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Gap solitons in diatomic lattices
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We consider a nonlinear diatomic lattice of the Klein-Gordon type composed of particles with two
different masses. The linear spectrum of this model exhibits a gap, which is proportional to the
mass difference, in addition to the natural gap stipulated by a nonlinear substrate potential. We
analyze the coupled nonlinear excitations of such a diatomic chain which have a similar origin as
the well-known gap solitons appearing in nonlinear (e.g. , optical) systems with a spatial periodicity.
We also describe dark-profile localized structures with a frequency lying below the gap. In the limit
when the gap disappears, i.e. , for the case of a monoatomic chain, the gap solitons do not exist
but instead there exist localized structures of a distinct type created by the nonlinearity-induced
symmetry breaking between two equivalent eigenmodes of the lattice, the so-called self-supporting

gap solitons.

PACS number(s): 03.40.Kf, 63.50.+x, 66.90.+r, 42.25.—p

I. INTRODUCTION

In recent years nonlinear wave propagation through
inhomogeneous and disordered media has attracted in-
creasing attention (see, e.g. , Refs. [1, 2]). One of the
simplest and physically relevant examples of an inhomo-
geneous medium is that with a periodic change of its pa-
rameters. Adding spatial periodicity to integrable non-
linear dynamics leads to a variety of effects. Competi-
tion of the length scales introduced by the periodicity
and by nonlinearity is one of the important examples of
these effects: If these length scales are very different from
each other, the perturbed system can support solitonlike
or breatherlike excitations, and their motion can be de-
scribed by a collective-coordinate approach [3, 4]; but if
the length scales are comparable, localized excitations
of a standard form break up or dissipate into radiation
even for relatively small perturbations [3]. However, in
the later case the perturbed system may support non-
linear excitations of a distinct type (not existing without
periodicity), the so-called gap solitons, discovered in 1987
by Chen and Mills [5]. The gap solitons may appear in a
nonlinear (continuous) periodic medium as localized ex-
citations when the nonlinear frequency is shifted into the
linear-spectrum gap induced by periodicity of the system
parameters, e.g. , by a periodic change of the linear refrac-
tive index (see, e.g. , Refs. [6, 7] and references therein).

On the other hand, models describing microscopic phe-
nomena in solid-state physics are inherently discrete,
with the lattice spacing between the atomic (or molecu-
lar) sites being a fundamental physical parameter of the
system. For these systems, an accurate microscopic de-
scription involves a set of coupled ordinary differential
equations and discreteness effects may drastically mod-
ify the nonlinear dynamics showing properties of mod-
ulational instability [8] as well as a rich set of localized

structures; some of them have been recently observed ex-
perimentally [9] and described analytically [10].

From the viewpoint of these two physically important
phenomena, a nonlinear diatomic chain is an excellent
example of a nonlinear system where localized structures
may appear as a result of interplay between spatial peri-
odicity and discreteness. Moreover, diatomic lattices may
be considered as a step to understanding transport prop-
erties of nonlinear disordered systems by comparing them
with quasi-periodic (e.g. , Fibbonachi-like) lattices, and
some studies in this direction have been already started
[11].

The study of nonlinear diatomic lattices has been
mostly directed towards understanding the dynamics of
solitonlike excitations of acoustic and optical branches
(see, e.g. , Refs. [12—21]) as well as their thermal conduc-
tivity properties [ll], [22], and [23]. However, in most
of these studies, soliton excitations were considered for
acoustic and optical modes separately, e.g. , for the di-

atomic lattice with a nonlinear interatomic interaction,
there are Korteweg —de Vries (KdV) —type solitons for the
acoustic region of the spectrum. Modulated waves de-
scribed by a nonlinear Schrodinger (NLS) equation, i.e. ,

envelope solitons, exist in the acoustic and optical regions
of the linear wave spectrum (see, e.g. , Refs. [13, 17]). A
convenient way of studying the coupled long-wave non-

linear excitations in diatomic lattices with a nonlinear in-

terparticle interaction was proposed by Yajima and Sat-
suma [12], who discussed the soliton solutions in terms
of normal mode coordinates.

In the present paper we consider nonlinear coupled
modes in diatomic Klein-Gordon-type lattices analyzing
soliton solutions in the vicinity of the gap of the linear
spectrum. We find a set of new soliton excitations of di-

atomic lattices, which have the similar origin as the gap
solitons in nonlinear optical media with a periodic change
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of the refractive index. We point out that the main types
of nonlinear coupled modes analyzed in the present pa-
per are not a specific property of the simplified model
considered here, but they may be naturally expected in
other diatomic lattices, e.g. , in a diatomic lattice with a
nonlinear interparticle interaction [21].

The paper is organized as follows. In Sec. II we present
our model which is, in fact, a diatomic Klein-Gordon
chain. In Sec. III we discuss nonlinear coupled modes in
the diatomic chain existing with the frequencies lying in
the vicinity of the gap of the linear spectrum, and we
describe new soliton solutions. An interesting limit of a
monoatomic chain is discussed in Sec. IV where the gap
solitons transform into kink-profile localized structures
Section V concludes the paper.

II. MODEL

The physical model we consider in the present paper
is the discrete Klein-Gordon-type diatomic chain, i e , a. .
one-dimensional chain made of particles (atoms) with
two different masses, m and M (rn ( M), harmoni-
cally coupled with their nearest neighbors, and subjected
into a nonlinear symmetric on-site potential. The sim-
ilar model, but for a piecewise quadratic substrate, has
been analyzed in Ref. [15). However, as it follows from
the subsequent analysis, the main properties of the soli-
ton solutions obtained are mostly related to the specific
structure of the linear spectrum of the diatomic lattice,
and the choice of the nonlinear model (which was made
to simplify the final results) is not a principal point of
our analysis.

Denoting by u„(t) the displacement of atom n, its
equation of motion may be written in the form

d Q~
2

3=+ K(2u~ —un+i —un —i) + nu„—pu„= 0,dt~

where K is the coupling constant, and n and p are pa
rameters of linear and nonlinear terms. We assume the
chain consists of atoms of two masses, so that m„= m
for n = 2j and rn„= M (M ) m) for n = 2j + 1. To
simplify Eq. (1), it is convenient to write the equations of
motion for atoms with odd and even numbers separately,
introducing two wave fields,

u„=v„ for n = 2j,
(2)

u„=m„ for n = 2j+1,
and to write the equations as

d v~ 3=m 2 + K(2v„—tv„+q —w„q) + nv„—Pv„= 0,dt2

d tU~
2

M + K(2m„—v„q —v„+q) + nut„—Pm„= 0.3=
dt2

The linear properties of such a diatomic chain are well
known. For the model (1) the dispersion relation for
linear waves has two different branches,

(n + 2K) (rn + M) + g(n + 2K) (rn —M) + 16K mM cos (qa)

n+ 2K 2 o'+ 2K
4)y =

M m
Cdg = (6)

In principle, both these modes are optical ones, because
in the linear spectrum there is also a natural gap ~0 so
that for small wave numbers these two modes are char-
acterized by the two (optical) frequencies, cup and u~,
which in the limit (M —rn) (( (M + m) may be pre-
sented in the form,

n ( n")o=~ l&,6K

(n + 4K l e (n + 4K)
m,

where &u and q are the wave frequency and wave num-
ber of linear waves, the minus corresponds to the low-
frequency ("acoustic") mode, and the plus corresponds
to the high-frequency ("optical" ) mode. These modes
are separated by the gap hu = uz —u~ ) 0, where

where

rn, = 2'(rn+ M), e = (m —M)
C& 1.

m

However, we will use the notation "acoustic" for the lower
branch assuming, for example, the possible limit case n =
0, when the lower branch is indeed acoustic.

The most interesting region of the linear spectrum is
the vicinity of the maximum value of the wave number
q, i.e., the region lq

—vr/2a[ (( 1, where two branches
with the opposite signs of the dispersion are separated
by the gap. The lower branch ends at the point w~ (see
Fig. 1) defined in Eq. (6), and in the vicinity of this point
the heavy particles oscillate with the higher amplitudes
than the light ones, and at q = 7r/2a the light particles
are at rest and the heavy ones oscillate with the oppo-
site phases. The upper branch ends at the point ass [see
Fig. 1 and Eq. (6)j and in this case the heavy particles
practically do not oscillate while the light particles oscil-
late with the opposite phases. In the limit M = m the
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v2r, = (—1)"[v(2k, t)e' ' + v*(2k, t)e ' '~],

vr/2a q

FIG. 1. Dispersion curves of a linear diatomic chain.
"Acoustic" (the lower curve) and "optical" (the upper curve)
branches are separated by the gap A~ = uz —~&, ~z, 2 being
defined in Eq. (6).

frequencies ui and u2 coincide, and the gap in the linear
spectrum disappears.

III. COUPLED MODES IN A DIATOMIC
LATTICE

The existence of the gap in the linear spectrum of the
model (1) suggests making a comparison with the so-
called gap solitons which may exist in a nonlinear sys-
tem with a periodic modulation of its parameters. The
theory of gap solitons describes the interaction of two
linear branches (e.g. , lower and upper ones) which, due
to nonlinear coupling between the modes, allow localized
structures with the frequencies lying in the gap (see, e.g. ,

Refs. [6, 7]). Similar to that case, we will analyze soli-
ton excitations in the vicinity of the gap of the linear
spectrum, i.e. , for the wave numbers close to the limit
value q = 7r/2a In the l.inear limit, the motion of the
odd and even atoms is exactly decoupled at q = vr/2a.
The nonlinearity breaks the symmetry and one can look
at the problem as that of the coupling of two spatially
distinct modes. As will be seen below, the final coupled
excitation, however, does not have a simple limit for van-

ishing nonlinearity term. There is an analogy, however,
with localized or resonance modes in a harmonic chain
with an impurity. The gap is proportional to the mass
difference (M —m) [see Eqs. (5) and (6)], so that the
soliton properties (and existence of solitons themselves)
strongly depend on this parameter.

As has been mentioned in Sec. II, the lower and upper
branches of the linear spectrum end at the frequencies
~q and ~2, respectively. The frequency ~q corresponds
to such oscillations of the diatomic chain when the light
particles are at rest, and the heavy particles oscillate with
the opposite phases, while the frequency ~2 corresponds
to the opposite case: the heavy particles are at rest, and
the light ones oscillate with the opposite phases. This
structure of the upper and lower branches suggests look-
ing for solutions in the vicinity of the point q = 7r/2a,
making the following ansatz:

~2a~i = (—1)"[iv(2k + 1, t)e' "+ iv*(2k + 1, t)e ' "],
(io)

where wi2 ——(n + 2K)/M is the largest frequency of
the lower branch (the lower frequency of the gap). As-
suming that the functions v(2k, t) and ur(2k + 1, t) are
slowly varying in space and time, and making the so-
called "rotating-wave" approximation, i.e., keeping only
the terms proportional to the first harmonic, we may find
from Eqs. (3) and (4) the system of two-coupled equa-
tions,

immi —+ -mba v —aK —-Plvl v = 0, (11)
Ov Btv

2 Bz

i,M~i + aK ——,Plivl iv = 0,
Biv Bv

x (12)

where hu—:a2 —ui, and the variable 2: = 2ak is treated
as continuous one.

The system (11) and (12) describes gap solitons in the
diatomic lattice and in some sense it is similar to the sys-
tem of coupled NLS equations arising in the theory of gap
solitons in nonlinear (continuous) media with spatially
periodic parameters. However, there are a few important
differences, e.g. , the coupling between the two modes in
Eqs. (11) and (12) is due to the derivative terms but not
due to the cross-phase modulation and linear terms as it
is in optical models. It makes the final localized struc-
tures different, too.

Analyzing localized structures in the framework of the
system (11) and (12), we look for stationary solutions in
the form

(v, iv) oc (fi, fz)e '"', (13)

so that the stationary solutions are described by the sys-
tem of two ordinary difI'erential equations of the first or-
der,

dz
62f2+ Af2—, (14)

"f' =a,f, —Xf,s,
dZ

where

Ai = m(u)iB+ 2A~ ), A2 = M~iA, (16)

with the normalizations z = x/aK and A = 3P/2. Equa-
tions (14) and (15) describe the dynamics of a Hamil-
tonian system with one degree of freedom and the con-
served energy,

and the functions fi and f2 may be considered as the gen-

eralized coordinate and momentum, respectively. Equa-
tions (14) and (15) may be easily integrated with the
help of the auxiliary function g = (fi/f2) for which the
following equation is valid:
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d 2

= (b,2 + b, rg )2 + 4AE(1 + g4).
gdz)

(18)

Then the solutions for f1 and f2 may be found with the
help of the following relations:

1
f22 =

4 (b,2+ 61g2)
A 1+g4

+Q(+2 + +1g2)2 + 4AE(1 + g4) FIG. 3. The structure of the soliton exicitations corre-
sponding to the upper separatrix curve in Fig. 2.

f1 =gf2 ~ (20)

Different kinds of solutions, including localized ones,
are characterized by different values of the energy E, as
well as by the parameters A1 and 62. It is convenient
to analyze the solution structures on the phase plane

(f1, f2), where localized (soliton) solutions correspond to
separatrix curves. Let us fix the sign of the nonlinearity
parameter, say A & 0. Then, the existence of localized
solutions depends on the values of the frequency A. An-
alyzing the critical points on the phase plane (f1, f2), we
naturally distinguish a few important cases.

When A & b,u /2u1, —the parameters b,1 and 62 are
negative and the only critical point on the phase plane is
the point f1 ——f2 = 0: Separatrix curves and nontrivial
localized solutions are absent. However, if

—(b,~ /2~1) & A & 0, (21)

the parameter b, 1 is positive, and the dynamical system
(14) and (15) has three critical points: a saddle point
at f1 ——f2 = 0, and two centers at the points f2 = 0,
f1 = +fo1, where fo1

——b.1/A (see Fig. 2). The sep-
aratrix curve for this case is shown in Fig. 2 and the
corresponding shapes of the envelope functions f1 and
f2 are depicted in Fig. 3. The condition (21) has the
simple physical sense. Indeed, let us introduce the fre-
quency of the localized solution, u' = ~1 —A, according
to Eqs. (9), (10), and (13). Then, assuming the frequency
A small (the approximation of slowly varying envelopes),
the condition (21) may be rewritten in the form

g = p cothy,
1

y —= z v'&11&21

which yields the soliton solutions for the f1 and f2 en-
velopes,

2(+2 + +lg') 2l&2l&1»»' y
A(1+g ) A(621sinh y+ 6 cosh y)

(24)

where we have used the approximate relation u'2 = u12—
2co1A. So, the localized structures found in this case may
be called gap solitons and they naturally appear when
the nonlinear frequency lies within the gap of the linear
spectrum hu = a)2 —u1. In this case, the envelope of
the light atom vibrations has the standard soliton shape.
This result is natural because this type of nonlinearity
(for P & 0) leads to a wave localization for the positive
dispersion, i.e., provided d2to/dq2 & 0, but for q = z/2a
this condition is valid only for the light-atom vibrations.
In the same time, the heavy-atom oscillations cannot be
localized themselves, but, as we have shown, they may be
localized due to interaction with the upper branch, and
as a consequence, the shape of these oscillations differs
from the standard soliton form.

To find exact solutions corresponding to the gap soli-
tons we note that the separatrix curves on the phase
plane (Fig. 2) correspond to E = 0, and Eq. (18) may be
easily integrated to give

u)z Cu (22)
2b, 2,61cosh' y

A(b, 21sinh y+ b,22cosh y)
(25)

As follows from Eqs. (24) and (25) that the function
f1(y) is symmetric and its maximum value is (f1)
/261/A, but the function f2(y) is asymmetric, with the
maximum value (f2)~~,

FIG. 2. The separatrix curve of the dynamical system (14)
and (15) for b.1 & 0 and b.2 & 0.

(f~)' = —„())&l+&i—l&al)

Localized soliton solutions exist also in the case 0 & 0,
when both coefficients in Eqs. (14) and (15), i.e., b, 1
and 62, are positive. For this case the wave frequency
u' = u1 —A lies beloto the gap of the linear spectrum, and
completely localized solutions for both these modes are
naturally impossible to exist. In this case, each critical
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2 2 2fi =g f2 (28)

As follows from Eq.(28), the function f2 has a kink-type
shape, but the function fi is indeed localized with the
maximum value (fi)~~»

(fi)' =
A

(&i — && —&2).

The existence of the described kink-type solitons in a
diatomic lattice is not a surprising result. Indeed, for the
selected sign of the nonlinearity parameter, P ) 0, the
upper part of the acoustic branch (for the heavy parti-
cles) has the negative dispersion, d ~/dq~ ( 0, so that
wave localization is not possible for this mode and in-
stead dark solitons of the kink-type shape appear. The
dark solitons of the lower branch are accompanied by a
localized structure of the light particles for which the dis-
persion is positive and localization is naturally expected.

FIG. 4. The separatrix curves of the dynamical system
(14) and (15) for b, i, E2 ) 0. IV. COUPLED MODES IN A MONATOMIC

LATTICE

v'2&i&z

/62i —622 sinh(+24 i 3gz)
(26)

The soliton profiles may be found with the help of the
relations,

1
f2 = A(1, (&2+ &ig')

A 1+g4

—g 2 g 2+ ~
—L~ g ) 27

FIG. 5. Dark-pro6le excitations in the diatomic chain,
corresponding to the upper separatrix between the saddle
points (—fo, fo) in Fig. 4.

point in Fig. 2 splits into three points making the phase
plane (fi, fz) more complicated (see Fig. 4). In partic-
ular, there are separatrix curves of two different types.
One of them is similar to the case considered above, but
the oscillations of the light atoms do not vanish at the
infinities because fi tends to +fci, where foi ——Ai/A.
The other type of the separatrix curves corresponds to a
kink-type solution for the heavy particles and a localized
excitation of the light ones (see Fig. 5). For all these
cases the shapes of the soliton excitations may be found
explicitly in the way presented above. For example, for
the kink-type solitons the energy E may be calculated
using the asymptotics: f& -+ 0 f2 ~ 6fez, faz = 62/A,
which yields E = —6,z2/4A, and the solution of Eq. (18)
takes the form

In the previous section we have described a set of soli-
ton excitations which may exist in the vicinity of the gap
of the linear spectrum, the gap being proportional to the
mass difference. When the soliton frequency lies outside
the gap (e.g. , below if P ) 0), the localization is impossi-
ble, and the nonlinear soliton wave is just a kink-profile
excitation. In the limit of a monoatomic chain the linear
gap disappears and gap solitons do not exist. However,
interesting localized structures are also possible in this
case and they may be considered as an unusual limit of
the localized modes existing for the diatomic lattice.

Let us consider a monoatomic Klein-Gordon chain, i.e. ,

just the model (1) at rn„= rn for all n The .linear
spectrum of this chain,

2 2 ~ 2 ~ 2+ sin
2

(29)

Ov BtU
vl v = 0,

Ot Ox
(30)

has no gap and it is limited by the cutoff frequency
urz, „=u02+ 4K/rn due to discreteness. In spite of the
point that q = vr/2a is not the end point of the spectrum,
it is still the most interesting one. In any discrete lattice
there are two equivalent modes of such a type: all even
particles are at rest and the odd ones oscillate with the
opposite phases at the frequency ui2 = (n+ 2K)/m, or,
vice versa, all odd particles are at rest but the even ones
oscillate with the opposite phases at the same frequency.
Then, the interesting problem is: Can nonlinearity itself
induce a gap in the cw spectrum and what is the physical
consequence of this eBect?

To answer this question, we will introduce again the
variables v„and m„ for the displacements of atoms at
diferent sites, to write the equations of motion for the
odd and even numbers separately. These equations are
Eqs. (3) and (4) at m = M. Looking again for solutions
in the form (9) and (10), we finally obtain the system of
two-coupled nonlinear equations,
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imu)~ + aK ——,Pltol to = o,
818 l9v

t x 2 (31)

which are Eqs. (11) and (12) at m = M. Making the
same procedure as before, we find for the stationary so-
lutions (13) the following system of two ordinary differ-
ential equations [cf. Eqs. (14) and (15)]:

dz
= —Efz+ Afz, (32)

g(z) = exp(+~2hz), (34)

b,e+~z+'[2 cosh(v 2hz) + ~2]
2A cosh(2~26, z)

y, = gy, . (35)

The solutions (34) and (35), but for negative b, , exist
also for defocusing nonlinearity when A ( 0.

The results (34) and (35), together with (13), (9) and

(10), give the shapes of the localized structures in the dis-
crete nonlinear lattice. Because all combinations of signs
are possible in Eq.(35), there are four solutions of this
type. Let us fix the sign in Eq. (34), say plus, to analyze
the structures of the odd- and even-particle oscillations.
When z —+ +oo, the function g(z) tends to +co and the
amplitude of the even-particle oscillations fq goes to its
limit value, fo = gb/A. At the same time the ampli-
tude of the odd-particle oscillations vanishes (see Fig. 7).
However, when z ~ —oo, the function g(z) tends to zero,

FIG. 6. The separatrix curves of the dynamical system
(32) and (33) for b ) 0.

= Afg —Af, ,z

where b, = nuuqA and su~ = u2 = (n+ 2K)/m In s.pite
of the fact that the dynamical system (32) and (33) is
similar to Eqs. (14) and (15), the structure of the sepa-
ratrix curves on the phase plane (f&, f2) drastically dif-
fers from the cases considered above (see Fig. 6). On the
phase plane (fq, fz) soliton solutions correspond to the
separatrix curves connecting a pair of the neighboring
saddle points (0, fp), (0, —fp), (fo, 0), or (—fo, 0), where

fo ——6/A. Calculating the value of E (at Aq ——A2 = 6)
for these separatrix solutions, E = —6 /4A, we easily in-
tegrate Eq. (18) at 6q = Az ——b. and find the soliton
solutions,

~ ~ ~

FIG. 7. The odd and even components for the soliton so-
lutions (35) (a) and the diagrammatic representation of the
whole localized structure in a monoatomic chain (b).

and the asymptotic behavior of the even and odd compo-
nents is just reverse: f& ~ 0 and f2 ~ fp Theref. ore, the
whole localized structure represents two kinks in the odd
and even oscillating modes which are composed to have
the opposite polarities, so that each of them cannot be
localized in two directions. This is the direct consequence
of the nonlinearity-induced gap in the cw spectrum [10),
the gap disappearing in the linear limit. In some sense,
these structures can be considered as an unusual limit
of the soliton excitations in the diatomic nonlinear chain
discussed above.

It is important to note that the localized structures
described in the present section have been recently ob-
served experimentally as "noncutoff kinks" in a damped
and parametrically driven experimental lattice of coupled
pendulums and numerically in a simplified model [9]. The
authors have observed also the standard cutoff kinks de-
scribed as fundamental dark solitons by a NLS equation,
and domain walls which connect standing regions of dif-
ferent wave numbers. A parametric drive used in the
study allows us to compensate the dissipation-induced
decay of the structures supporting steady-state regimes
which, in the case of the cutoff kinks, may be found an-
alytically for a simplified perturbed model [9]. The ob-
servations of the localized structures in an actual lattice,
together with the analytical treatment showing a natural
origin of these modes in nonlinear discrete modes, indi-
cate that these structures are general phenomena which
can occur in many other lattice systems.

At last, it is interesting to compare the localized struc-
tures described in this section with the gap solitons dis-
cussed above. As we have seen, the gap solitons may
exist in a diatomic nonlinear lattice as completely local-
ized excitations when the nonlinear frequency lies within
the gap of the linear spectrum. From the viewpoint of
the theory of gap solitons, the nonlinear localized struc-
tures described here may be called self supporting gap-
solitons. Indeed, the linear spectrum has no gap, but the
latter may appear due to nonlinearity. Thus, one part of
the particles (e.g. , at the even sites) of the chain creates
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asymptotically a periodic potential for the other part of
the particles (e.g. , at the odd sites), and vice versa.

V. CONCLUSIONS

In the framework of a diatomic Klein-Gordon model,
we have analyzed soliton solutions with the frequencies
lying in the vicinity of the gap of the linear spectrum.
We have shown analytically that such a diatomic chain
may support the so-called gap solitons provided the soli-
ton frequency lies within the gap. The gap solitons de-
scribe two-coupled and completely localized modes corre-
sponding to heavy- and light-particle oscillations. If the
frequency lies below the gap ( e.g. , for the "soft" nonlin-
earity considered in the present paper), at least one of
the modes becomes delocalized and, in fact, it is a dark-
soliton mode. We have derived a system of two NLS
equations coupled through derivatives of the wave-field
components, which describes the localized structures in
the vicinity of the frequency gap, and this system differs
from the standard system of two NLS equations (coupled
through linear and cross-phase modulation terms) known
in the theory of gap solitons. We have also considered
the limit of a monoatomic chain when the gap in the lin-

ear spectrum disappears. However, such a monoatomic
chain may support localized structures of a new type ap-
pearing as a result of the nonlinearity-induced symmetry
breaking between two equivalent eigenmodes of the lat-
tice. Because there is no gap in the linear spectrum, each
mode of this nonlinear structure is localized only in one
direction.

We believe that the existence of different localized
structures described in the present paper does not de-
pend drastically on either the type of the model selected
or the type of nonlinearity (a self-focusing or defocusing
one). Therefore, such nonlinear localized modes are not
a specific property of the model and we may naturally
expect to find them in other types of diatomic lattices.
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