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Comparison between the homogeneous-shear and the sliding-boundary methods
to produce shear flow
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Recently, Liem, Brown, and Clarke [Phys. Rev. A 45, 3706 (1992)] have compared the results
obtained from the homogeneous-shear and the sliding-boundary nonequilibrium molecular-dynamics
methods to generate shear flow. Here the comparison is carried out by using a kinetic theory
description.
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In a recent paper, Liem, Brown, and Clarke [1] have
computed the shear properties of a Lennard-Jones fluid
from two nonequilibrium molecular-dynamics methods:
the "homogeneous-shear" (HS) method and the "sliding-
boundary" (SB) method. In the HS method [2], the sys-
tem is sheared by applying Lees-Edwards periodic bound-
ary conditions. At a macroscopic level, the velocity pro-
file is linear, i.e. , j =— Bu~/By = const, while the den-
sity p and temperature T are homogeneous. In order
to achieve a steady state, an (artificial) thermostat force
is introduced. On the other hand, in the SB method,
the steady shear flow state is generated by more realistic
boundary conditions [1]. As a consequence, the density

p(y), the temperature T(y), and the shear rate j(y) are
nonhomogeneous.

In a shear flow problem, the relevant transport proper-
ties are described by the shear viscosity rl and the normal
stresses P, n = x, y, z. In the hydrodynamic regime

[3], these quantities are expected to depend on space and
time only through their dependence on the hydrodynamic
fields, i.e. , l(Pr, T;j), P ~(P, T;j). The question arises
as to whether the above functions are independent of the
method followed to produce the shear. The investiga-
tion of this point in the cases of the HS and SB methods
is the main objective of Ref. [1]. The authors conclude
that, for the range of shear rates considered, the pressure
tensor components are largely insensitive to the simula-
tion method. As Liem, Brown, and Clarke point out, the
above comparison is constrained to shear rates for which
normal pressure differences (i.e. , viscometric effects) are
not significant. Larger shear rates in the SB method are
dificult to obtain due to the disruption caused to the
boundaries by the viscous heat generated in the fluid,
that cannot be dissipated by thermal conduction [1].

The aim of this Brief Report is to shed light on the
above problem by using a dilute fluid as a prototype sys-
tem. We shall adopt the well-known BGK kinetic model

[4], whose exact solutions for the HS problem [5—7] and
the SB [8, 9] problem have been obtained in the past few

years. In both cases, the transport properties can be cast

into the form

n(p, T;i) = no(p T)@(a)

(p T''Y) = po(p T)C' (a) (2)

where rlo(p, T) = rl(p, T; 0) is the Navier-Stokes shear
viscosity coefficient and po(p, T) —= s Tr P(p, T; 0). Non-
Newtonian effects are contained in 4'(a) and C (a),
where a(p, T; j) = j/((p, T), ((p, T) = pp(p, T)/rip(p, T)
being an effective collision frequency. The reduced shear
rate a represents a uniformity parameter, namely, the ra-
tio between a mean free path and a characteristic hydro-
dynamic length. In the HS case, the functions appearing
in Eqs. (1) and (2) are given by [7]

Hs 1+ 3A

1+1 (4)

C,HS( ) C,HS(

~"(.) = Fo(/3),

C'* (&) =1+4&[F(&)++~(&)]

C; (.) =1-2P[+ (P)+2&.(W],

C, (a) = 1 —2PFi (P),

(7)

(8)

where A(a) = s sinh [s cosh (1+9a2)]. It is worth men-

tioning that Eqs. (3)—(5) are also exactly verified in the
context of the Boltzmann equation for Maxwell molecules

[3].
In the SB case, the exact solution to the BGK equation

yields [8, 9]
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FIG. 1. Shear rate dependence of the ratio of shear vis-
cosities rl" /rP

PIG. 2. Shear rate dependence of the ratio of nor-
mal stresses: P /P (—), P„„/P„„(- — -), and
PHS/Psa ( )

where P(a) is defined through the implicit equation

3+ 2'(P)
+ (p)

In Eqs. (6)—(10), I"r(p)—:(&&p) "Fp(p), with

Fo(P) = — Ch t e '/ Ko(2t / /P / )
p o

Ko being the zeroth-order modified Bessel function.
It is evident from Eqs. (3)—(5) and Eqs. (6)—(10) that

both methods lead to difFerent results beyond the Navier-
Stokes limit. For instance, the super-Burnett contribu-
tion to the shear viscosity is 2.7 times greater in the SB
case than in the HS case. Further, at small shear rates,
the first viscometric function [(C'u —C z)/a ] and the sec-
ond viscometric function [(C, —O„)/az] take the values
—is4 and s4, respectively, in the SB case, whereas they
take the values —2 and 0 in the HS case. For large shear
rates, the pressure tensor components exhibit different
asymptotic behaviors in both methods. In particular,

a 4/s, while mls~ a 2 log a. In order to perform
a more detailed comparison, we plot the ratios rl s/rls
and PHs/Ps) as functions of the reduced shear rate a.
Figure 1 shows that the shear thinning eÃect is more no-
ticeable in the SB case than in the HS case. In Fig. 2,
we observe that the difFerences between both methods
are less important for the xx and yy pressure compo-
nents than for the zz component and the shear viscosity.
In particular, the ratio for the xx component is always
close to 1. This is basically due to the fact that, as the
shear rate increases, the dominant contribution to the
trace of the pressure tensor is that of the xx component.

The origin of the discrepancies between the results ob-
tained from the Hs and the SB methods lies in the fact
that they lead to quite difFerent macroscopic states [10].

Thus, while the heat flux is absent in the 6rst case, there
exists heat transport across the system in the second
case, even in the Navier-Stokes regime. Regarding the
shear viscosity, it must be emphasized that gs contains
contributions associated to temperature gradients and to
second- and higher-order derivatives of the flow veloc-
ity. On the other hand, all those contributions disappear
in rlHs. It must be also pointed out that the transport
properties in the HS problem with and without thermo-
stat forces are difFerent [6, 11]. However, these differences
are less important than the ones reported here.

Finally, it must be noticed that conclusions supported
by a kinetic theory description should not be extended
to dense fluids without caution. Nevertheless, one ex-
pects the essential qualitative features of the comparison
between the HS and the SB methods to be rather in-
sensitive to the range of densities considered. As Liem,
Brown, and Clarke [1] have pointed out, the values of
shear rates considered in Ref. [1] are not large enough to
observe discrepancies between the HS and the SB meth-
ods. By extrapolating our definition of efFective collision
frequency ( = po/rlo to dense fluids [5], we can estimate
that the range of shear rates in Ref. [1] correspond to
a 0.03. For this value, our kinetic theory description
predicts that rl s/rlsB = 1.002 and non-Newtonian ef-
fects are negligible. We think that careful nonequilibrium
computer simulations as those reported in Ref. [1] should
be carried out for much larger shear rates in order to ob-
serve appreciable differences between several methods to
produce shear flow.
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