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The elastic deformation and adhesion of two convex bodies that interact via surface forces of finite
range are calculated self-consistently. Hertz theory is compared to the result of an exponential repul-
sion, and it is found to be valid in the limit of short-ranged forces and high loads. A Lennard-Jones law
is used to examine the classical theories of adhesion, which relate the surface energy to the pull-off force,
and their regime of validity is explored. Explicit expressions are given for the displacement prior to con-
tact, and for the jump instabilities due to elastic deformation, which occur for compliant bodies with
rapidly changing surface forces. The loading-unloading cycle is shown to be hysteretic for large
adhesions, and this is correlated with the onset of jumps. In these cases the pull-off force is demonstrat-
ed to depend upon the history of the sample, and it increases with increasing maximum applied loads.

PACS number(s): 03.40.Dz, 46.30.Pa, 62.20.Fe, 68.35.Md

I. INTRODUCTION

The phenomenon of deformation, whereby a solid body
changes shape in response to an applied load, may be de-
scribed by the classical continuum theory of elasticity.
On the other hand, the application of the load is neces-
sarily mediated by surface forces, which arise much more
directly from molecular interactions, as is particularly
evident when the surfaces adhere. Traditionally, surface
interactions have been included by simply invoking
infinitely short-ranged contact forces. This paper is con-
cerned with the effects of realistic surface forces of finite
range on the elastic deformation of solids, and also on the
relationship between their adhesion and surface energy.

Historically, the theory of elastic deformation began
with Hertz [1], who analyzed the shape of spherical glass
lenses under gravitational load. Under the assumption of
a flat, nonadhesive contact region, he derived the rela-
tionship between the contact radius, the applied load, and
the central displacement. Johnson, Kendall, and Roberts
(JKR) [2] modified the Hertz theory to account for
adhesion between the surfaces in the flattened contact re-
gion. In particular, they obtained an expression for the
force F, required to separate adhesive spheres of radius
2R,

F,=—3myR, (1)

where, in vacuo, ¥y >0 is twice the surface free energy per
unit area of the solid. Derjaguin, Muller, and Toporov
(DMT) [3] assumed that the Hertz profile was unmodified
by adhesion, and found for the pull-off force

F,=—-2myR . (2)

By utilizing the Hertz profile, they avoided the singulari-
ties at the boundary of the contact zone that are present
in JKR theory, and which are believed to make that
theory more applicable to soft solids with high surface
energies [4,5].

It is difficult to resolve experimentally the contradic-
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tion between the JKR and DMT expressions for the
pull-off force because accurate measurements are prob-
lematic, as are independent determinations of y. More
exact theoretical approaches are required, and so Muller,
Yushchenko, and Derjaguin [4] solved the elasticity equa-
tions numerically for the case of a simplified model of
real, adhesive surfaces, namely a Lennard-Jones interac-
tion. Earlier, Hughes, and White [6,7] had pointed out
that the classical assumption of a flat contact region was
incommensurate with the variation of stress across that
region, since for surface forces of finite range the latter
implies a variation in surface separation. These they
termed soft-contact problems, and they obtained results
for an exponentially repulsive force law [6,7]. A different
theoretical approach calculates the mutual deformation
of crystal lattices due to their interatomic potentials [8,9].
One prediction is that for small separations and attractive
forces the deformation can be unstable, and the surfaces
can jump into contact [8,9].

In this paper the consequences of finite-ranged surface
forces are considered, and relatively extensive results are
presented for two basic forces, an exponential repulsion
and a Lennard-Jones adhesion. Exact results are ob-
tained by the self-consistent numerical solution of the
elasticity equations. Support is provided for the con-
clusion of Hughes and White [6,7] that Hertz theory is
valid in the limit of short-ranged repulsive forces and
large applied loads. An explicit estimate of the relative
accuracy of the Hertz theory for a range of characteristic
parameter values is given. The findings of Muller, Yush-
chenko, and Derjaguin [4,5] are confirmed, namely that
the DMT expression is valid for small adhesions, and for
small, hard particles. In the intermediate regime, the
pull-off force approaches the JKR prediction. It is also
found that for rapidly varying attractions and compliant
bodies, an instability in the force-deformation relation
means that the surfaces jump into contact from a finite
separation. Similar behavior has previously been predict-
ed theoretically [8,9] and measured experimentally [10].
Approximate analytic expressions are given for the defor-
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mation prior to contact, and for position of the jump into
contact. For soft bodies with large adhesions, hysteresis
is found in the load-displacement cycle, similar to that
observed experimentally [11-16], and neither of the clas-
sical theories correctly relates the pull-off force to the
surface energy in this regime.

II. ANALYSIS

After a brief review of the Hertz and JKR theories,
this section outlines the application of the elastic defor-
mation equations to the interaction of convex bodies. A
description of the numerical algorithm used to obtain the
results presented in this paper is included. An approxi-
mate analytic expression valid for slowly varying defor-
mations is then given, followed by an analysis of the sta-
bility of adhesive bodies. The section concludes with a
description of the particular finite-ranged interaction
forces used here.

A. Hertz theory

Hertz [1] found the pressure distribution p(r) that
leads to flattened contact of two elastic bodies,

l—Evz #(l—rz/az)‘/z, r<a
0, r=Za 3)

plr)=

where a is the so-called contact radius, and r is the dis-
tance from the axis of the cylindrically symmetric system.
Here E is Young’s modulus, and v is Poisson’s ratio. R is
a geometrical factor related to the curvature of the bo-
dies; for two identical crossed cylinders, or a sphere
against a plane, it is the radius, and for two identical
spheres it is half the radius. The central displacement,
which measures the deformation on the axis, and which
for two spheres is the sum of their radii less the distance

between their centers, is, in Hertz theory,
a’

R

The applied load, which is the integral of the pressure
profile, is

6= 4)

3
31— v2 R
Hence the Hertz load-displacement relation is
3 F 2/3
- ’V
= 6
127 E VR ©

B. JKR theory

Johnson, Kendell, and Roberts (JKR) [2] added to the
Hertz pressure, Eq. (3), a pressure distribution of the

form
p/(1—=r2/a®)'?, r<a

0, r=a.

plr)=
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Such a profile causes a uniform deformation within the
contact zone, and a singularity in the curvature of the
surface at the edge of the zone. The value of p; <O is
determined by minimizing the sum of the elastic and the
surface energy. In JKR theory the latter is taken to be
the contact energy,

G,=—mya’, (8)

As stated above, y is twice the solid surface free energy
per unit area, for contact in vacuum or gas. For contact
in a liquid, it is the negative of the interaction free energy
per unit area between planar solids at the equilibrium
separation under zero load, which approximately equals
the solid-solid free energy less twice the solid-liquid free
energy, per unit area.
The energy minimization gives [17]

1/2
E vy
2

S

1—v° ma

from which the contact radius is

a2
a3=ﬁ1—2E"J[F+3wR +[6myRF+(3myR 2]'?}
(10)
and the central displacement is
(12
=7{-——[47rya(1—v2)/E]'/2 ) (11)

Finally, the pull-off force in JKR theory, Eq. (1), is the
maximum tension that the bodies can sustain. If instead
of the load the displacement is controlled, then the pull-
off force predicted by JKR is

Fs=3F,=—imyR . (12)

C. Elastic deformation of convex bodies

In general, the variation in stress and strain within an
elastic body decays rapidly away from the point of appli-
cation of a load, and one may therefore use the elastic
equations derived for a semi-infinite half-space. In the
linear elastic regime, a pressure distribution p (r) applied
inward to the surface causes a deformation of the surface
in the direction of the outward normal given by [18]

u(r)= fJ’——dt (13)
lr—t|

The problems considered here have cylindrical symmetry,
and one has

l—v

u(r)=— (r,t)edt , (14)

where the kernel is

4—T"K(tz/rz), r<r

r
k(rt)= (15)
4TWK(r2/t2), t>r
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K (m) being the complete elliptic integral of the first kind
of modulus m.

The deformation in one body is due to the load applied
by a second body. As described above, Hertz and JKR
theories solve the deformation equation assuming a par-
ticular pressure profile. In fact, the stress distribution in
the region of contact, p (r), arises from the surface forces
between the bodies, which in turn implies that

p(r)=py(h(r)), (16)

where h (r) is the separation between the surfaces at 7,
measured parallel to the axis. The right-hand side is the
inward force per unit area between two semi-infinite
half-spaces separated by 4 (r). This is valid if the radii of
the convex bodies is much larger than their surface sepa-
ration; it is invoked in the derivation of the well-known
Derjaguin approximation [14,19-21].
The separation between the surfaces of the bodies at r
is
h(r)=hy(r)—2ul(r), (17)

where h(r) is the separation which would occur in the
absence of any interaction between the bodies. [hy(r) is
negative if the bodies would have interpenetrated; for two
spheres, hy=h,(0) is the actual distance between their
centers less the sum of their undeformed radii.] The un-
stressed separation depends on the geometry. For two
convex bodies it has the general form

r
R’

R is related to the principal radii of curvature of the bo-
dies [20]; for two identical spheres it equals half their ra-
dius, and for two identical crossed cylinders, or a sphere
against a flat, it equals the radius. Because surface forces
decay with separation, p,(h)—0, h — o, the dominant
region is always r <<R.

In this work results will be explicitly stated as applying
to identical bodies. The more general asymmetric case
follows immediately by interpreting (1—+?)/E as the
arithmetic mean of this quantity for the two bodies, and
by using the appropriate geometrical quantity R.

Two quantities of interest in contact mechanics are the
central displacement

ho(r)=ho+ r<<R . (18)

86=h(0)—hy=—2u(0) (19)
and the total load
F=27rf0 p(r)rdr . (20)

Equations (14)-(18) determine the deformation, the
separation, and the pressure profiles. They may be solved
self-consistently for a specified surface force at a given
unstressed separation h,. The numerical algorithm used
to solve the equations mimics a typical loading-unloading
experiment, except that the displacement is controlled
rather than the load. The three functions u (7), 4 (r), and
p(r)=p,(h(r)) are defined on a grid, 0<r < R™** <<R,
which in the results reported here was a uniform spacing
of =10-100 nm, with 200-1500 nodes. The results were

not very sensitive to the choice of grid or spacing, except
for compliant bodies with large adhesions.

The algorithm begins with the construction of the ker-
nel, Eq. (15), (cf. Egs. (3.11) and (A4) of Ref. [22]). One
begins at a large separation, h, such that p (h,)~=0, and
initially the surfaces are undeformed [u(r)=0,
h(r)=hy(r)]. A cycle begins with a change in hy to
ho+A at constant surface separation. This means that
the deformation is changed to u (#)+A/2, and A (r) and
p(r) are unchanged. The iteration steps in the cycle con-
sist of calculating in turn new deformation, separation,
and pressure profiles, via Eqgs. (14), (17), and (16), respec-
tively. The new deformation is mixed with the old defor-
mation to ensure convergence. The mixing ratio is au-
tomatically decreased if oscillations or growth in the
change in the central displacement was detected, and oth-
erwise allowed to increase up to a value of 0.2. The cycle
is terminated when the central displacement has con-
verged to within about 10™* nm, typically requiring
50-1000 iterations. At this time the total load is calcu-
lated, Eq. (20), and, if required, the surface profiles are
stored. For loading, A <0. The unloading (A >0) com-
mences with the deformation from the end of the loading
path. This point, which corresponds to the maximum ap-
plied load, is here called the penetration.

For repulsive surface forces, the procedure was found
to be very stable, but care was required for adhesive, soft
bodies. This is due in part to the very sharp change in
the pressure, which is of several orders of magnitude over
fractions of a nanometer, in the vicinity of the equilibri-
um surface separation. This is compounded when the
surfaces jump into or out of contact, since in this case a
discontinuous change in the deformation occurs. Any
hysteresis also increases the possibility of error. When
the latter occurs, the elastic equations do not possess
unique solutions, and it is quite important to solve them
by incrementing A as described above, since this corre-
sponds to the actual experimental procedure.

Since the numerical errors in the solution of the equa-
tions can be minimized, the theory may be described as
exact. This is strictly true only in the linear elastic re-
gime for surfaces with small curvatures. This restriction
appears to be of little practical import. Both Hertz and
JKR theories are similarly restricted, and so the present
calculations serve as benchmarks to test the application
of those classical approaches to systems with realistic sur-
face forces.

D. Slowly varying deformation approximation

One can obtain an approximate solution to the elastic
equations when the deformation varies slowly compared
to the curvature. In this case one may take

u(r)=u(0) . 21)
Under this assumption, Eq. (13) yields for the central de-
formation
u(0)=—

1-v e
— zwfo py(ho+12/2R —2u (0))dt
=— 1= [ ps(h')

E ho) [h'—h(0)]'?

dh', (22)
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where h (0)=h,—2u (0). This gives the central displace-
ment as a function of the actual surface separation on the
axis. Under the same approximation, Eq. (21), the total
load is

F=21Tf0wps(h0+t2/2R —2u (0))rdt
=27R [ p(h")dh
=27RE,(h(0)) , (23)

where E (h) is the interaction free energy per unit area
between planar walls separated by 4. This result is just
the Derjaguin approximation [14,19,20,21].

These two equations relate the central deformation and
the applied load to the actual surface separation. They
are straightforward to evaluate numerically, since the
right-hand sides are known and no iteration is involved.
For particular surface forces, analytic results may be ob-
tained (see below). The regime of validity of the approxi-
mation, Eq. (21), is for deformations that vary slowly
compared to the undeformed curvature of the bodies.
Hence it and the consequent results, Eqgs. (22) and (23),
are applicable to the situation before contact. After con-
tact, the surface flattening implies that the variation in
the deformation is of the same magnitude as the curva-
ture, and the approximations are not applicable.

E. Stability analysis

Here a stability analysis of the elastic equations is per-
formed in order to find the condition for adhesive sur-
faces to jump into or out of contact. If the u(r) that
satisfies Eq. (13) is perturbed by €(r) in the right-hand
side of that equation, then the left-hand side shifts by
w(r). Using Egs. (16) and (17) one has

1—12 p pih(2))
= €

TE |r—t|
where the prime denotes the derivative of the pressure.
For the deformation to be stable, the response to the per-
turbation must be smaller than the perturbation itself.

Thus one may take as a criterion for stability the local
condition

lu(r)/e(r)] <1 (25)

wu(r) t)dt , (24)

for arbitrary perturbations. Any particular from for e(r)
will yield a sufficient, but not necessary, condition for sta-
bility. A convenient choice is

e(r)=ap,(h(r))/p,(h(r)), (26)
where a is small. This gives

w(r)=—2au(r), (27)
and the stability condition is

R2u(r)p(h(r))/p(h(r))] <1 . (28)

A jump occurs when this inequality is violated. This
analysis, which applies to both loading and unloading
jumps, is relevant only for adhesive bodies. In this case
the deformation and the derivative of the pressure are

positive, and the pressure itself is negative.

One is most interested in the stability at r =0, since
this is when the bodies jump into or out of contact, and
one has

2p!(h (0)u (0)/p,(h(0)>—1 . (29)

The condition depends on the derivative of the pressure,
and on the ratio of the deformation to the pressure,
which will be large for compliant bodies. Note that this
condition, and the stability criterion (25), differ from the
surface rigidity condition given in Ref. [8]. This stability
criterion is obviously most useful if the central displace-
ment is known as a function of the surface separation.
The approximation given above is suited for this purpose.

F. Interaction forces

This work examines both repulsive and attractive sur-
face forces of finite range. Relatively simple models for
both are chosen so that the effects of the finite range can
be distinguished from other complications.

The repulsive pressure is chosen to be of the form

ps(h)=Pyexp(—«h) . (30)

This exponential law may be considered as a generic
repulsion between surfaces at small separations; in fact, it
is of the same form as the force per unit area between
charged surfaces in electrolyte in the linearized Poisson-
Boltzmann approximation. A choice of x '=1 nm and
P,=10 MN/m? is applicable to mica surfaces, which
have a surface potential of less than about 85 mV, in
0.1M monovalent aqueous electrolyte.

The approximate expressions for the central displace-
ment and for the total load, Eqgs. (22) and (23), may be
evaluated analytically for this exponential force law. One
obtains

1—?

6=2

(2mRKk ™ 1H)12Ppye 1O (31)

and
F =27Rk ™ 'Pye " (32)

where again §=h (0)—hy= —2u (0).
The surface force for the adhesive case is taken from a
Lennard-Jones continuum model of the solids,

6
)

A
W

T

p,(h) (33)

The Hamaker constant A characterizes the van der
Waals attraction of the solids across a liquid or gas.
Values in the range 1072'—1071° J represent the physi-
cally realistic regime. The equilibrium separation is z;
throughout this work this was taken to be 0.5 nm. The
value of the surface energy in this model is

=4 (34)

v 16723

One may again analytically evaluate the displacement
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and force approximations, Egs. (22) and (23). One ob-
tains

6
J— —_ V4
8=\/2R%1'—3——1TVZ ;‘;—18—12 h—372 (35a)
J— a2
~—V3R ngvh =52 (35b)

where I,, =m(2m)!/2(2™m!)>. The second line follows by
neglecting the repulsive part of the interaction, valid for
h >>z,. Similarly,

6
A Z9
F=2wR —_— (36a)
" 12mn? | 4h ]
~—2wR . (36b)
T 127h?

Although it is straightforward to obtain the position of
the jump from the full expression (35a) and the jump cri-
terion (29), if only the attractive part of the potential is
important, then one can obtain an explicit analytic ex-
pression for the separation at which the surfaces jump
into contact, namely

2/7

s34 1-7

= |V
h 2R s E (37)

This is similar to a result obtained by Pethica and Sutton
[8]; the different numerical coefficients appear to arise
from the different stability criteria used.

In general, the form of the elastic equations for the de-
formation and the total load, Egs. (13) and (20), may be
cast in nondimensional form

a(F)=eulu], F=ewla], (38)

where F=r2/AR, i=u /A, and F=F(1—v*)/E(RA3)'2,
Here A is some length scale, and U and W are functionals
of the dimensionless displacement that depend upon the
particular form of the interaction pressure between the
bodies. O is a dimensionless parameter which character-
izes the system (elasticity, interaction, separation, etc.).
For the case of the exponential repulsion, Eq. (30),
A=k"! and

1—+? Kkh

Pye °, (39)

A=06=VkR

which is similar to a parameter defined by Hughes and
White [6,7]. For the case of the Lennard-Jones pressure,
Eq. (33), A=z, and

a2
UEG='}/1—EV—

172
R
25

(40)

The parameter p of Muller, Yushenko, and Derjaguin
[4,5] is essentially o2/3. In this case U and W are also
functions of hq/z.

An ambiguity arises in comparing the results of calcu-
lations using these relatively realistic interactions with
the classical Hertz and JKR theories. The latter assume
a precisely flat contact region, of radius a, with zero sepa-
ration between the surfaces. In practice, the contact re-
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gion is not exactly flat, and the surfaces nowhere contact
at h =0, because of the large repulsion present at small
separations. However, both the total load and the central
displacement are well defined in all approaches, and this
will be the primary comparison between them.

III. RESULTS

Figure 1 compares Hertz and JKR theories and the ex-
act results for finite-ranged attractive and repulsive sur-
face forces. As noted above, the total load and the cen-
tral displacement are appropriate quantities that are free
of ambiguities in the definition of the zero of surface sep-
aration or of the contact radius. In general for a given
load, the displacement for adhesive surfaces is greater
than that for repulsive or hard contact. This is because
the pressure profile in the adhesive case contains both
repulsive (compressive) and attractive (tensile) regions,
and hence for the same load the repulsion and the dis-
placement on the central axis must be greater for
adhesive surfaces. One can see that both Hertz and JKR
theories are relatively accurate in these cases. The finite
range of the Lennard-Jones potential can be seen from
the negative displacement of the surfaces before they
jump into contact. Neither of these two effects is con-
tained in JKR theory. The greatest negative load in the
adhesive case is F,= —59 uN'm~!. It follows that in this
case JKR is much more accurate (—56 4 Nm~!) than is
DMT (—75 uNmm~'). Note that the numerical solu-

-1.5 e e S B

-0.04 0 0.04 0.08 0.12
F (mN)

FIG. 1. The central displacement vs the applied load for two
identical crossed cylinders of radius R =1.5 cm and elastic con-
stant E/(1—+v?)=10'"" Jm~3. The solid curve is Hertz theory
and the dashed curve is JKR theory, ¥=0.80 mJm™2 The
squares represent the exponential repulsion (P, =250 MN m ™2,
k" 1'=0.2 nm), and the triangles represent the Lennard-Jones
force law (A4 =10"2° J, z,=0.5 nm). Note the jump in the
latter data (arrow).
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tion of the elastic equations correspond to controlled dis-
placement, and hence the surfaces jump apart under
some tension less than the maximum. On this scale the
outward run was indistinguishable from the inward run.

A. Repulsive contact

Figure 2 tests Hertz theory, Eq. (6), and the slowly
varying deformation approximation, Egs. (31) and (32),
for two decay lengths of the repulsive force law, and for
the repulsive part of the Lennard-Jones potential [cf. Eq.
(33)]. It may be seen that Hertz theory becomes more ac-
curate for more rapidly decaying forces, and is quite good
for the short-ranged Lennard-Jones repulsion. In gen-
eral, Hertz theory overestimates the deformation caused
by a given load. The inset to the figure shows that the
new approximation given here is rather more accurate
than Hertz theory in the small load regime, particularly
for the more slowly decaying surface force law.

Hertz theory becomes relatively more accurate as the
load is increased. This is explicitly illustrated in Fig. 3,
where the relative error in the Hertz prediction for the
normalized total load at a given (normalized) central dis-
placement is shown as a function of the parameter A, Eq.
(39). The error decreases as A increases (large loads,
short-ranged forces, small curvatures, and soft bodies), in
agreement with earlier results [6,7]. Also shown in the
figure is the error in the slowly varying deformation ap-
proximations, Eqgs. (31) and (32). It may be seen that at
small values of A it is more accurate than Hertz theory.

O (nm)

! | y
t —

0.02 0.06 0.1 0.14
F (mN)

FIG. 2. The central displacement vs the applied load for
R=1.5cm and E/(1—+?)=10" Jm™>. The solid line is Hertz
theory. The diamonds and squares are the exponential repul-
sion (k" '=0.2 and 1.0 nm, respectively, P,=250 MNm 2).
The triangles are the repulsive part of the Lennard-Jones pres-
sure, [p,(h)= Az§/6wh°, A =10"%J, z,=0.5 nm). Inset: com-
parison with the slowly varying approximation, Egs. (31) and
(32), (dashed lines), for small loads.
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FIG. 3. The relative error in various approximations for the
exponential repulsion as a function of the parameter A, Eq. (39).
The solid line is Hertz theory for the applied load at a given
central displacement, the dotted line is the displacement ap-
proximation, Eq. (31), and the dashed line is the Derjaguin ap-
proximation, Eq. (32).

The Derjaguin approximation, Eq. (32), always underesti-
mates the load because of surface flattening. This is be-
cause flattened surfaces are almost everywhere closer to-
gether than undeformed surfaces at the same central sep-
aration 4 (0), and hence the deformed bodies experience a
larger repulsion than bodies with the smaller, unstressed
curvature R. The approximation (31) underestimates the
displacement to a lesser extent than the Derjaguin ap-
proximation underestimates the load, which is why the
approximate curves lie above the exact results in the inset
to Fig. 2. In contrast to the Hertz approach, the approxi-
mations become worse for increasing loads (or for
shorter-ranged forces), mainly because of the significant
surface flattening that occurs and which they do not ac-
count for.

Figure 3 should be useful as a quantitative guide to the
validity of the application of Hertz theory in any particu-
lar measurement. For example, A was of the order of 10*
in the experiments of Horn, Israelachvili, and Pribac
[12]. Hence their estimate of Young’s modulus for their
system using Hertz theory is probably accurate to about
10-20 %.

Figure 4(a) shows the deformation of the surfaces for
increasing loads. The crossed-cylinder geometry is
equivalent to a sphere against a plane; the reason that the
undeformed profiles appear parabolic is that two different
scales are used on the two axes. The scale, with the sepa-
ration in nm, and the radial coordinate in pm, corre-
sponds to that typically observed in the interferometric
spectrometer used in the surface force apparatus [12].
Each curve is a cross section of the cylindrically sym-
metric system. The ten curves are in equal increments of
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hy, and represent increasing loads from top to bottom. It
may be seen that the surfaces become less curved by com-
parison with their undeformed shape at large separations.
In the cases shown, there is no region where the surfaces
could be described as strictly flat, or as in contact at
h =0. This is inconsistent with the Hertz model of con-

127

h(r) (nm) _

o
o

p(r) (MN/m?)

o
b
}

0.27

(b)

-15 -10 -5 0 5 10 15
r (Um)

FIG. 4. (a) The surface deformation for the exponentially de-
caying repulsion (P,=10 MNm~2, k" !=1nm). k(r) is the lo-
cal surface separation at a distance r from the central axis. The
undeformed geometry (evident at large separations) is for
crossed cylinders [R=1.5 cm, E/(1—v*)=10" Jm™>]. The
profiles are given at equal 0.7 nm increments in h,, from
ho=4.3 to —2.0 nm. Note the different scales on the two axes.
(b) The pressure profiles corresponding to (a).

tact deformation, and means that one cannot satisfactori-
ly compare its predictions for the contact radius as a
function of load or central displacement. For higher ap-
plied loads, or shorter decay lengths, the surfaces do be-
come flatter, although there is still no sharp microscopic
delineation of a contact zone. This distinction may be
somewhat academic, since one might discern a flat con-
tact region in practice, depending on the characteristics
and resolution of the optical system employed. Even
though there is this qualitative contradiction in the Hertz
model of the contact region, the prediction for the dis-
placement as a function of load can be quite good, as seen
above.

Figure 4(b) shows the pressure profiles corresponding
to Fig. 4(a). There is qualitative agreement with the
Hertz assumption, namely that the pressure is highly
compressive in the center, and that it decays monotoni-
cally to zero away from the axis.

B. Low and moderate adhesion

Turning now to the adhesive surface, Fig. 5 compares
JKR theory with the numerical calculations for the
Lennard-Jones surface pressure, Eq. (33), for several
values of the parameter o, Eq. (40). It can be seen that in
these cases (0 <1), JKR theory is very good, predicting
the force-deformation relation quite accurately. Hertz
theory would lie just below the results for the lowest
adhesion. Only the exact result with the largest value of

d (nm)

F(1-v2)/ER"z3"?

FIG. 5. The central displacement as a function of applied
load for adhesive surfaces. The squares, diamonds, and trian-
gles are for 0 =0.87, 0.17, and 0.0087, respectively, which corre-
spond to Hamaker constants of 107'°, 2X10™%, and 107%' J,
for an elasticity of E/(1—+v?)=10"" Jm™3, a radius of R=1.5
cm, and an equilibrium separation of zy=0.5 nm [cf. Eq. (40)].
The solid curves are the corresponding JKR predictions.
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o exhibits a jump. In this case there is significant defor-
mation before the jump (see below). On the scale of the
figure, the inward and outward cycles gave identical re-
sults, including for the jump, and no hysteresis is visible.
Surface profiles are shown in Fig. 6(a). Prior to the
jump into contact, one can see that the surface becomes
elongated, and the curvature increases. After the jump
there is a neck, due to that part of the surface under ten-
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sion. In this figure there seems to be a well-defined, flat-
tened contact region after the jump, apparently con-
sistent with the JKR assumption. The inset to the figure
compares the JKR prediction for the contact radius to
that derived from the profiles. Note that the unloading
radii are slightly larger than those that occur for loading
at the same total force. To obtain the data for the finite-
ranged Lennard-Jones interaction, the surfaces were
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FIG. 6. (a) Surface separation profiles for equal 0.7 nm increments in h, (from 4.3 to —2.0 nm) for the Lennard-Jones surfaces
[4=10""17,2,=0.5nm, E/(1—+*)=10" Jm™3, R=1.5 cm]. Inset: contact radius vs the applied load. The solid line is the JKR
approximation, and the symbols represent exact results for loading (open symbols) and unloading (closed symbols). For the finite-
ranged potential, contact was defined to occur when A (r) < 1.1z,. (b) Expanded view of the deformed surfaces of (a). (c) The pressure
distributions that correspond to (a). (d) The interaction free energy per unit area across the contact region corresponding to (a).



46 DEFORMATION AND ADHESION OF ELASTIC BODIES IN CONTACT 7967

defined to be in contact whenever they were within 10%
of the equilibrium spacing. On an expanded scale [Fig.
6(b)] it is clear that the surfaces remained curved, and
that this or any definition of the contact radius is some-
what arbitrary.

The corresponding pressure profiles are shown in Fig.
6(c). Note the difference before and after contact. In the
latter case the pressure is increasingly repulsive toward
the center. Near the edge of the contact region the pres-
sure becomes attractive. The regime over which this
change occurs is quite small, leading to a very sharp
change in the pressure. There is qualitative agreement
between this pressure distribution and that assumed by
JKR theory, Egs. (3) and (7), although the pressure never
becomes infinite as it does at the edge of the contact re-
gion in that theory. The pressure profiles for the
Lennard-Jones surfaces contrast with the much smoother
distribution for the exponential repulsion [Fig. 4(b)].

The interaction free energy per unit area is shown in
Fig. 6(d). Again one can imagine a contact region,
defined by some convention, in which the energy is ap-
proximately constant. Here the energy is close to its
minimum possible value, which is the negative of the sur-
face energy ¥ =0.80 mJ/m?2. The figure suggests that the
JKR assumption of an energy equal to —y in the contact
region, and zero outside of it, is not too unrealistic.

Figure 7 shows the pull-off force for controlled load
(maximum tension) as a function of the parameter o, Eq.
(40). The force has been normalized so that JKR theory
corresponds to unity, and DMT to % (arrow). Small
values of o correspond to stiff bodies, of small radius and
low-surface energies. One can see that in this regime
DMT theory is more accurate than is JKR, as has been
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FIG. 7. The pull-off force (maximum tension for unloading)
divided by the JKR prediction. The arrow indicates the DMT
result. The several results for each of the larger values of the
parameter correspond to different penetration depths.

found earlier [4,5]. For values of o S 1, the accuracy of
JKR theory for the pull-off force improves. Neither
theory is particularly appropriate for larger values of the
parameter. In this regime the pull-off force in the exact
calculations has been taken to be the maximum force of
each of the unloading cycles (see below).

Both JKR and DMT theories predict that the pull-off
force scales linearly with the surface energy, and that it is
independent of the elasticity. The first statement seems
intuitively obvious, but the second is perhaps surprising.
However, if the pull-off force is indeed linear in the sur-
face energy (as Fig. 7 confirms with relative accuracy
over several orders of magnitude), then the minimum of
the dimensionless force, Eq. (38), must be a linear func-
tion of the parameter o. Since the dimensionless force
and o both contain Young’s modulus in the denominator,
the pull-off force itself has to be independent of the elasti-
city whenever it is linear in y. The same argument also
shows that here it scales linearly with R. The assumption
of linearity clearly breaks down at larger values of o, Fig.
7, and here the pull-off force can no longer be indepen-
dent of the elasticity.

C. Deformation and jumps prior to contact

One reason that JKR and DMT theories fail in the
large-adhesion, compliant-body limit is that significant
surface deformation occurs before the surfaces contact.
This is due to the finite range of the attractive force. In
many cases the surfaces actually jump into contact, as
has been predicted previously [8,9]. The jumps represent
a spontaneous, nonequilibrium transition in which energy
is lost from the system in the form of heat [13]. The clas-
sical theories do not describe these phenomena, but the
approximate expressions for the displacement, load, and
jump, Eqgs. (35)-(37), should be applicable.

Figure 8 tests the full approximate expressions for the
force and displacement, Egs. (35a) and (36a), against the
exact results prior to contact, for 0 =8.7. The analytic
results obtained using only the attractive part of the
Lennard-Jones potential, Egs. (35b) and (36b), are also
shown, and these are in very good agreement with the re-
sults of the approximation using the full potential. It
may be seen that the simple approximation is remarkably
accurate, and that it is valid to neglect the repulsive part
of the interaction at these separations.

The jump criterion, Eq. (29) [evaluated with the dis-
placement and load approximations Egs. (35) and (36)], is
tested in Fig. 9 as a function of the parameter o, Eq. (39).
The analytic result that uses only the attractive part of
the Lennard-Jones potential, Eq. (37), is a good represen-
tation of the full approximation. For the exact results the
tension at the point prior to the jump is given. For small
values of o where jumps do not occur or are difficult to
discern, the maximum tension is plotted. It can be seen
that the approximations give a quite acceptable estimate
of the jump.

The results confirm the validity of the stability cri-
terion (29), which may otherwise have been criticized be-
cause its derivation was less than rigorous. The local
condition (25) is not exact, since in general the change in
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Fig. 8. A test of the deformation and load approximations,
Eqgs. (35) and (36), prior to the jump into contact [4 =101 J,
2o=0.5 nm, E/(1—v*)=10"" Jm*, R=1.5 cm]. The solid
curve is the complete Lennard-Jones potential, and the dashed
curve is due to the attractive part only. The symbols are the ex-
act results. The curves end at the point predicted by the stabili-
ty criterion, and the final symbol represents the point in the ex-
act calculations just prior to the jump.

A
T

o

S~
R
o
=
o

> 1
—_— 2
N’
[

1

1+

16° 10 10” 10

FIG. 9. The tension just prior to the jump into contact as a
function of the parameter o, Eq. (40). The squares are the exact
result, and the triangles are the stability criterion, Eq. (29), us-
ing the deformation and load approximations, with the full po-
tential, Eqs. (35a) and (36a). The solid line is the analytic ex-
pression (37), which uses only the attractive part of the
Lennard-Jones pressure, and which is continued when no jump
occurs. Open symbols denote the maximum tension in cases of
low adhesion when no jump occurs.
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deformation depends upon the perturbation of the whole
surface. Equation (28) must be violated by parts of the
surface just beyond the contact zone once the surfaces
have jumped into contact (cf. Fig. 6). Despite this lack of
rigor in the derivation of Eq. (29), Fig. 9 shows it to be a
very good approximation.

D. Hysteresis

For soft bodies with high surface energies (large o), the
unloading becomes hysteretic (Fig. 10). These cases also
pose greater numerical challenges, as is evident from the
scatter in the data in the figures. The various runs (the
loading cycles are coincident) have different penetration
depths, which is the maximum displacement before un-
loading begins. In contrast to results given above, the un-
loading cycles agree neither with the inward run nor with
each other. In all cases the maximum tension is much
greater than is the tension immediately following the
jump into contact, or anywhere on the loading cycle. For
the smaller value of o one sees that eventually the un-
loading paths agree, even though initially they depend
upon the penetration depth. In this case the maximum
tension was independent of the penetration depth, at least
within the numerical noise. For larger values of the pa-
rameter, the unloading cycles do not coincide until after
the point of maximum tension. This means that the
pull-off force is greater for larger penetrations, and hence
that there is not a unique pull-off force for a given surface
energy.

It can be seen that JKR theory is not really applicable
in this hysteretic regime. That theory approximately
bisects the loading and unloading cycles, lying somewhat
closer to the former. JKR theory is only trivially hys-
teretic, since the cycles coincide everywhere except that
the point of separation is beyond the point of first con-
tact. It is somewhat surprising that JKR theory fails
here, since that theory was expected to become more ac-
curate for compliant bodies with large adhesions [4,5].

This predicted hysteretic behavior is qualitatively simi-
lar to the experimentally measured behavior of adhesive
surfaces using an indenter [11], the surface-forces ap-
paratus [12-14], and the atomic-force microscope
[15,16]. A consequence of the hysteresis is that the max-
imum tension can depend on the past history of the sam-
ple, namely the largest load that was applied, or
equivalently the penetration depth (i.e., the largest value
of the central displacement prior to unloading). The
measured pull-off force shown in Fig. 9 of Ref. [13] is
indeed larger for greater maximum applied loads. In the
hysteretic regime there is no simple direct relationship
between the pull-off force and the surface energy of the
bodies, such as in JKR or DMT theory; one needs to in-
clude the penetration of the samples in the equation.

The hysteresis appears to occur for values of the di-
mensionless variable o greater than about unity. For the
measurements of Horn, Israelachvili, and Pribac [12] of
the adhesion of mica in air, o=~10° (4=10"" 7J,
zo=~10"! nm, y=10> mJ/m?>, R=~10"? m, E=~10").
This means that the application of JKR theory to their
measurements is probably not valid because of hysteresis,
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which in fact they observe [12]. Mathematically, it is a consequence of the mean-value

The hysteresis is due to the jumps, as is illustrated in theorem. Physically, it happens because at the start and
Fig. 11. Precritically, one can think of each element of  end of the jump the spring extension balances the applied
surface as a simple spring. The relevant point is that the  force, but in the region between the jump starts the ap-
position the spring jumps to always lies at a smaller sur- plied force changes more rapidly than the force due to
face separation than the position the spring jumps from. the change in length of the spring. Hence for an inward

61
MM
5T 5T
4t
31
3+ /,
//
~~ ~~ v a
g = PR
g 21 £ R
N~— a
w©w 2" o’/ aa
i [Ze) W2 .° g !
at g e 8 /
0T P o °
‘:Aoo" Du” 2 .
AT 5% o
31
2T oAio
. (b)
3 +— } | 5 e : ! ' e
215 <10 -5 0 5 10 15 20 40 2300 200 <10 0 100 20
2 172_3p 1/2
F(1-v*)/ER "z F(1-v?)/ER 23"
10T
g+
61
4t
.
e
= 07
N—
(2] /R
4 /X)\
2 » e
wE Y
£
6T lf $
5008
BT &
-10 p—t—
-120

F(1-v2)/ER"*23"

FIG. 10. (a) Displacement vs load in the case of hysteresis, 0 =1.7. The various symbols represent cycles with different penetra-
tion depths (maximum displacements), in this case hy=0, —2, and —5 nm. The arrows indicate the direction of the loading and un-
loading. The solid line is the JKR prediction, which is not hysteretic. Note the inward jump, and the different outward jumps (solid
arrows indicate jumps). (b) Hysteresis in the case of 0 =4.4. The penetrations are h,=0, —2, and —5 nm. (c) Hysteresis in the case

of 0 =8.7. The penetrations are hy=1, —2, —4, and — 10 nm.
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FIG. 11. Sketch of the jumps for a simple spring in a force
field (upper). The arrows commence at the points where the
gradient of the force equals the spring constant (the start of the
jump), and point to where the applied force once more equals
that due to the spring extension (the end of the jump). The re-
gion between the jump starts is inaccessible to the spring, and
the jump ends always bracket the jump starts for this type of
smooth attraction. The lower part of the figure is a schematic
illustration of the corresponding surface deformation for load-
ing and unloading at a given position of the undeformed body
(the parabola).

jump it is not until a smaller separation than the outward
jump start, where the applied force increases less rapidly
than that due to the spring, that they can once more
achieve a balance. The same argument applies to the out-
ward jump.

The fact that hysteresis occurs for this simple spring
indicates that it also occurs for elastic bodies which jump
into adhesive contact. It is obvious that hysteresis will
occur for two infinite planar surfaces, but the interaction
of two convex bodies is more complicated. Because each
element of surface is not independent, not only is the con-
tact area hysteretic, but also the surface profile in the
contact region. Nevertheless, the area of contact for the
loading cycle is always less than the area of contact for
unloading at a given central displacement (cf. the inset to
Fig. 6(a); see also the measured data in Figs. 6 and 7 of
Ref. [12]). As the illustration in the lower half of Fig. 11
illustrates, the separation at the edge of the contact re-
gion corresponds to the jump-in terminus, and to the
jump-out origin, for loading and unloading, respectively.
The surface separation just outside the contact region
corresponds to the jump-in origin and to the jump-out
terminus, for loading and unloading, respectively. Conse-
quently the contact radius is smaller for loading than for
unloading. The force, which is approximately the
minimum of the pressure times the contact area, must be
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larger for unloading than for loading at a given h,. For
small jumps, the consequent difference in loads is not visi-
ble on the figures (cf. Fig. 5), but it was confirmed that
the actual value of the unloading tension was always
greater than or equal to the loading tension at a given dis-
placement. For large adhesions and soft bodies, the hys-
teresis is quite marked (Fig. 10).

The fact that the hysteretic surface shape and deforma-
tion represents a jump instability means that experimen-
tal measurements can be time dependent. This is due to
the finite probability that a mechanical vibration will
occur that changes the contact profile and area because
surface elements at the edges of the contact region jump
in or out. Thus, compared to a fast experiment, where vi-
brations are less likely to occur during the measurement,
the contact area is larger during slow loading (because
here it is the separated surface elements, which are just
beyond the contact region, and which are perched on an
instability that will jump into contact) and it is smaller
during slow unloading (because here it is the surface ele-
ments in contact at the edges of the contact region that
are unstable and jump out). This time-dependent behav-
ior has been observed experimentally (Fig. 8(a), Ref. [13]).

IV. CONCLUSION

This paper has been concerned with the deformation
and adhesion of elastic bodies in contact. The emphasis
has been on the finite range that all real surface forces
possess. To this end a comparison has been made with
the classical theories—Hertz theory for repulsive forces,
and JKR and DMT theories for the case of adhesion—
that assume infinitely short-ranged contact forces. Hertz
theory was found to be accurate in the case of short-
range surface forces and high loads [6,7], and JKR theory
predicted the deformation-load relationship accurately
up to moderate adhesions. For low adhesions, DMT
theory was more accurate than JKR theory in relating
the pull-off force to the surface energy [4,5].

As the adhesion and the compliance of the bodies in-
crease, significant deformation can occur away from con-
tact, and they can actually jump into contact due to the
finite range of the surface forces [8,9]. This precontact
deformation is not predicted by the classical theories, and
here a simple but accurate approximation was given. A
stability criterion for the jump was derived, and it shows
that these occur for large values of the product of the
derivative of the pressure (rapidly increasing attractions)
and the ratio of the central displacement to the pressure
(soft bodies).

For high adhesions and/or soft bodies, it was found
that the displacement-load cycles were hysteretic, and
that the actual value of the pull-off force could depend
upon the amount of the preceding deformation. Accord-
ingly, in this regime there is not a unique relationship be-
tween the pull-off force and the surface energy, and nei-
ther JKR nor DMT theory is applicable.

The observation of hysteresis in this simple continuum
model with Lennard-Jones adhesion is quite interesting.
The origin ascribed to it here—surface jump instabilities
of compliant bodies due to rapidly varying attractions—
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is a generally occurring mechanism. In the past, hys-
teresis has been attributed to molecular rearrangements,
contamination and natural variability, surface hetero-
geneity and roughness, or viscoelasticity and plasticity.
While undoubtedly these will have an effect if they occur,
the present results show that it is not necessary to invoke
these complicated phenomena in order to explain the ex-
perimental observation of hysteresis [11-16]. The sim-
plest explanation is that hysteresis occurs whenever there
are elastic instabilities associated with rapidly varying
but finite-ranged attractions between the surfaces.
Hysteresis is also a likely explanation of the variability
in measurements of the surface energy from the pull-off
force [11-13], since it was shown here that the maximum
tension increased with the sample penetration (the max-
imum load previously applied). It is worth noting that
hysteresis also occurs in other well-known methods for
determining surface energies, such as contact angle mea-
surements, where the advancing angle (loading) is found
to exceed the retreating angle (unloading). The present
results are qualitatively relevant to this case, since the
drop is elastic (in the sense that energy is required to de-
form its shape) and it is in contact with an elastic sub-
strate. A theoretical analysis of the effect on the contact
angle of elastic deformation of the substrate has been
given [23], and possible mechanisms for contact angle
hysteresis have been reviewed [24]. The jump-instability
mechanism for loading and/or unloading that is dis-
cussed here represents another contribution to contact
angle hysteresis. A direct quantitative application of the
results obtained here to the drop problem is inappropri-
ate because the elastic equations solved here incorporate

shear stress, which a liquid cannot support. However, in
the present study and in the case of drops on a substrate,
the surface profile arises from the balance of the surface
forces against the change in energy due to deformation,
and the present conclusions about the origin of hysteresis
are at least qualitatively applicable.

Tribology and friction represent other possible fields
where extensions of the present analysis of adhesion and
deformation due to finite-ranged surface forces may be
applied. The physical origin of friction can be puzzling,
particularly if one thinks in terms of equilibrium mechan-
ics. However, the mutual sliding and rolling of bodies in-
volves the joining and separation of surface elements be-
fore and after the area of contact. The present results in-
dicate that even for perfectly smooth surfaces, for com-
pliant adhesive bodies the process is not symmetrical, and
it requires energy, which is manifest as a lateral force.
Heat is created in traversing the hysteresis loop, due to
the spontaneous, irreversible jumps into and out of con-
tact of the surface elements.

Beyond these extensions to contact angles and to fric-
tion, the analysis of the loading and unloading of elastic
bodies is relevant to any situation which involves the
movement of a line of three-phase contact. In a forth-
coming paper the authors will discuss in detail the effect
of elastic deformations on the direct measurement of sur-
face forces, and quantify the errors in the measurements
when these effects are ignored. Recently techniques have
been developed for measurement of load-displacement
curves using force feedback [25], and it is intended to car-
ry out high-precision tests of the present theories of elas-
tic deformation and adhesion.
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