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Using wavelets to solve the Burgers equation: A comparative study
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The Burgers equation is solved for Reynolds numbers ~ 8000 in a representation using coarse-scale
scaling functions and a subset of the wavelets at finer scales of resolution. Situations are studied in

which the solution develops a shocklike discontinuity. Extra wavelets are kept for several levels of
higher resolution in the neighborhood of this discontinuity. Algorithms are presented for the calcula-
tion of matrix elements of first- and second-derivative operators and a useful product operation in this
truncated wavelet basis. The time evolution of the system is followed using an implicit time-stepping
computer code. An adaptive algorithm is presented which allows the code to follow a moving shock
front in a system with periodic boundary conditions.

PACS number(s): 03.40.Kf, 02.60.+y, 02.50.+s, 02.70.+d

I. INTRODUCTION

The nonlinear partial differential equations which de-
scribe physical phenomena, e.g. , the equations of Quid
mechanics, are usually not susceptible to analytic solu-
tion. Several options are available for numerical solution.
The simplest is straightforward finite differencing on a
uniformly spaced grid of points. This is effective for
one-dimensional systems, but the number of grid points
needed grows rapidly with the number of dimensions. A
three-dimensional system with 10 grid points is easy,
with 100 is perhaps barely feasible on the computers of
today, but with 1000 is not. If the phenomena of interest
have linear scales less than L/10 or L/100, where L is
the linear dimension of the system, straightforward uni-
form finite differencing may fail.

Another option is expansion in a basis of appropriately
chosen modes. The most common choice is, of course,
Fourier expansion. In order to reduce the number of
modes needed, they should be chosen with an eye to the
underlying physics. If the physics is well described by
monochromatic waves, Fourier expansion would seem to
be a good choice. An important feature of Fourier modes
is their mutual orthogonality, which simplifies the details
of the computation. Also, truncation of the mode expan-
sion at a specified level means a certain well-defined sec-
tor of the underlying function space is being ignored. For
truncated Fourier expansions small wavelengths are ig-
nored.

Another important consideration is the ease or
difficulty of expressing the operators of the theory in the
chosen basis. Differential operators become multiplica-
tive factors in a Fourier basis, so this aspect is very favor-
able for that choice of modes. Differential operators are
more difficult in the finite-differencing scheme, but still
have simplifying features: In the lowest-order schemes,
derivatives introduce interactions between nearest
neighbors. This leads to tridiagonal matrices in one-
dimensional problems and matrices with a well-defined
form of sparseness in higher dimensions.

Recently, the use of expansions in bases of orthogonal

scaling functions and wavelets has become popular [1—5].
Each of the individual functions in such a basis is local-
ized about a certain center and has a certain scale or
width. The expansion is made in a series of functions of
ever-decreasing scale localized about ever more closely
spaced centers. Daubechies scaling functions and wave-
lets have compact support, while maintaining ortho-
gonality. The most successful uses of these bases appear
to be in data analysis and signal compression applica-
tions.

One might hope that the scaling function plus wavelet
basis would be useful in the solution of nonlinear
differential equations describing complicated phenomena
leading to singularities or scaling behavior. Examples fa-
miliar from Quid mechanics are the discontinuities at
shock waves and the "small vortices on bigger vortices"
picture of turbulence. It might be possible to use the
multiresolution properties [6] of scaling functions and
wavelets advantageously in the turbulence problem. Pre-
liminary work along these lines has been performed by
Weiss [7). For the shock-wave problem, one might use
the localization properties by keeping more wavelets cen-
tered near the shock-wave discontinuity.

We have applied wavelets to the shock-wave-like phe-
nomena which arise in the solution of the Burgers equa-
tion. Several papers have already appeared on this sub-
ject [8—11]. We follow the line of investigation pioneered
by Tenenbaum and co-workers [8,10—12]. By using
wavelets as well as scaling functions and by keeping a
series of wavelets of smaller and smaller scale near the
discontinuity we are able to avoid the Gibbs-like oscilla-
tions which plagued the solutions of these authors. We
have also developed a primitive type of adaptive code
which allows us to solve the Burgers equation for a situa-
tion with a moving shock front, as well as the fixed shock
front considered by the above-mentioned authors.

Finally, we have attempted to compare three algo-
rithms: (1) straightforward finite differencing with a uni-
form grid, (2) expansion in a basis of scaling functions as
recommended by the Aware group, and (3) expansion in a
basis of scaling functions and wavelets.
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The Burgers equation, appropriate initial conditions,
and the form of the solution are recalled in Sec. II. In
Sec. III we discuss the calculation of the matrix elements
of the necessary differential operators in our coarse-scale
scaling function plus truncated wavelet basis. This

'

partly a review of parts of a more general calculation
presented by Latto, Resnikoff, and Tenenbanm [12]. In
Secs. IV and V we present our calculation using the com-
bined scaling function wavelet basis with wavelets of fine
scale near the discontinuity. This calculation is com-
pared with a finite difference calculation and a calculation
using only scaling functions.

II. THE BURGERS EQUATION
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The simplest equation incorporating both nonlinear

convection and diffusion is the Burgers equation,

Bu + Bu 8 u
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It can be solved analytically with the aid of the Cole-
Hopf transformation [13,14], which leads to a rather
complicated formula that must be evaluated numerically

Here we discuss direct numerical solution of the
differential equation leading to the results presented in
Figs. 1 —3. We employ periodic boundary conditions in
the region 0 x ~L. For Fig. 1 the initial condition was
u(x, O)=sin(2'/L), 0&x &L. For Figs. 2 and 3 the in-
itial condition had just the left half of the sine wave:
u (x,O)=sin(2m /xL), 0&x &L/2; u (x,O)=0, L/2&x
~L. For both sets of initial conditions the sine curve
steepens as time advances, eventually leading to a discon-
tinuity. For the full sine wave, the discontinuity is sta-

FIG. 2. Solution of the Burgers equation (2.1) at equally
spaced time intervals for an initial condition u (x,O)

=sin(2mx/L), O~x ~L/2; u(x, O)=0, L/2~x ~L. The x in-

terval is represented on a grid of 4096 points, x/L =i/4096,
i =1 4096. As it'me advances the curves steepen, developing a
moving shocklike discontinuity. The time interval between
curves is 160 in grid units, i.e., htu, „/a = 160 with a =L /4096
and u,„=1.The calculation was performed in a basis with 32
coarse-scale scaling functions and 7X12=84 wavelets at seven

higher levels of resolution centered at the evolving discontinui-
ty. In units of the grid spacing v=2.048, corresponding to a
Reynolds number 4096/2. 048 =2000.

t~onary, while for the half-sine-wave initial condition, the
iscontinuity propagates to the right. Soon after the

discontinuity develops the curves away from the discon-
ti.nuity become straight lines, with slope gradually de-
creasing with time.

We can understand these features qualitatively with-
out any elaborate calculations. It is clear from the
differential equation that at positions x where u and
Bu /Bx have the same sign, u will decrease with time, and
where they have opposite signs u will increase. This ex-
plains the steepening of the sine curve with time. After
the curves have evolved to straight lines, it is easy to find
the analytic solution

—0.5
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FIG. 1.1. Solution of the Burgers equation (2.1) at equally
spaced time intervals for an initial condition u (x,O)

=sin(2m. x/L) O~x ~L Thx L. The x interval is represented on a grid
of 4096 points, x /L =i /4096, i = 1,4096. As time advances the
curves steepen, developing a shocklike discontinuity. The time
interval between curves is 160 in grid units, i.e., Atu, „/a = 160
with a =L/4096 and ud u,„=1.The calculation was performed
in a basis with 32 coarse-scale scaling functions and 7 X 12=84
wavelets at seven higher levels of resolution centered at the
evolving discontinuity. In units of the grid spacing v=2. 048,
corresponding to a Reynolds number 4096/2. 048 =2000.

where the integration constant do=L/2 is the value of x
at which u =1 at t =0. This formula describes the way
the slope of the u curve decreases with time. To under-
stand the way the shock front propagates in Figs. 2 and 3
we need in addition the conservation theorem

f L
u dx =const, (2.3)

which is easily derived from Eq. (2.1) and the periodic
boundary conditions. Applying this to the triangular re-
gions of base d = position of shock front and hei ht
u (d) =d/(r +d, ) in Figs. 2 or 3 we find

erg

—do ——d
d

t+d 0
(2.4)

d =[do(t+do)]'~
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Expanding u (x, t) in an c'n any convenient orthonormal basis d;
—=fdx P;(x)

Bx
(3.9)

u(x, t}=g u;(t)P, (x),
i=1

the Burgers equation (2.1) becomes

Bu.
a,juj+b;~kujuk,

where
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1=+ iI)o(x —i), (3.11)

x =g (i +so )Po(x —i ), (3.12)

with so—:gk k/&2, from which results, by taking a
derivative and substituting an expression for 1 inside an
integral,

0=+ d, , (3.13)

(3.14)

Replacing any one of the homogeneous equations (3.10)
(except j =0) with the inhomogeneous equation (3.14)
yields a set of linear equations which can be solved for
the d, 's.

For the matrix elements between t)'io's the scaling rela-
tion (3.8) gives

dj =2+ (
—1)"clcl+k 2jdk =4d2j —d, ,

I&, I

where use has been made of the relation

(3.15)

g CICI+2i bO, i
I

(3.16)

1+1=2 g (
—1) clcN I k I+2jdk

k, 1

(3.17)

This takes care of the matrix elements at the finest level
of resolution. To obtain those at coarser levels, use is
made of the fact that any i)) or g at a coarse level of reso-
lution is a linear combination of P s at the next-finer level,
as seen from the definitions Eqs. (3.5) and (3.6) using the
scaling relations Eqs. (3.7) and (3.8), i.e.,

iI „;(x)=g c P~ —
& 2 + (x)

J
(3.18)

which follows from orthonormality of the po, 's.
Mixed matrix elements d, with m standing for mixed,

are found just as easily from

aq, (x —j)
d, = f dx iI)o(x)

el of coarseness has functions which are twice as wide
and 1/&2 times as high and therefore have first-
derivative matrix elements which are —, the size of those
at the next-finer level. This takes care of all matrix ele-
ments between basis functions at equal levels. For the
mixed-level elements we found an efficient method is to
build up the desired matrix by adding one basis function
at a time, starting with the scaling functions at the coar-
sest level and adding wavelet functions beginning at the
largest scale and working down to finer scales. The re-
quired additional row and column can be computed from
a DWT on the matrix of d 's appropriate to the current
level of f's and discarding any unneeded elements. To il-
lustrate, let us assume we have a list of the wavelets we
want to keep, and that we are adding the last wavelet and
thus the last row and column, to be labeled by
(n, j)=(O,jo ), to our matrix. We take the vector

~3'(x —jo )
U, =d, = f dx po(x i)— (3.20)

for i = 1 to M/2 and perform a DWT on the index i. The
resulting vector contains the desired matrix elements plus
those between go(x —jo ) and wavelets which we are not
including in our list. The desired ones can be read out us-

ing our list. While some elements were thus calculated
and then discarded, this method has the advantage that
one never discards an entire row or column, as would be
the case if a two-dimensional DWT were done on the full

Po, go matrix.
The calculation of the b; k elements is done similarly.

In this case two supplementary equations are required in
addition to the scaling equations. We used

l=gjb, jo,
J

P bj, 1+j,o
J

(3.21)

(3.22)

For the mixed-level elements, the situation is even more
critical here than for the two-dimensional a; case. Here,
successively adding functions to the basis requires adding
shells to the array using small-size two-dimensional
DWT's, which is much better than doing the full-size
three-dimensional DWT.

g„;(x)=g (
—1) CN, jiti„, 2, +,(x) .

J

(3.19)
IV. TIME STEPPING

Thus the matrix elements at any level of resolution can be
found from those at finer levels by carrying out the linear
transformations of Eqs. (3.18) and (3.19) iteratively,
directly on the matrix elements, beginning with the d 's

and d 's we have just constructed. This transformation
is called a discrete wavelet transform (DWT) (see Rioul
and Duhamel [15] for a recent review; the specific im-
plementation we used is that of Press [16]) and could be
carried out in a straightforward way on the M ( =2 ) by
M matrix we have just constructed in the iI)o, po basis.

On the other hand, since we do not want to keep all the
wavelets at all levels, but choose a subset at each level, we
do not need to evaluate the full M by M matrix. We
found it faster, therefore, to use the scaling properties of
the i))'s and P's to avoid redundant calculation. Each lev-

clu&" —— 5j v aj ——(b—jk—+b,kj )uk ul
dt dt

J 2 iJ 2 iJ

dt
5 +v—a u".

'J 2 'J J (4.1)

Any complete orthogonal basis can be employed in the
above equations. We want to use a set that will provide a
good description of the developing discontinuity at the

Returning now to the Burgers equation (3.2) in any
chosen basis, advancing in time can be done by several
methods. We used a second-order semi-implicit time-
stepping scheme which allows large time steps and pro-
vides good accuracy:
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shock front without requiring a large number of states
which are just wasted. With a uniformly distributed
finite-differencing scheme, for example, a large number of
points in the neighborhood of the discontinuity implies
an unnecessarily high point density at other positions.
Figure 3 was produced with a finite-differencing scheme
employing 4096 equally spaced grid points, but obviously
the high density of points is unnecessary except in the
neighborhood of the discontinuity.

Expansion in a set of fine-scale scaling functions, as
employed in Refs. [7,8,11], does not seem to change this
aspect appreciably. Individual scaling functions are
spread out over six neighboring grid sites when one uses
Daubechies-6 basis states, but one still needs a very fine
scale for the underlying grid in order to obtain a good
description of the discontinuity and avoid the Gibbs-like
oscillations which those authors found. This implies an
unnecessarily high density of states centered about points
away from the discontinuity.

We have used a basis consisting of a modest number N,
of coarse-scale scaling functions plus a selected set of
wavelets of finer scales. We chose a fixed number N„of
wavelets centered about the discontinuity at each succes-
sive level of finer (by factors of 2) scaling out to some
maximum. For example, Figs. 1 and 2 were produced us-

ing N, =32=2 and N =12 out to a resolution level cor-
responding to a maximum of N, „=4096=2' possible
functions, i.e., 32+7X12=116 scaling functions and
wavelets. Thus we hoped to do almost as well with 116
suitably chosen scaling functions and wavelets as we
would have done with the 4096 lowest-order scaling func-
tions and wavelets.

The matrix c on the left-hand side of Eq. (4.1) must be
inverted to carry out the time stepping. In a finite-
differencing scheme the matrices a and b involve just
nearest neighbors, the matrix c is tridiagonal, and the in-
version is very fast. If one uses a basis of scaling func-
tions, as recommended by Tenenbaum and co-workers,
the computation of c is fast and c is a banded matrix
(with four nonzero elements above and four below the
main diagonal in a Daubechies-6 basis). The inversion of
such a banded matrix is also fast. For a basis using both
scaling functions and wavelets as discussed in the preced-
ing paragraph, the matrix c is sparse, but with a rather
complicated distribution of zeros. We found it necessary
to use dense matrix programs to invert c. The most
time-consuming part of the calculation turned out to be
the evaluation of c, which requires computer time ~ N
with N =N, +7N = 116, the number of modes kept.

For the initial condition leading to Fig. 1 the discon-
tinuity is fixed in time. For such a case one choice of the
set of N wavelets to be kept is good for all time. If the
singularity moves, as in Figs. 2 and 3, the set of N wave-
lets to be kept must change with time, i.e., the code must
be adaptive. In general this would require recalculation
of the matrices a and b for each time step and would
probably be quite expensive. For the particular problem
discussed in this paper we were able to evade this
difficulty by exploiting the periodic boundary conditions.
With this type of boundary condition all points are
equivalent and the discontinuity can be shifted so as to al-

ways be at the center of the range. Thus after each time
step we inverted the wavelet transform so as to get back
to coordinate space, located the point on the curve of
rnaxirnum negative slope, translated the curve so this
point was at the center, and performed the forward wave-
let transform so as to get back into wavelet space for the
next time step, keeping track all the while of how far the
curves had been translated in order to be able to con-
struct the plots in coordinate space at successive times, as
shown in Figs. 1 and 2.

V. RESULTS AND CONCLUSIONS

Our results using a selected set of N, =32 coarse-scale
scaling functions and 7XN =84 wavelets, for a total of
116 from the lowest 4096, are shown in Figs. 1 and 2 for
the full-sine-wave and half-sine-wave initial conditions.
For comparison, a finite-differencing calculation using
4096 equally spaced points for the half-wave initial condi-
tion is shown in Fig. 3. No finite-differencing calculation
is shown for the fu11-sine-wave initial condition because it
is indistinguishable from Fig. 1. It is clear from compar-
ing Figs. 2 and 3 that 116 suitable chosen modes do al-

most, but not quite, as well as 4096 for the half-sine-wave
initial condition.

Experimentation showed that N, =32 is the minimum

leading to acceptable results for the half-sine-wave initial
condition, but that N can be reduced from 12 to 6
and N,„can be reduced from 4096 to 1024, i e.,
32+5 X6=62 modes, with a slight decrease in the quali-

ty of the result. Of course these reductions lead to a big
savings in computer time.

The calculations given in our plots were made with a
value of v=2.048 in grid units. Since the maximum
value of u has been fixed at 1, this corresponds to a "Rey-
nolds number" of 4096/2. 048=2000. We found by ex-
perimenting that v could be reduced to 0.512, corre-
sponding to a Reynolds number of 8000 without notice-
ably changing the results for the half-sine-wave initial
condition. Further reduction in v led to instabilities. For
the full-sine-wave initial condition v could be reduced
even further. It is not, however, possible to go to the lim-

it v=0.
In conclusion, we find that it is possible to obtain good

results for the solution of the Burgers equation with ini-
tial conditions leading to shock waves by employing a
small set of suitably selected coarse-scale scaling func-
tions and fine-scale wavelets chosen to describe the be-
havior near the discontinuity. We are able to do almost
as well with 116 scaling functions and wavelets as with
4096 uniformly spaced points. For this one-dimensional

problem the added overhead of the wavelet computation
is unfortunately more than the cost of a finite difference
calculation with a large number of equally spaced points.
We might hope that for a higher-dimensional problem
the reward would be greater than the cost.
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