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It is argued that a recently proposed algorithm [K.Y.R. Billah and M. Shinozuka, Phys. Rev. A 42,
7492 (1990)] for the integration of stochastic differential equations in the presence of correlated noise
does not introduce a substantial improvement over existing schemes. We point out that although this
scheme could be very interesting for noise characterized by particular correlation functions, for colored
noise the present scheme is sensibly slower than existing algorithms. Some apparent discrepancies be-
tween the result of simulations carried out with the new algorithm and previous numerical work are ex-

plained.

PACS number(s): 05.40.+j, 02.50.+s, 05.20. —y, 06.50.Mk

In a recent paper [1], a numerical algorithm for the
solution of the prototype stochastic differential equation

x=f(x)+g(x)&(t) (1)

has been proposed, where £ is a zero-centered Gaussian
noise of given intensity and correlation. The algorithm
proposed, a direct implementation of the central-limit
theorem, can be straightforwardly applied to a variety of
correlation functions (hence, to different spectral densi-
ties) of the noise, and it has the putative advantage of
overcoming some problems with the random number
generator used for other algorithms. The authors apply
their algorithm to study the escape rate in the bistable
potential

fx)=x—x3, gx)=1 (2)

and, in presence of colored noise,
(EE"))=D /rexpl—|t—t'|/7), 3)

and the results of their simulations are compared to some
theoretical approaches.

Let us mention that there has been some controversy
as to which is the best theoretical approach to describe
the escape rate, although now the issue seems to have
been settled [2]. Here, we are concerned with the com-
parison [1] between existing algorithms [3,4] and the al-
gorithm proposed in Ref. [1]. The basic idea, in other ap-
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proaches, is to write an auxiliary equation for £ in the
form

E=—E/7+V2D /Th(t), )

where the random term 4 (¢) is a Gaussian white noise
with a standard deviation of 1.

The algorithm of Ref. [1], on the other hand, generates
the noise according to

_ N
En=v2 3 [S(w,)A0]*cos(w,t+D,), (5
n=1
where o,=nAw, with n=1,2,3,...,N and Aw

=Wmnax/N. P, is a random-phase term, uniformly distri-
buted between O and 2, S(w) represents the power spec-
trum of the correlated noise

[S(w)=(D/m)/(1+*™)],

while w,,,, is the upper cutoff of the noise spectrum. The
advantage of this method with respect to the solution of
Eq. (4) would be the direct conversion of a uniform ran-
dom set of variables (®,) in a Gaussian nonwhite noise,
thus avoiding possible problems related to poor efficiency
of the Gaussian number generator used in Eq. (4). In
practice, however, this can be avoided exherting the
necessary care. On the other hand, the noise generated
by Eq. (5) has a repetition period T=27/Aw. This prob-
lem, along with the constraint w,,,7>>1, forces one to
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use very large values of N(=~10°-10° with a consider-
able increase of the CPU time needed for the calculation
of Eq. (5). In practice, £(¢) in Eq. (5) is generated via a
fast-Fourier-transform (FFT) technique. It follows that
the time taken to calculate one random &(¢) will vary as
aln,(M)+fB, where M is the number of random terms
one wants to generate, « is the intrinsic time taken by the
FFT, and B is the time necessary to generate one uniform
random number ®,, and evaluate exp(i®,) in the FFT.
On the other hand, the time necessary to generate £(¢) in
Eq. (4) varies only as a constant (slightly larger than 1 [3],
generally equivalent to two elementary multiplications
plus one elementary addition) multiplied by the time
necessary to generate a Gaussian random term, that we
will quantify as ¥3. For both methods, we have discard-
ed overheads, although it is fair to say that on most com-
puters for the algorithm of Eq. (5) this overhead is of the
order of the time taken to generate a Gaussian random
number from a uniform deviate via a Box-Miiller algo-
rithm. In fact, the evaluation of each of the M weights
needed for the FFT is very expensive (at least three multi-
plications, one addition, one division, and one square
root), and the necessity of using fairly large M’s may in-
duce considerable swapping, thus further increasing the
CPU time. Typical figures on a CDC 7600 are a=2usec;
B=2.2 usec; y=2. In the case of a bistable potential,
with D =0.1 and 7=1.0 (mean first-passage time ~ 250),
for reasonable integration time steps (dh =0.1) and for
100 averages, one needs approximately 2.5X 10° random
terms; in these conditions, the algorithm of Eq. (4) is ex-
pected to run about 11 times faster (on a CDC 7600) than
the algorithm of Eq. (5). The comparison is even more
favorable if more averages or a smaller integration time
step are considered. The two algorithms are expected to
have the same speed only if M <4, having disregarded
overheads, although these figures may well depend on the
actual computer used. For more complex spectral densi-
ties, also, it is possible that the algorithm of Eq. (5) could
become more advantageous due to the necessary compli-
cation one must introduce for the (corresponding) Eq. (4).

Comparison of the numerical results [2a] obtained us-
ing existing algorithms and the algorithm of Ref. [1]
seems to suggest a considerable difference between the re-
sults of the two methods. The authors of Ref. [1] do not
explicitly comment on this discrepancy, although it
seems clear from their previous discussion that this effect
should be attributed to either the poor quality of the
Gaussian number generator used, or a possible flaw in
other algorithms.

In fact, this apparent discrepancy is due to an incorrect
comparison of two different quantities. In their Fig. (3),
authors of Ref. [1] plot the average time (divided by 2)
needed to reach one minimum of the potential (x =1)
starting from the other minimum (x = — 1), as a function
of the correlation time 7 of the Gaussian noise. This
quantity T, /2 is then (erroneously) compared to the
average transition time from x = —1to x =0 (T,,) from
Ref. [2(a)].

These two quantities (T, and Ty, /2) are, in general,
different, and the difference is far from artificial. A
separatrix between the two attractors {x ==1}, not coin-
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FIG. 1. Comparison between the mean first-passage times
obtained with the different algorithms vs 7, noise correlation
time. Squares, Ty, from Refs. [3] and [4]; diamond, Ty, from
Ref. [1]; +, Ty, from Refs. [3] and [4]; X, T, from Ref. [1].

cident with {x =0, y=any}, does survive in the limit
D —0 with 7 being finite. Ramirez-Piscina et al. [5] have
also clearly shown that the relation T, = Ty, /2 is valid
only in the limit 7 << 1 (white noise); it is intuitive that in
the opposite limit of strongly colored noise (7>>1)
T,p=Tpo- The transition between these two opposite
limits is shown in Fig. 1. When the relevant results of the
two methods are compared, the apparent discrepancy
completely vanishes. Parenthetically, it is probably
worth mentioning that the good agreement of the numer-
ical results of Ref. [1] with the theoretical predictions of
Masoliver, West, and Lindenberg [6] is coincidental; as a
matter of fact, the theoretical approaches mentioned in
Ref. [1] only make sense in the limit of vanishing intensi-
ty of the noise [2(b)], whereas D =0.1 is already far too
large (the qualitative, as opposed to quantitative, behavior
of the activation energy as function of 7 is completely
different from the theoretical one). Moreover, the
analysis of Fox [7] has shown that the theoretical results
of Ref. [6] are not correct, since they have been obtained
through a wrong expansion of the relevant integral equa-
tion.

Finally, as far as the error on the mean first-passage
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FIG. 2. Comparison between mean-first passage time distri-
bution of T, (histogram) and best-fitting exponential (solid
line) for D=0.1 and 7=1.0.
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time is concerned, convergence to the “real” value can
only be slow: In fact, the first-passage time-probability
distribution seems to be described with a good approxi-
mation by an exponential function (not to mention
theoretical evidence of this), for which the standard devi-
ation coincides with the average. As such, the slow con-
vergence must be attributed to the intrinsic features of
the probability distribution, rather than to poor ergodici-
ty. Figure 2 shows that, indeed, the mean first-passage
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times distribution for T, varies as an exponential func-
tion. Furthermore, straightforward Monte Carlo simula-
tion of an exponential function distributed with the same
average and with an equal number of events, binned as
the distribution shown, yields virtually the same )(2 value
(unnormalized 2.982 for the real distribution, 2.978 for
the Monte Carlo simulation). It is difficult to understand
how one could design an algorithm to overcome this in-
trinsic limit imposed by the statistics.
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