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Phase transitions in the problem of the decay of a metastable state
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The decay of a metastable state is studied by means of a functional-integral approach. Depending on
the shape of the potential barrier, the crossover from thermal activation to thermally assisted quantum
tunneling is either a first- or second-order phase transition on temperature. Below the crossover temper-
ature, first-order transitions between different tunneling regimes are possible. The general features of
these transitions, and the possibilities to observe them, are discussed.
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Consider a particle of mass M in a rnetastable state
formed by the potential V(q), Fig. 1. The probability of
the escape is assumed to be exponentially small, provid-
ing that the particle is in a thermodynamic equilibrium
with the environment. At high temperature, the decay of
the metastable state is determined by processes of
thermal activation, which are governed by the Boltzmann
factor, exp( Eo/k~ T—). At T =0 the particle can escape
from the rnetastable state due to quantum tunneling, the
rate of which goes as exp( —8), 8 being the WKB ex-
ponent. The crossover from the thermal to the quantum
regime has been intensively studied in the last decade.
Goldanskii [1] long ago suggested that the crossover
occurs at kg Tp =A/7p where 'Tp is the period of small os-
cillations near the bottom of the inversed potential, Fig.
1. Based upon the functional-integral approach of
Langer [2] and Callan and Coleman [3], Afileck [4] and
Larkin and Ovchinnikov [5] demonstrated that a second-
order phase transition from the thermal to the quantum
regime takes place at T = Tp. In terms of the escape rate,
I ( T), this means that, in the steepest-descent approxima-
tion, I (T) and its first derivative I"(T) are continuous,

while the second derivative, I"'(T), is discontinuous at
T = To. Quantum fiuctuations, of course, smear this
transition in a narrow temperature region near Tp. In-
teraction between the particle and the dissipative envi-
ronment renorrnalizes Tp but does not affect the general
features of the transition. A rigorous solution to that
problem was given by Grabert and Weiss [6], Larkin and
Ovchinnikov [7], Zwerger [8], and Riseborough, Hanggi,
and Freidkin [9]. This allowed Clarke et al. [10] to per-
form a detailed comparison between the theory and ex-
periment on macroscopic quantum tunneling [11] in
Josephson junctions. Other areas where similar phenorn-
ena may occur include tunneling of magnetization in
solids, low-temperature diffusion of defects, chemical re-
actions, and nuclear physics. In this Brief Report, I show
that the crossover from the thermal to the quantum re-
gime can quite generally be the first-order transition [12]
that takes place at T, & Tp. Moreover, first-order transi-
tions are possible between different thermally assisted
tunneling regimes below T, .

The statistical average of the transition probability
over a time t = tf t' is

(Pf ~exp ——J dt % ~g, ) exp( E;/ktt T)—
p="

g exp( E; /k~ T)—

where & is the Hamiltonian of the system, E, are energy
levels of the particle, and P; and gf are the wave func-
tions of the initial and final states. According to Feyn-
man [13],this is equivalent [14] to the computation of the
functional integral

D qr exp ~ —— d~ q~1
(2)

where X[q(r)] is the imaginary-time (r=it) classical La-
grangian of the system, the functional integration is per-

formed over q(r) trajectories which are periodic in r with
the period 7p A/k&T the integral in the exponent is
taken over the period ~ .

Consider the imaginary-time action

S(T)=f dry= f dr[ —,'Mq'+ V(q)] (3)

with V(q) of the shape shown in Fig. 1, and q =dq/dr.
According to (2), the decay rate in a semiclassical limit
(S))fi), with an exponential accuracy, is
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v(q) of Eq. (4).
With the help of Eq. (6), Sr can be written as

q~(E)
Sr =2(2M)' f dq [ V (q) E—]' +Er~(E),

q& (E)

where
q&(E)

r (E)=(2M)'~ f dq[V(q) E]—
qI (E)

From Eqs. (7), (9), and (10) one obtains

(9)

(10)

g

—E

q„

I

—Er)

FIG. 1. The shape of the potential V(q) (solid line) and the
shape of the inverted potential —V(q) (dashed line).

I ~ exp( —S;„/A'), (4)

where S;„(T)is evaluated along the q(r) trajectory with

r~ =Silk~ T that minimizes Eq. (3) [15]. Such trajectories
satisfy

dvMq=

q (r) =qo+ A (E)sin(coos) (12)

dSO dSz
=ED, =E)0.

Tp 7 p

This allows one to analyze the temperature dependence of
S;„based upon the dependence of the thermon period
r =A/ksT on energy E. Note that dE/dT (which is
proportional to the second derivative of the action) can
be interpreted as the specific heat of the system. I will
study here nonexotic potentials having a regular parabol-
ic shape near the top (q =qo) and the bottom (q =0).
Even in this case, ~p may have a nontrivial dependence
on E.

Let us start with a class of potentials for which ~ is
monotonically decreasing with E [Fig. 2(a)]. Two most
common representatives of this class are potentials
(
—

q +q ) and (
—

q +q ). This case has been studied in
great detail [4—9]. In the limit of E~EO, the thermon
reduces to small oscillations near the bottom of the in-
versed potential (Fig. 1),

Periodic, with ~ =A/k&T, solutions of this equation be-
long to two classes: a constant, q =qo, and q (r) satisfy-
ing

(a)

—,'Mq = V (q) E( )r. — (6)

The first solution, q =qo, corresponds to the particle in
rest at the bottom of the inversed potential (Fig. 1). The
second solution, q(r) given by Eq. (6), corresponds to the
periodic motion of the particle in the inversed potential
between q&(E) and q2(E) (Fig. 1), with E determined by
the condition that the period of the motion equals
A'Ik~T. I will call this trajectory the "thermon. " At
T =0, that is, ~ = ao, E =0, the thermon becomes a reg-
ular instanton of Eq. (6) which determines the WKB ex-
ponent of quantum tunneling at zero temperature.

For q =qo one obtains from Eq. (3)

70

E0

S ':So:V(qo )rp =A'Eo Iks T (7)

and the escape rate

I o ~ exp( —So /fi) =exp( Eo lks T), —

that is, the Boltzmann formula representing a pure
thermal activation. The thermodynamic action So
should be compared with the thermon action, Sz-. Since
both So and Sz- are assumed to be large compared to A,

the smallest of the two determines the actual escape rate

TO T

FIG. 2. (a) Monotonic dependence of ~~ on E. (b) Second-
order transition from the thermal to the quantum regime. The
solid line corresponds to the thermon action, S&( T). The
dashed line corresponds to the thermodynamic action, So(T).
Arrows show the actual dependence of S;„(T),as temperature
is lowered.
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k~ To =A/ro=iricoo/2n. . (13)

Substituting Eq. (12) into Eq. (3) one can easily see that
Sr &So at T & To for r (E) given by Fig. 2(a). Because
A (Eo)=0, the thermon action coincides with the ther-
modynamic action, Sr( To ) =So, at T =To. Equation
(11) also gives

'

dSz-

dT + +Q

I t

'

dSO

dT + +p
(14)

This provides a smooth second-order transition from the
thermal regime at T & To to thermally assisted tunneling
at T & To, as is shown in Fig. 2(b).

Our next example (Fig. 3) represents a class of poten-
tials which change slowly near the top and the bottom,
but are rather steep in the middle. Correspondingly,
7p(E) may have a minimum at some Ei & Eo, Fig. 3(a).
The dependence of Sr(T) for such a potential follows
from Eq. (11) and is shown in Fig. 3(b). As one lowers
the temperature, the thermon action (solid line) becomes
lower than the thermodynamic action (dashed line) at
some T = T, satisfying To & T & T, , where

k0 T, =A'/~~ (E, ). The first derivative of S;„(T) is

with A (Eo)=0. This limit corresponds to the approach-
ing crossover temperature,

discontinuous at T„providing that the crossover from
the thermal to the quantum regime is the first-order tran-
sition on temperature.

Our final example (Fig. 4) represents potentials for
which r~(E) has a form shown in Fig. 4(a). As tempera-
ture is lowered, the second-order transition from the
thermal to the quantum regime at T = To is followed by
the first-order transition between different quantum re-
gimes at T =T, .

The above consideration shows that the "phase dia-
gram" for the decay of a metastable state can be as com-
plex as the behavior of r~(E). The interesting feature is
that the transition from the thermal to the quantum re-
gime may quite generally occur as the first-order transi-
tion at T, & To. The vicinity of the transition point, of
course, cannot be investigated by the steepest-descent ap-
proximation employed here. It requires a careful analysis
of quantum Auctuations in the spirit of Ref. [6]. Another
potentially important effect, which has been left out of
the picture, is the interaction of the tunneling variable
with the dissipative environment. The effects will be
studied elsewhere. It seems unlikely, however, that they
can change our main conclusion on the possibility of
smooth and sharp thermal-to-quantum transitions, de-
pending on the shape of the potential barrier.

To date, the second-order transition from thermal ac-
tivation to macroscopic quantum tunneling (MQT) has
been observed clearly in Josephson junctions [10].
Another area for probing theoretical predictions on

70
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FIG. 3. (a) Nonmonotonic dependence of v~ on E. (b) First-

order transition from the thermal to the quantum regime. The
solid line corresponds to the thermon action, S&(T). The
dashed line corresponds to the thermodynamic action, Sp. Ar-
rows show the actual dependence of S;„(T),as temperature is
lowered.

FIG. 4. (a) Another example of nonmonotonic dependence of
r~ on E. (b) As temperature is lowered, the second-order transi-
tion from the thermal to the quantum regime at T= Tp is fol-
lowed by the first-order transition between di8'erent quantum
regimes at T = T„k&T„=fi/~„( n =0, 1,2).
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MQT, which has recently emerged, is quantum decay of
rnetastable magnetic states in solids [15—19]. Dissipation
turns out to be very weak for magnetic tunneling. A
large variety and complexity of energy barriers in mag-
netic systems make them promising candidates for the

observation of all kinds of thermal-to-quantum transi-
tions discussed in this Brief Report.
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