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The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at
the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for

betatron tunes near the third, fourth, fiRh, and seventh integer resonances. This motion is described

by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for

nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced.
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I. INTRODUCTION

The significance of nonlinear dynamics to accelerator
design and operation is widely recognized. Nonlinearities
can have the undesirable effect of reducing the acceler-
ator acceptance, or dynamic aperture, from what would
be expected for a purely linear machine. On the other
hand, nonlinear effects have been found useful in applica-
tions such as slow extraction of beam from a high-energy
accelerator, or for beam manipulations in phase space [1].
Nonlinear-beam-dynamics studies have become increas-
ingly important to the design of future colliders such as
the superconducting super collider (SSC) and the rela-
tivistic heavy ion collider (RHIC). This is in large part
due to the superconducting magnets used in these ac-
celerators. These magnets have fields with higher-order
multipole components which are considerably stronger
than those in conventional iron magnets, producing cor-
respondingly stronger nonlinear terms in the Hamilto-
nian. While the nonlinear terms in the Hamiltonian are
intrinsically weak, particle motion can be strongly af-
fected when resonance conditions are encountered.

Many theoretical studies [2] of motion in nonlinear
fields have predicted both the long- and the short-term
behavior of orbiting particles in an accelerator. In or-
der to better understand the validity and limitations of
the approximations used in these theoretical predictions,
experimental studies of resonant behavior are essential.
Several nonlinear-beam-dynamics experiments have been
performed in the past [3]. These experiments studied the
general features of nonlinear motion, such as resonance

island stability, smear, tune dependence on amplitude,
etc. However, motion around stable fixed points in phase
space, or resonance islands, has not yet been studied in
detail, to the authors' knowledge. Since individual parti-
cle motion cannot be tracked experimentally, these stud-
ies typically track the motion of the beam centroid after
collectively perturbing the beam.

The degree to which the collective motion of the beam
accurately represents the motion of a single particle is
a function of the emittance of the beam; the smaller
the emittance of the beam, the more accurate its rep-
resentation of single-particle motion. In this respect,
the Indiana University Cyclotron Facility (IUCF) cooler
ring provides an ideal environment for nonlinear-beam-
dynamics experiments. The 95/0 emittance, or phase-
space area, of the proton beam is electron cooled to about
0.37r mm mrad in less than 3 s. The resulting relative mo-
mentum spread full width at half maximum (FWHM) of
the beam is about +0.0001 and the beam lifetime could
be as long as hours. Such a high-quality beam bunch can
closely simulate single-particle motion.

This article provides details of the nonlinear-beam-
dynamics experiments recently performed at the IUCF
cooler ring, some of which have been reported previously
[4]. Particle motion near four different resonances was
studied. The experimental methods used in this study
are described in Sec. II. The data and the analysis are
discussed in Sec. III, where we present a method for ob-
taining properties of resonance islands, and determine
the Hamiltonian for the particle motion near two of the
resonance conditions. Section IV contains a summary
and conclusions.
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II. EXPERIMENTAL METHODS

The IUCF cooler ring is hexagonal with a circumfer-
ence of 86.82 m. The experiment was done with a 45-
MeV proton beam injected and then stored in a 10-s cy-
cle. The stored beam consisted of a single bunch, typi-
cally with 3 x 10s protons and a bunch length of about
3.6 m (or 40 ns) FWHM. The revolution period in the
accelerator was 969 ns with bunching produced by op-
erating an rf cavity with frequency 1.03168 MHz with a
harmonic number h of 1.

Before making a measurement, the injected beam was
electron cooled for at least 3 s. The stability of the hori-
zontal closed orbit was estimated to be better than 0.05
mm FWHM. The beam was then kicked with various
angular deflections 8~, with a pulsed deflecting magnet
having a time width of 600 ns FWHM, and rise and fall
times of 100 ns. The kick occurred in conjunction with
a triple coincidence between a signal from the data ac-
quisition system, the rf system, which was providing the
beam bunching, and a 7-s delay from the beginning of the
injection cycle. A schematic of the principle components
of the electronics is shown in Fig. 1.

Once perturbed by the kicker, the beam executed co-
herent betatron motion [5], which will be discussed fur-
ther in the next section. The motion being studied was
along the z axis in the curvilinear coordinate system in
which the s axis points in the instantaneous direction of
beam motion, the z axis points radially outward, and the
z axis points vertically upward. The horizontal position
at two different positions along the s axis is used to locate
the beam in the phase space s-p„aprocess which will

be described further in the next section. Electron cool-
ing has a very small efFect in the time a measurement is
made (4096 turns); nevertheless, it was turned ofF 20 ms
before the beam was kicked to avoid any damping of the
betatron oscillations it might do.

The motion of the beam centroid was tracked using
two beam-position monitors (BPM's). Since motion in
one dimension only was being studied, each BPM mea-
sured the displacement of the beam from the stable closed
orbit in the horizontal plane. The BPM's were diagonally
split cylindrical capacitive pickups, each half on opposite
sides of the beam in the horizontal plane [6]. As the
beam passes through a BPM, signals on the right-hand
and left-hand electrodes, R and L, are induced which are
approximately proportional to the product of the charge
of the beam bunch enclosed within the BPM and its hor-
izontal distance from the electrode. The sum signal E is
the analog sum of the signals from the two halves of the
BPM and is proportional to the beam bunch charge. The
schematic of the electronics in Fig. 1 shows the signals
from the BPM's and the processing that was done.

Because the signals from the BPM's were only about
40 ns in duration, digitization without further processing
was deemed impractical. Instead, a peak-detecting cir-
cuit was used in conjunction with a sample-and-hold cir-
cuit to produce an analog signal with a level proportional
to the peak value of the amplified R and E signals. Since
the beam intensity at the start of a measurement could
vary by over an order of magnitude during an experiment
conducted near a nonlinear resonance, the amplified sig-
nals could require attenuation before the peak detection
circuit. This was accomplished by using programmable
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III. DATA AND ANALYSIS

A. Betatron motion in phase space

For particle motion in a circular accelerator, the hor-
izontal deviation from the closed orbit, x(s), satisfies
Hill's equation:

d2X LB,+ K(s)x =
ds Bp

(3.1)

Here K(s) is a function of the quadrupole strength,
Bp = p/e is the magnetic rigidity, and s is the longitudi-
nal particle coordinate, which advances from 0 to t, the

variable attenuators controlled by a level detecting cir-
cuit. Further details on the analog electronics can be
found in Ref. [7].

After analog processing, the B and E signals from a
BPM were digitized with a 12-bit transient recorder hav-
ing 8192 words of memory. The transient recorders were
strobed externally using signals derived from the respec-
tive Z signals by using constant fraction discriminators.
With the two available transient recorders, each transient
recorder had to digitize both the R and Z signals from a
BPM. The R and Z signals were multiplexed, and each
transient recorder, having 8192 words of memory, digi-
tized R and Z for 4096 turns around the accelerator with
512 of these turns occurring before the beam was kicked.
This information was read by the data acquisition com-
puter, which stored the data on magnetic tape for more
detailed analysis at a later time.

On-line calculations of the normalized position, i.e. ,

, and the fast-Fourier transform (FFT) of the nor-
malized position were done to monitor the progress of
the experiment. The FFT of the normalized position
provides the frequency of the betatron oscillations as a
fraction of the revolution frequency, which is called the
horizontal betatron tune v . The integer part of the tune,
and the ambiguity in the fractional part of the measure-
ment, is resolved from an observation of the periodicity of
a closed orbit distortion [8]. Also, since the position mea-
surement is not perfectly linear, harmonics may appear in
the FFT spectrum. Thus sidebands of the betatron fre-
quency may appear when the signal is the superposition
of components with diferent frequencies, as may happen
if there is a significant amount of coupling between the
transverse modes of motion.

The absolute position of the beam was determined by
calibrating a BPM identical to those used in the exper-
iment and with amplifiers that were carefully matched
to have the same gain as those used for the experiment,
against a nearby wire scanner. We estimate the error
in the calibration using this method to be about 5'Pp.

The position resolution was measured to be 0.23 mm
FWHM, or less, for each BPM in the range of operating
currents used in this experiment. This figure for the po-
sition resolution was determined from the measurement
of the closed orbit position and is within a factor of 2
of the lower limit for the resolution estimated from the
electronic noise at the input of the first amplifier alone.

circumference, as the particle completes one revolution of
the cyclic accelerator. The anharmonic term &, which

arises from higher-order multipoles, coupling terms, or
quadrupole and dipole errors, is normally small. Oscil-
lations about the closed orbit due to the linear focusing
force of quadrupoles, K(s), are called betatron oscilla-
tions. The number of oscillation periods in one revo-
lution is the horizontal betatron tune v, which can be
adjusted by varying the quadrupole strength within the
accelerator. Both K(s) and the anharmonic term
are periodic functions of s with period C.

Neglecting the small anharmonic term in the Hamil-
tonian, the betatron motion is linear. Hill's equation,
Eq. (3.1), can be solved using the Floquet transforma-
tion [5] to obtain the solution

x = /2P Jcosg, (3.2)

where J and P are action-angle variables. Here 2J is the
phase-space area (called the Courant-Snyder invariant or
the emittance) of the betatron motion and P is the be-
tatron amplitude function of the Floquet transformation
(P~ is periodic in s with period C). For each turn around
the accelerator, the angular variable P increases by 2+@ .
The turn-by-turn tracking of motion in z-z' phase space,
as observed at a given location in the cyclic accelerator,
is called a Poincare map. Linear betatron oscillations
produce ellipses in the Poincare map. Thus deviations
from ellipses in a Poincare map can be used to study the
anharmonic term of the Hamiltonian.

B. Deduction of Courant-Snyder parameters

Experimentally, x' is not a convenient quantity to mea-
sure. From the linear solution for betatron motion, given
by Eq. (3.2) above, x' is given by

1x' = {'—a x ——/2P Jsing),
p*

(3.3)

where n~ = —
z "&~, . By defining normalized momentum,

p, as

I
p =n, x+p x,

then from Eq. (3.3),

p = —/2P~ J sing.

(3 4)

(3 5)

By comparing Eqs. (3.5) and (3.2) it is seen that when
linear motion is plotted in x-p space, it is a circle [5]
defined by the equation,

p' + x' = 2P J. (3 6)

Note that the action-angle variables are J and P, where

P is the clockwise angle measured in x-p space from the
2; axis.

The variables that are actually measured are 2;~ and
2;2 at the two BPM's which are separated in betatron
phase by Pi&. The n x term in Eq. (3.4) can be solved
in terms of xi and x2 from the linear transformation of
the phase-space coordinates from BPM1 to BPM2. By
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making this substitution, Eq. (3.4) for p~1 becomes

xl x2
Pal = —Zl COt $12 + ~ X2 )

S111$1g
(3.7)

and the equation for a circle in x1, p 1 becomes an equa-
tion for an ellipse in the variables z1 and xz, given by

v'p»lp»
Zl cot 4'12 + . Z2 + Z1 = 2pzl~.

l sin $1z
(3.8)

FIG. 2. Plot of horizontal position of the beam centroid
measured at BPM2 vs the sine measured at BPM1 on a
turn-by-turn basis. The curve is a fit to an ellipse.

The third-integer resonance at 3Ij = ll was the
lowest-order resonance studied. The dynamic aperture
was not large enough in the current study to allow one to
observe any stable fixed points beyond the one at the ori-
gin. Consequently, no island structure is observed in this
case. However, the effect of the nonlinearity on motion is
easily seen. In Fig. 3 the Poincarh maps for five different
kick amplitudes are shown. In this figure it can be seen
that the largest kick has placed the beam just beyond
the separatrix for stable motion, and the beam intensity
falls below our detection threshold in about 70 turns af-
ter the kick. For this figure the arithmetic mean of the
phase-space points after each kick was taken as the ori-
gin. This closely corresponds to the location of the beam
before the kick, with a usually small difference resulting
from a systematic electronic error in the signal offsets.
The deviation of the arithmetic mean of the points after
the kick from the measured closed orbit decreases with
increasing beam intensity. The largest deviation was seen
for the largest kick, where the beam intensity decreased
by more than 10 dB. This case is represented by square
points in Fig. 3, with the square point near the center be-
ing a point before the beam is kicked. The points before
the beam is kicked are not used in subsequent analysis.

In order to analyze this motion, a number of assump-

The values of $1z and p1/p2, needed to transform the po-
sition variables to the normalized momentum, were de-
termined by fitting experimental data, taken where it is
known the motion is linear, to this equation of an ellipse.
See Fig. 2 for a typical set of data for which the motion
is linear, with the corresponding fit to the ellipse. Alter-
nately, the P functions at each BPM (which are located in
quadrupoles) and the phase advance between the BPM's
can be measured independently [8].
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C. Resonances 0

The anharmonic terms in Eq. (3.1) of interest are those
due to nonlinear perturbations. Nonlinear perturbations
in the accelerator include sextupole fields of chromatic-
ity correction sextupoles, the fringe fields of dipoles, and
some small higher-order random error multipoles. These
anharmonic terms usually do not significantly perturb
the particle motion in phase space except when the be-
tatron tunes are near a resonance. For one-dimensional
motion the resonance condition is given by mv = n,
where m, n are integers.

The Poincare map deviates from a circle at a resonance
condition. Particle motion around stable fixed points (a
stable solution to the equation of motion) in phase space
bounded by invariant surfaces may occur for nearly in-
tegrable Hamiltonian systems. These stable phase-space
ellipses around fixed points, called islands, are separated
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FIG. 3. Poincare maps for motion near the third-integer
resonance for 6ve di8erent kicker amplitudes: 200, 300, 400,
450, and 470 in arbitrary units, increasingly kicker amplitude
corresponding to increasingly large J contours.
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tions are made. In a storage ring, the magnetic fields are
predominately perpendicular to the direction of motion
of the charged particles, which means the vector poten-
tial A will have a component in the s direction only. The
bending radius p of the charged particle is much larger
than the x displacement of the particles from the closed
orbit, and thus higher-order terms in x/p can be omit-
ted. Also, while an electric field is employed to bunch the
beam, its effect on transverse motion will be ignored for
this discussion. With these assumptions, the Hamilto-
nian for the system in which the only transverse motion
is in the x direction is given by

1.Oa

8
p

050

0.10

oo oo 4 o0 oo 0
OM + o oo~o coo oo o

oo ooo
oO 00 Og 0 oo

(3.9) 0.05 I I I I I I I I I I I I I I I I j

-100 100

where po is the total momentum, and p is the compo-
nent of the momentum in the z direction. In the median
plane of the accelerator, the fields have a relatively simple
expansion,

B(n)) m+1

; (n, +1)! (3.10)

where n = 0 is the dipole term, n = 1 the quadrupole
term, n = 2 the sextupole term, etc. The equations of
motion resulting from this Hamiltonian, and the linear
solutions were already introduced in Sec. III A.

After making the appropriate transformations, it can
be shown that the Hamiltonian at the third-order reso-
nance has the form

(2J)s/2F
2H= J6-

48vr
cos[3(P + ()] + -n J2,

2
(3.11)

where b = v~0 —33 and v~0 is the tune in the limit of zero
betatron amplitude. The factors F and ( are related to
the strength and location of the sources of the third-order
nonlinearities. The factor n is the first-order coefficient
of the tune shift caused by the nonlinearity, as a function
of J. In studying the third-integer resonance, the term in
the Hamiltonian containing n is small and we will neglect
it. However, in accelerators where the dynamic aperture
is much larger, or in which n is greater, resonance islands
could be observed and this term would be necessary to
describe the motion.

The Hamiltonian of Eq. (3.11) define contours of con-
stant H in J-P space. The data shown in Fig. 3 are
plotted in J-P space in Fig. 4. The solid lines drawn
correspond to lines of constant H/F. The values of 6'/F
and ( used in these calculations were determined empiri-
cally, the value of b/F was —0.050''vr mmmrad and the
value of ( was O'. The corresponding unstable fixed point
(UFP), given by JUFp = 1287r (P/F) is 3.2m mmmrad.

In Fig. 5 the tune shift for the data pictured in Fig. 3
is shown. From this figure it can be seen that the value of
b is —0.0060. From this and the empirically determined
value of b/F above, the experimental value of F is about
67 m

Assuming that the third-order resonance is driven by
sextupole contributions only, the parameters F and ( in
Eq. (3.11) are given by

P (deg)

FIG. 4. Data from Fig. 3 shown in J-P space. The con-
tours shown are calculated using Eq. (3.11).

B/(
~&3i( &

3/2 &3i~~P(s)
Bp

(3.12)

The value of F can be found by integrating the sextupole
strengths for the different components of the ring. The

Bll
major contributors of sextupole strength, S = B, areBp'
the chromaticity correcting sextupoles and the end sex-
tupole fields of the 12 main dipole magnets. The ex-
pected contribution to the integral from the sextupole
magnets has been evaluated and has a magnitude of
about 82 m &. The contribution to the integral due to
the sextupole component of field for the bending mag-
nets is more difficult to evaluate. Assuming the sextupole
strength at the ends of each dipole magnet, Sd, to be the
same, the contribution to the integral due to the dipoles
can be evaluated. So, Eq. (3.12) can be written for the
current case as

Fe '~ = 82 m ~e ' + Sd(20 m~e+' ) (3.13)
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FIG. 5. Plot of the measured tunes for data taken near
the third-integer tune, of which the data shown in Fig. 3 is a
subset.
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8. Linear betatron coupling resonance

With a determination of Sq, a comparison of the theo-
retical values of Ii and ( with the measured values can
be made. We make an estimate of the required sextupole
strength of the bending magnets from the experimentally
measured chromaticities.

The sextupole strength of the dipole magnets is de-
duced from the measured chromaticities C, and t, . The
chromaticity is the rate at which the tune changes with
the change in relative momentum Ap/p, and it is a func-
tion of S for the dipole magnets. In Fig. 6, a graph
of chromaticity versus S, computed using the program
MAD, is shown. The experimentally measured values of
chromaticity are also shown as points on the calculated
curves. From this figure, the value of Sg can be deduced
to be about —0.4 m s. Thus the calculated value of F is

1
88 m ~ and ( is —10'. The discrepancy between these
calculated values and the experimental values is a topic
of continuing investigation.
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When the coupling is weak, u and ~+ are approximately
2ir fov and 2vr fov, W. hen these two frequencies are rel-
atively near each other, the result is the familiar mod-
ulation of the amplitude of the position motion with a
frequency equal to the beat frequency, or the difference
between the two normal mode frequencies. However, the
FFT of the horizontal position for a case with linear cou-
pling would only contain frequencies at u+ and u . If
the measured signal has some nonlinearity, the frequency
spectrum may also contain harmonics of these frequen-
cies and mixtures of frequencies. In Fig. 7, experimental
data are shown in a case where the coupling is relatively
strong. The modulation in the position oscillation at the
beat frequency is evident. The strong linear coupling
arises mainly from the solenoidal field of the electron
cooling system,

The eKect of the coupling on the phase-space plots can
be difficult to distinguish from the effect due to a non-
linearity. The data shown in the Poincare maps of Fig.
8 were taken near three different resonance conditions:
In Fig. 8(a) the map is made using data taken with a
tune near the seventh-integer resonance, in Fig. 8(b) it
is from data taken near the fifth-integer resonance, and
for Fig. 8(c) the data was taken near the fourth-integer
resonance. For each case shown in this figure, the order
of the resonance is evident from the symmetry of the mo-
tion in phase space, as well as from the measured tune.
While each set of data shown in Fig. 8 has the character-
istics of motion due to a nonlinearity, as was described at
the beginning of Sec. III C, each can be shown to be pri-
marily due to linear coupling. An example in which both

In addition to nonlinearities, there are anharmonic
terms that have the effect of linearly coupling the hori-
zontal and vertical modes of motion. In the case of linear
coupling, the anharmonic term may arise from the skew
quadrupole components, or from the solenoidal fields in
the cooling region. Then for x and z motion, Eq. (3.1)
has the form of two coupled harmonic oscillators,

x +u~x = —az, z +u, z = —ax, (3.14)

where a is the coupling constant, u~ is 2+v~ fo, and sim-
ilarly u, is 2vrv, fo, where fo is the revolution frequency.
The solutions for the linearly coupled betatron motion
can be expressed in terms of the superposition of two
eigenmo des,

1
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~ I
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FIG. 7. FFT and x position spectra for a case where cou-
pling is relatively strong.
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the FFT for the x position is shown for the data near the
fourth-integer resonance displayed in Fig. 8(c). The ratio
of the two strongest peaks in the FFT, corresponding to
the x and z tunes, is approximately equal to the square
root of the ratio of the integrated phase-space area of the
observed islands to the total phase space covered. This
is the expected result for motion due to coupling.

While coupling is easy to identify, it complicates the
Poincare map, obscuring the effects of a nonlinear pertur-
bation. Efforts to minimize this effect were made by pur-
posely moving the vertical betatron tune away from the
horizontal tune to reduce the magnitude of the betatron
coupling. This method was of limited usefulness. For
more recent work, a more effective coupling correction
scheme utilizing skew quadrapoles has been developed.
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linear coupling and a nonlinearity contribute strongly to
the observed motion will be discussed in Sec. III C 3.

There are several ways of identifying the effect coupling
has on motion in one dimension. If an FFT of the x posi-
tion variable is made, then the two frequencies associated
with the z and z tunes are easily determined. In Fig. 9
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FIG. 8. Poincare maps for data taken near three different
resonance conditions. The data in (a) are taken with a v, =
37, in (b) v, —35, and in (c) v, 34.

8. Fourth-integer-resonance anaLysis /gJ

While coupling produces much more complicated mo-
tion in a Poincare map, the effect of a perturbing nonlin-
earity can still be observed in favorable cases. Figure 10
shows the Poincare map for data taken where the beta-
tron tune is v = 3.7578 in the left graph and v = 3.7500
in the right graph. The Poincare map in the right part
of the figure shows that particles were kicked onto the
fourth-order resonance islands. A comparison of this
Poincare map to that shown in Fig. 8(c) for a different
set of data, also taken near the fourth-integer resonance,
reveals that the motion in phase space is more complex
in this case. The strength of the perturbing nonlinearity
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FIG. 9. FFT of the position for the data in Fig. 8(c). The
FFT of the position is shown for case where linear coupling
dominates. Peaks corresponding to v and v are visible and
labeled. Additional labeled peaks are due to a first-order
nonlinearity in the position measurement.

FIG. 10. Poincare maps in the normal coordinates
(xq, p, ) at the betatron tunes v = 3.7578 (left) and v
3.7500 (right) are shown for comparison. The resolution of
the measurement is about 0.1 mm. The corresponding maps
using the action-angle variables (Jq, Pq) are also shown in the
lower part of the figure.
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in this case was much stronger. Within an island the par-
ticle trajectory, on average, traced out an ellipse around
a corresponding stable fixed point. However, this motion
is obscured by the motion due to coupling.

The most direct evidence for the presence of the per-
turbing nonlinearity is found in the FFT spectrum of
the betatron motion. The FFT of the x position at the
fourth-order resonance, v = 3.7500, is shown in Fig.
11(a). Note that the vertical betatron tune, present due
to linear betatron coupling, is also observed at v,
5 —0.3024. A peak corresponding to the island frequency
is present in this spectrum at a very low frequency where
it is difficult to measure. The frequency of oscillation
around an island's fixed point provides useful informa-
tion and is somewhat easier to measure by calculating the
FFT for a single island, i.e. , every fourth turn around the
ring for the fourth-integer resonance. Using the same set
of data used for the FFT shown in Fig. 11(a), the FFT
spectrum of oscillations in a single island is shown in Fig.
11(b). Note that there are two dominant peaks; one lo-
cated at v«„~~;„s——v2; —v, + 1 = 0.0524 6 0.0007 due
to linear coupling and another corresponding to the reso-
nance island tune v;,l~„p= 0.0013+0.0007. The accuracy
of the island tune measurement is limited by the avail-
able memory in the transient recorders or the lifetime of
the beam. The beam completes one oscillation around an
island's fixed point after 1/v;, ~a„d (about 800 in this case)
orbital revolutions, while the oscillation due to coupling
occurs in I/v, ~„pl;„s(about 19) orbital revolutions.

As discussed previously, the resonance island ellipse in
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the right-hand side of Fig. 10 is obscured by the linear
coupling, but now it can be shown that the island struc-
ture is retained. The motion is a superposition of the
more rapid coupling oscillation and the slower resonance
island oscillation. When examined with this perspective,
the phase-space trajectory appears as the coupling oscil-
lation winding around a resonance island ellipse (see Fig.
12). For the coupling tune of 0.0524 at the fourth-order
betatron resonance condition, it takes five island turns
(e.g. , the 1st, 5th, 9th, 13th, and 17th orbital turns for
the first island, etc.) for the particle to complete one loop
around a centroid in the coupling ellipse. A five-island-
turn moving average of the phase-space coordinates effec-
tively eliminates the more rapid coupling motion, reveal-
ing the slower resonance island oscillation. The moving
average traces out an ellipse around the stable fixed point
of an island with a characteristic frequency of the island
tune, v;,la„g= 0.0013, which corresponds to a period of
over 800 orbital turns or about 200 island turns.

Near an isolated resonance, rnv n, the Hamiltonian
can be approximated by [2]

H = Hp(J) + g(J) cos(rnid —n8 —y). (3.16)

Here J and P are the conjugate action-angle variables of
the betatron motion, and y is a phase factor determined
by the distribution of nonlinear elements in the accelera-
tor. The betatron tune is given by v(J) =

&&
—vp+rr J,

where we have used a first-order Taylor series expansion
in the action variable with vp as the betatron tune at zero
betatron amplitude and n the coefficient of the first-order
expansion. The factor g(J) is related to the resonance
strength and 8 = s/R is the orbital angle around an ac-
celerator. For the present study, rn = 4 and n = 15.

A canonical transformation with generating function,
Fz(P, Ji) = (P ——"8)Ji, can be made to yield a new
Hamiltonian,

OP
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FIG. 11. FFT of the position for the betatron motion at
the resonance condition 4v = 15 for the data shown in Fig.
10. In (a) the FFT of the position is shown. In (b), the FFT
spectrum of every fourth turn, for motion around a fixed point
is shown.
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FIG. 12. Phase-space points (dots) of the island in the

third quadrant shown on the right-hand side of Fig. 10 are dis-
played with the corresponding five-island-turn running aver-
age (diamonds) . The averaged five-island-turn centroids move
along an ellipse around a stable fixed point of the fourth-order
resonance.
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H = Hp(Jg) ——Jg + g( Jg) cos(mfa —y),m
(3.17)

where (Jq, pq) are the new conjugate action-angle vari-
ables with Jq = J and Pq = P ——"8. Note here that
the new Hamiltonian H is a constant of motion; the par-
ticle trajectory follows a contour of constant H. Fixed
points of the Hamiltonian are given by BH/B Jq = 0 and
BH/Bgg = 0, i.e. , v(Jg) ——" + g'( Jg) cos(mfa —y) = 0
and sin(rnPq —y) = 0.

Let J„bethe corresponding action such that the beta-
tron tune satisfies a resonance condition; i.e., mv(J„)=
n Th.e Hamiltonian can then be expanded around the
resonant action:

move the coupling motion, clearly shows the island el-
lipses. Using the Hamiltonian in Eq. (3.18), we find
cr = 0.0005 6 0.0001 (x mmmrad) . The correspond-
ing separatrix is also shown in Fig. 13. The resonance
strength g is 2.0x10 7r mmmrad in this instance.

The value of g obtained experimentally can be com-
pared with the value of g calculated using the program
HARMON [9]. As for the calculation done in the third-
order analysis, using the known sextupole strengths for
the chromatic sextupoles and assuming the sextupole
strength in the dipole magnets to be —0.4 m s as de-
duced from the chromaticity, the resonance strength g
can be found from the equation,

H = —(Jg —J„)+g(J„)cos(mfa —y)+ (3.18) g = 4Rv4, o,p, p, is(J ), (3.20)

( )
A ma

(3.19)

The ellipses of particle motion around the stable fixed
point can be described by the invariant Hamiltonian

of Eq. (3.18). Substituting g = ("',"& in Eq. (3.18),
the parameter cr can be obtained through matching the
particle trajectory with the contour of the Hamilto-
nian. In Fig. 13 a (J, P) plot of the data, after taking
a five-island-turn moving average in each island to re-

where constant terms are disregarded, and the first and
second partial derivatives of g with respect to Jq are
assumed to be negligible. Thus the equation of mo-
tion in the resonance region resembles the equation of
motion of a pendulum. The island tune is given by
v;,i»d = mg~ng~ and so the resonance strength is given
by ~g~

= v~~& „d/(m2~cr~). The island width, or the maxi-
mum difference in the action variables between the stable
fixed point and the separatrix, is given by

where R is the radius of the ring, and v4 o o o qs is the pa-
rameter calculated by HARMON. The value of g obtained
from this calculation is about 3.1 x 10 47r mmmrad,
which is larger than the value of g obtained from the
fit to the data. The value calculated for cr is about
4 x 10 s, or about one order of magnitude smaller than
the value obtained from the fit. This discrepancy can
be resolved if there is sufficient octupole strength in the
cooler quadrupoles. The origin of these octupole fields
may arise from the coil configuration at the end of these
magnets.

For comparison, the parameter a can also be obtained
from the slope of the betatron tune as a function of the
average action for the motion, (J). The different values of
(J) resulted from kicking the beam with different kicker
strengths. In Fig. 14, measured tunes obtained from a
range of kick amplitudes are plotted against (J), where
the data shown in Fig. 13 determine one point in this
graph. While the errors for the individual points are
relatively large due to the limitation that a short beam
lifetime placed on obtaining enough data to perform an
accurate FFT, the result of a least-squares Bt to a line
gives a value for n of 6.5 x 10 4

(n mm mrad)

0.7500
a

0

0.7495

0.7490
0

~ W

V

0.7485

I I I I I I I I

-100 100 0.7480
o

FIG. 13. Stable ellipse around island fixed points in the
action angle variable is fit with the Hamiltonian of Eq. (3.18)
with v;,~ „q——0.0013. The action and angle variables are ob-
tained from averaging every five island turns in each island
in order to eliminate the efFect of the coupling resonance. We
found a = 0.0005+0.0001 (n. mm mrsd) . The calculated el-
lipse in the present figure used a = 0.00048 (n mm mrad)

I I I I I I I I I I I I I I I

1 3

3 (m mm mrad)

FIG. 14. Plot of v vs the average value of J produced
by a variety of kick amplitudes with a representative error
bar. The slope of a least-squares fit line is 0.00065, which
corresponds to the parameter a.
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g. Synchrotron oscillatioes neer fourth-order
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The chromatic sextupoles were excited to produce the
fourth-order resonance islands discussed in the last sec-
tion. These sextupoles can also be adjusted to minimize
the fourth-order resonance strength. While this condi-
tion was not interesting in terms of nonlinear motion, it
did exhibit another interesting feature. In Fig. 15 the
time evolution of the motion in phase space near the
fourth-order resonance condition is shown when the res-
onance strength is small. These data imply that there
is a time-dependent shift in the betatron tune near reso-
nance. By tracking the location for a single "island" by
using a moving average to remove the coupling motion,
as was done above, the phase for every fourth turn is seen
to have the form
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p = 2n(v~ —3s4)n+ Asin(27rv, „„n+y), (3.21) FIG. 16. Plot of the average phase for a single fourth-
integer island pictured in Fig. 15 vs the turn number.
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where v,
„„

is the measured synchrotron frequency, n is
the turn number, and g, v„and A are to be determined
from a fit to the data. An example of this is shown in the
plot of the average phase of the island, (P), versus turn
number in Fig. 16. Thus the measured betatron phase
is composed of two terms; one term is related to the de-
viation of the betatron tune from the fourth-order reso-
nance condition, and the second term is due to the coher-
ent synchrotron motion of the bunch. The second term
may be understood in terms of the chromaticity of the

machine and the small-amplitude oscillations in longitu-
dinal phase space, or coherent synchrotron oscillations,
resulting from the particle bunching in the rf cavity. The
chromaticity of the storage ring converts the oscillations
in momentum to oscillations in betatron tune, resulting
in the oscillations in phase observed.

By measuring the slope of line about which this syn-
chrotron oscillation occurs in the graph of island phase
versus accelerator turns, the betatron tune was deter-
mined more precisely than was possible with the FFT of
the position from one BPM alone. Provided that linear
betatron motion is assumed for this analysis, the slope
of this line divided by 2vr represents the deviation of the
tune from exactly 3.75. Although a more direct method
exists for determining the magnitude of the coherent rel-
ative momentum oscillation, these data can also be used
for this purpose. If the chromaticity is well known, a
relatively accurate measure of the collective relative mo-
mentum oscillation is given by Ap/p = Av,„„/C~.For
the case shown in Fig. 16 the tune is 3.75004, and the
amplitude of the coherent momentum oscillation is about
6 x 10 s for a chromaticity of C~ ——10.

While coherent synchrotron motion seems to quite rea-
sonably explain the motion observed, it should be noted
that the possibility that some other effect, such as tune
modulation by oscillations in quadrupole power supplies,
cannot yet be ruled out. This awaits confirmation in fu-
ture experiments where more direct measurements of the
coherent momentum oscillations are made in addition to
the transverse phase-space measurements.

-2—
—4

0 2.5 5 7.5 10 0 2.5 5 7.5 10

z (mm)

FIG. 15. Time series of Poincare maps for data taken near
the fourt¹integer resonance. Note the motion of the "island"
appears periodic. The islands in this case arise due to linear
betatron coupling.

IV. CONCLUSION

In conclusion, we have studied particle motion in an
accelerator near the third-, fourth-, fift;h-, and seventh-
integer resonances. We have identified and measured
the properties of third-order nonlinear motion, and of
fourth-order nonlinear resonance islands. In addition, the
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motion in phase space attributable to betatron coupling
and to coherent oscillations in momentum was identified.
This motion was used to produce a more accurate mea-
sure of the tune than the FFT alone, and, assuming no
other sources of tune modulation, to measure the coher-
ent oscillation in b,p/p.

An interesting feature of the resonance islands ob-
served was that betatron coupling does not destroy the
structure of one-dimensional resonance islands. Ex-
perimental data were used to determine fourth-integer-
resonance island parameters v;,is„d, J„,and u. The
Hamiltonian for the particle motion near the fourth-
integer-resonance region was experimentally determined.

In experimental work done very recently at IUCF, the
reduction of linear coupling of transverse modes of mo-
tion has produced even greater detail, and shows promise
of revealing higher-order terms in J for the Hamilto-
nian. In addition, current efforts include expanding these
measurements from one to two dimensions. Experimen-
tally derived Hamiltonians, including more and more
higher-order terms, may allow more reliable predictions
of particle motion. These experimental nonlinear-beam-
dynamics studies may prove to be useful in an effort to
understand the dynamic aperture and the long-term be-
havior of particle motion for future colliders, such as the
SSC and RHIC.
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26, P.O. Box 4349, Stanford, CA 94309.
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