start and end with three solid lines pointing up-
wards. The Feynman diagrams of the ppp propagator up
to second order are drawn in Fig. 1. The upper (lower)
extreme of each diagram is characterized by the time t
(r'). In Fig. 1 and in the following pictures we use the
Abrikosov notation according to which each interaction
point represents an antisymmetrized element
( V &rs

—V &&r ) of the interaction term H~ of the Hamil-
tonian. In each interaction point four (two outgoing and
two incoming) arrowed lines meet. The use of the Abri-
kosov notation is very advantageous compared with the
Feynman notation because of the reduced number of dia-
grams to be analyzed. We reiterate that in the Feynman
notation the interaction vertices are represented by wavy
hnes corresponding to nonantisymmetrized matrix ele-
ments V

& &.

As can be seen from Fig. 1 there are three types of dia-
grams. The zeroth-order diagram and the first diagram
of second order are composed of three disjoint lines. The
second type contains those diagrams with two lines con-
nected together by interaction points and one disjoint
line. Up to second order this is the most common type of
diagram. The third type of diagrams shows all three lines
connected together by interaction points. There is only
one diagram of this type in the diagrammatic expansion
up to second order.

Feynman diagrams can be interpreted in time space or
in energy space. In the latter case there are two different
procedures to evaluate them: One can perform the
Fourier transformation of the analytical expressions ob-
tained from the diagrams in time space or, equivalently,
one can consider the so-called time-ordered Goldstone di-
agrams, which can be directly interpreted in energy
space. The Goldstone diagrams can be obtained from the
Feynman diagrams by permuting in all possible ways the
extremes and the interaction points. The number of

Goldstone diagrams for a given nth-order Feynman dia-
gram is thus (n+2)!. The set of Goldstone diagrams can
be exactly divided into two subsets which describe sepa-
rately the perturbation expansion of II'+' and O' '. The
two subsets of diagrams are characterized by the ordering
of the external times t and t'. The diagrams of II' ' are
characterized by t') t. The first- and second-order Gold-
stone diagrams of II' ' are drawn in Figs. 2 and 3, re-
spectively. We use the convention that the time axis
points upwards. It is interesting to note that the Feyn-
man diagram of second order labeled C gives rise to only
6 topologically different Goldstone diagrams while the
other second-order diagrams give rise to 12.

In the following we list the rules for reading the Gold-
stone diagrams of the ppp propagator.

(1) Particle and hole lines To. each particle (hole) line
is associated a particle (hole) index and a negative (posi-
tive) one-particle energy —(+ )e . A particle (hole) line
is a line pointing upwards (downwards).

(2) co line The si.gn of the energy variable co is defined
by the so-called co line, an auxiliary arrowed line which
has to be taken into account in each Goldstone diagram.
The cu line starts at the time t and ends at the time t',
flowing in direction t~t . If the co line points upwards
(downwards), the co variable carries a —(+ ) sign. In the
case of II' ' the ~ line points upwards and the co variable
has a minus sign.

(3) Interaction points Each in. teraction point is con-
nected with four arrowed lines, two outgoing and two in-
coming. It represents an antisymmetrized matrix ele-
ment of the two-particle interaction Hz.
V

&( s)
= V & s

—V &&
. The four indices a, P, y, 5 are

the labels of the four lines converging to the interaction
point.

(4) Denominators. The horizontal line which can be
drawn between any two neighboring connection points
(including the extrema) gives rise to a denominator of the
form

om+E+E + —6 —6 +.
I J Q U

Each particle (u, u, . . . ) or hole (i,j, . . . ) line which is cut
by the horizontal line gives a negative or positive contri-
bution (see rule 1), respectively. If the co line is also cut,
the denominator is said to be co dependent. In this case
the variable co has a positive (o = 1) or negative (cr = —1)
sign according to rule 2. If the co line is not cut the
denominator is said u independent and 0. =0.

(5) Pairs Each pair of .equivalent lines of a Goldstone
diagram gives a factor of —,'.

JE Ak Ak

I~
+ Jk JE g~ + &E + " i +~i

Jk 4E JIE

FIG. 1. Perturbation expansion of the ppp propagator up to
second order in terms of Feynman diagrams.

FIG. 2. First-order time-ordered Goldstone diagrams of the

ppp propagator II(
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FIG. 3. Second-order time-ordered Goldstone diagrams of the ppp propagator II'

(6) Evaluation. To evaluate a Goldstone diagram mul-

tiply the contribution of all the n interaction points (rule
3) and all the n+1 cuts (rule 4) and sum over all the
internal particle and hole indices. Multiply the result by
a factor

where h is the number of hole lines and p is the number of
pairs of equivalent lines. The factor —i arises from the
definition in Eqs. (2.1) and (2.4).

II((0)=f (co —K—C) 'f . (5.1)

Remark. The overall sign of a Goldstone diagram in
Abrikosov notation is not uniquely determined. In order
to settle it, it is necessary to analyze one of the corre-
sponding diagrams in Feynman notation. The rules for
these diagrams are the same as above except for rule 3
and that each loop (closed line) appearing in the con-
sidered diagram in Feynman notation contributes a fac-
tor of —1. Instead of interaction points, one has wavy
lines representing V &rs, where a and P are the indices of
the outgoing lines and y and 5 are the indices of the in-
coming lines of the corresponding vertices.

The ADC approach has been discussed in detail else-
where [13—15]. Here we confine ourselves to the neces-
sary equations, considering explicitly only the part 0'

The central point of ADC is to express the ppp propa-
gator in the following nondiagonal representation of the
general expression in Eq. (4.2), which is equivalent to the
specific forinulation of the algebraic approach [Eq.
(4.3a)]:

the transformed matrix of the residues Y of the algebraic
method, respectively. The ADC form in Eq. (5.1) can be
expressed in power series of the matrix (co —K) 'C. In
zeroth, first, and second order one obtains, respectively,

11(~)(0)—f(0)t(~1 K) I f(0) (5.2a)

II(co)(')=[f( ) (col —K) 'f'"]+H.c.

+f' ' (col —K) 'C"'(col —K) 'f' ', (5.2b)

II(co)' '=[f' ' (col —K) 'f' ']+H.c.

+ [ f' ' (co1 —K) 'C'"(col —K) 'f'"]+H.c.

+ f' ' (col —K) 'C"'(col —K)

XC'"(col —K) 'f' '

+f' ' (a)1 —K) 'C' '(col —K) 'f' ' (5.2c)

where the following perturbation expansions of the ma-
trices f and C have been used:

f(0)+ f(1)+ f(2)+ . . .

C—C(1)+C(2)+. . .
(5.3a)

(5.3b)

By comparing order by order the expressions in Eqs. (5.2)
with the corresponding diagrammatic expansion in terms
of Goldstone diagrams (Figs. 2 and 3) it is possible to
derive the matrix elements of the matrices K, C, and f.
This derivation is carried out below.

In most applications of ADC it turned out to be advan-
tageous to consider the so-called transition function in-
stead of the propagator itself. The transition function is
defined as

The configuration space of the matrices K, C and f is the
(N 3)-particle space. The m—atrix K is the diagonal ma-
trix of the zeroth-order energy differences. C is called the
matrix of the effective interaction and f is the matrix of
the effective transition amplitudes. C and f can be con-
sidered as equivalent to the matrices (HI Eor) and to—

P(co) =Ft(co —K—C) 'F,

where

F=fo .

(5.4a)

(5.4b)
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D is a vector of general parameters which can assume
precise physical meaning depending on the specific transi-
tion process under investigation. The indices of the ele-
ments composing D are all triple combinations IaPy j of
one-particle indices. The elements D

&y
are assumed to

be symmetric under cyclic permutations:

(5.5b)

In first order the analytical form in Eq. (5.2b) has to be
compared with the three first-order Goldstone diagrams
of Fig. 2. The assignment is also in this case straightfor-
ward. The first diagram has to be compared with the last
term of Eq. (5.2b). The second diagram of Fig. 2 is asso-
ciated to the first term of Eq. (5.2b). The third diagram
can be considered as the Hermitian conjugate diagram of
the first one and does not give rise to new relevant infor-
mation. From the comparison one easily obtains

I",,k'= —g I,k„,D;„„+(ijk~j ki )+(ijk ~kil ),Ijk 2 jkuv iuv

C,', 'k'( „=[(—Vk( „)5;I)+(i,j,k j,k, i)
(5.6a)

+(i j,k~k, ij )]

+[1,m, n~m, n, l]+[1,m, n~n, l, m] .

(S.6b)

In these expressions and in the following we use the nota-
tion

with

V sty~)I
E +E E' Ea P y

(5.7a)

any pya yap Dayp Dpay Dye
With the introduction of the vector D the transition
function is a scalar quantity. The power expansion of the
transition function yields expressions which are formally
identical to Eqs. (5.2) with the substitution f~F. From
the diagrammatic point of view D can be viewed as a
dashed line connecting the external lines of each Gold-
stone diagram. After having obtained from the diagrams
the matrix element of the vector F it is not dificult to
derive the matrix f. This can be done by taking into ac-
count the symmetry properties of the auxiliary vector D.

The analysis of the diagrams in zeroth and first order is
quite simple. In zeroth order there is only one diagram.
This diagram has to be compared with the corresponding
zeroth-order form [Eq. (5.2a)]. From the comparison one
obtains the matrix elements of the diagonal matrix K in
the 3h space,

&igk, leak
=&i.+&j+&k

and the zeroth-order contribution to the vector F in the
same space. The latter is identical to the vector D. From
this consideration it follows that the block 3h, 3h of the
matrix f is identical to the unit matrix:

~a@y~) Vary~ (5.7b)

In second order the diagrammatic analysis is more in-
volved. There are 4 Feynman diagrams and each of them
generates 12 time-ordered Goldstone diagrams (excluding
the diagram C which generates only 6). Equation (5.2c)
shows that in the second-order ADC scheme the ele-
mentS Fink', Fuijkl, Cijk, lmn& and Cuigkl, mnp COntribute tO the

ppp propagator.
The element F.k' is found to be composed of nine

different terms. Seven of these nine terms can be ob-
tained by direct comparison of the expression
[F' ' (col —K) 'F' '] and the diagrams labeled A 7, A 8,
B7, BS, C7, D7, and DS of Fig. 3. The Hermitian conju-
gate diagrams are, respectively, 211, 312, B11, B12,
Cll, D11, and D12. They correspond to the term
[F' ' (col —K) 'F' '] and give rise to the same informa-
tion as the preceding ones. We will discuss below the
derivation of the last two terms.

The coupling element C„",~kl „p appears in the expan-
sion term

[F'" (col —K) 'C"'(col —K) 'F' ')

and

[F''(col —K) 'C"'(col —K) 'C'"(col —K) 'F''].

The sets of diagrams corresponding to these terms are

[ AS, C5, D6j and I Al, C1,D2j. Indeed, for the calcu-
lation of C jkl p

it is sufficient to consider the last set of
diagrams [A 1,C1,D2j. The first set is only needed to
determine the relative sign of the elements C„'jkl p and

F„',"kI. Once C„",Jkr „~ is determined, it is easy to derive
I'„'& '

„~ from any of the two sets of diagrams
The expansion term [F( ' (col —K) 'C' '(col

—K) 'F' '] is the only expansion term of the second-
order ADC which contains C k'l „. To find out the
analytical expression of C.k'l „one has to consider the
set of diagrams I A2, A4, A6, A 10,B2,B4,B6,B10j.
However, this set of diagrams contains co-dependent cuts
which belong to the higher configuration class Sh2p.
This class does not appear in the second-order ADC
scheme. These apparently inconsistent denominators
disappear when the contributions of the above diagrams
are added together. After this summation one obtains
analytical expressions which possess the same algebraic
structure of the expansion terms appearing in the
second-order ADC form in Eq. (5.2). From these expres-
sions it is thus possible to derive C jk'lm„and the last two
missing contributions to F,' k'.

The explicit final expressions for the elements of the
matrices C and f in the second-order ADC scheme are
collected in Tables I and II, respectively. We remind that
the elements of f can be easily obtained from the ele-
ments of the vector F. In Table I we report also the ma-
trix elements C„","kl, „which in fact are superfluous in
the strict second-order ADC scheme. However, these
elements can be considered as an integral part of the
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TABLE I. Elements of the matrices K and C necessary for the ADC-approximation scheme up to and including second order of
perturbation. The labels i,j,k, /, . . . refer to occupied orbitals and the labels u, U, m, . . . refer to unoccupied orbitals in the Hartree-
Fock ground state. The notation V,&[yz]

= V syi;
—V ssy is used throughout. e denotes the energy of the ath orbital. The set {ijk,

i &j & k j of one-particle indices spans the subspace a (3h ). The set {uijkl, i &j & k & I ] of one-particle indices spans the subspace b

(4A 1p).

+ijk lmn (E0 aa)ijk Imn ( i + j + k )~il~jm ~kn

+uij kl, vmnpq ( +0 Hbb )uij kl, vmnpq ( u +~i +~j +~k +~1 )~uv~im ~jn ~kp ~lq

C&pi „=(Ep 1 H a)jkim„=[( Vjk[ „]bi)+(ij,k~j,ki)+(i j,khaki j)]+[I,m, n~m, n, l]+[I,m, n~n, l, m]

(2) N (2)
Cij k, lm n

= (E0 1 H aa )ij k, lm n =, 1

4 g Vkp [uu] Vuu [np]
pq

ukv

1 1

~u +~v ~k 6p E'u + E'v 6n 6p

—[mn-un]+[l, m, num, n, l] ' —{jn-uk]+{i j,k +j k, i—]

+[ij,k~j, k i]+[ij,

khaki

j ] +{I,m, num, n, l]+{I,m, n~n, l, m]

(&) — (&I
uij kl mnp ( Hba )uijkl mnp [ ( Vki[pu]~im ~in + Vii[pu]I)jmskn Vjl[pu]~im ~kn + Vki [pu]fijm 5in

Vkj [pu]5im I]ln + Vij [pu]gkm 5in ) ] [n~P ]+[m n P ~n P m ]
(1) N (1)

Cuijkl, vmnpq (E0 bb )uijkl, vmnpq ( Vvi [um]~jn ~kp~lq vj [um]~in ~kp~lq + ~vk [um [~in~jp~lq Vvl [um]~in 5jp~kq )

—(m~n )+(m, n,p, q~p, m, n, q) —(m, n,p, q —+q, m, n,p)

+ [I] ( uaij [mn]iikpfiiq+ ik[mn]I)jpblq Vii[mn]I)jp5kq Vfk[mn]liip6lq

Vki [mn]giplijq + Vjl [mn]I)ipbkq ) ]

—[nn-np]+[n, p, q +q, n, p] —-[mn-up]+[m, p, q —uq, m, p]+[ma-up, nn-nq]

second-order approximation scheme as done previously
for other propagators [13,14]. The inclusion of this term
may be of great importance in improving the results for
the 4h 1p satellite states, which in this way result to be
treated consistently at first order of perturbation. This
term can be determined from a few diagrams of third or-
der or from the algebraic method discussed in the preced-
ing section.

The expressions in Tables I and II are given in terms of
two-electron integrals. This is the natural form of the ex-
pressions deriving from Feynman diagrams. As discussed
in the preceding section one obtains from the algebraic
method expressions in the more compact configuration
form. The configuration form can be transformed into
orbital form. After carrying out this transformation we
could show that the algebraic method yields exactly the
same working equations as ADC.

Finally, we should mention that the ADC approxima-
tion scheme for the propagator II[+](co), describing the
simultaneous attachment of three particles to the system,
can be obtained by simple manipulations from the ap-
proximation scheme presented here for II' ](E0). The
Goldstone diagrams of II'+' can be obtained from those
of II' ' by simply turning them upside down. It follows
that to obtain the matrix elements of f, K, and C one has
to exchange the particle ( u, U, tii, . . . ) and the hole

g(0) p(&) + p(2)fapySEC fap, y, SEC fapy, SEC fapy, SEC

apy, apy apy, apy

apy5, apy5 apy5, apy5

~(1) +~(2)
~apy, 5eg apy, 5eg apy, 5eg &

(5.8)

c(1)
apy5m, ggB apy5e, gq8

C(&)
apy 5e, gg8uc apy5e, gg8uc

Here the f, K, and C are obtained from the elements f,
K, and C of Tables I and II by interchanging the particle
and hole indices.

(i,j,k, . . ) labels .in the expressions of Tables I and II.
Taking into account the rules given above for the analysis
of Goldstone diagrams and in particular bearing in mind
that the auxiliary co line now points downwards one ob-
tains the following relations for the elements f, K, and C
which enter in the second-order ADC scheme of II(+':
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TABLE II. Elements of the matrix f necessary for the ADC-approximation scheme up to and including second order of perturba-
tion. The notation used is the same as in Table I. The subspaces A, X, C, 2), i.e., the columns of blocks of the matrix f (or,
equivalently Y) are spanned by the sets of oneparticle indices [lmn, 1&m &n J, [umn, m &n J, [uvm, u & v], [uvw, u & v &w J, re-
spectively.

(0) (0)fij k, lmn ( YaA )ijklmn , OII fjj m ljkn

fijk, lmn (YaA )ijk, lmn

(2) — (2)
fijkimn , ( Ya A )ijklmn, 4

——g (rj,„,l „„„S,.S„„—r„„„r„...S„S„„+r„„,I „.„,S„S„.) (j—k )+(i j,k k, i f )

u U

1+ ——Q I,k„,I „, „5II +(l, m, n~m, n, l)+(l, m, n~n, l, m) +[ij,k~j, k,i]+[ij,k~k, i j ]4 j uv uvmn

(0) (0)
fijkumn (Y, a jj)ijkumn,

(1) (1)
fijk, umn ( a jj)II'kumn,

(2) — (2)
fijk, umn ( a8)ijkumn,

r, , v, „v„r„Pkyz yz[uP] y y" [Pa] PVuy
6 g [ k ]+[

~ k k ]2 E'u Gk p q
6u 6k

y, z

(0) (0)
fijk, uum (YaC )ijkuum,

f,",„'„, =(Y, )',,"„„=[Ij„„,5, I+ [ij,k j,k, i ]+[ij,k k, i j ]

(2) (2)
fijk, uum ( aC')ijk, uum

I jkzy zy [uu] Vjk[pq]rpquv + ~~i [vp l~pkuy

k +Eau EI. Ek

—(jn-uk) —( ~uv)+(j nkv, u n v)v5; '+[i j,k~j, k, i]+ [i j,k —+k, i j }

!0) — (0)
fijk, uuw (Ya jI)ijk, uvw

(1) — (1)
fijk, uuw

= ( Ya.'jj)ijkuuw =0,
J ij k, uvuj ~ ~ a& ~ij k, uvw

1
Izjk[ ] I + P jky Vyi[

&u+&v+&w &i &j &k m

+[u, v, w~v, w, u]+[u, , vww, u, v] '+[ij,k~j, k i]+[ij,k~k, ij I

f„;,kl „p
= ( Yb~ );,„„p=0 all orders

(0) — (0)
fuijkl, vmn (Ybj])uijklumn,
f„",,I„„,„„=(Y, .„)'„'„I„.,„„=+r„„,b,.(,„+r„„„S,.S,.„—I.„„„r,.b„„+r„,„„n,.S,„—I.„,„„S,.S,„+1.„„„(„.S,„

(0) (0)fuij kluwm ( Yb C' ) uij I ,Iuu m,
J uij kl, vwm ~ ~ bC' j uij kl, uwm

(0) (0)fuij kl, uwz ( bXI )uijkl, uwz

J uij / l, t u z ~ ~ b'D j uij kl, vwz
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VI. BRIEF SUMMARY

In this work we have presented the working equations
of the second-order approximation scheme for the ppp
propagator. This propagator can be obtained from the
more general three-particle Green's function by a partic-
ular choice of the time arguments and is suitable for the
description of triple-ionization processes and triply
charged systems. Examples of triple-ionization processes
can be found in the so-called satellite Auger processes
which can occur simultaneously to the normal Auger
process and in the dissociation or fragmentation process-
es of highly ionized systems.

To calculate triple-ionization energies we used a
Green's-function approach and derived the working
equations for an approximation scheme consistent at
second order of perturbation. For this purpose we used
conceptually different methods, a purely algebraic one
and the diagrammatic ADC approach. %'e have demon-
strated that both methods give rise to equivalent sets of
working equations.

The working equations obtained by the algebraic
method are expressed in configuration form, i.e., as prod-
ucts of matrix elements of the Hamiltonian taken with N-
and (N —3)-particle electronic configurations. With the
ADC approach one obtains the final equations in orbital
form, i.e., in terms of products of two-particle integrals
and orbital energies. This is the natural form of the ex-
pressions deriving from Feynman diagrams. Transform-
ing the formulas in configuration form of the algebraic
method into orbital form, we could show that the two
methods lead to identical equations. It should be men-
tioned that each set of working equations, in
configuration form or in orbital form, may have its own
advantages in numerical implementations.

Furthermore, since the two procedures are fundamen-
tally different, the equivalence of the results is an impor-
tant test for their correctness. This is a relevant point in
the case of the ppp propagator because it contains six
creation and destruction operators in the definition and
thus the derivation of the explicit working equations is
quite involved. Both methods lead to working equations
which allow for a size-consistent calculation of triple-
ionization energies without resorting to separate calcula-
tions for the initial and final states involved in the transi-
tion.

The approximation scheme ensures, moreover, that the
change in electronic correlations and relaxation energy in
the molecular system due to the loss of three electrons is
taken consistently into account. It is to expect that the
implementation of our working equations leads to satis-
factory numerical results with much less numerical effort
than conventional methods of comparable accuracy.
This is due to the fact that the configuration space of our
scheme contains the (N —3 }-particle configuration states
of the classes 3h and 4h 1p, while for a comparable
configuration-interaction calculation the higher excited
Sh2p class has to be explicitly taken into account in the
configuration space.

Finally, we should mention that from the presented ap-
proximation scheme for the propagator describing the
simultaneous triple ionization one easily obtains the ap-
proximation scheme for the propagator describing the at-
tachment of three particles to the system.
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