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Characteristics of a dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation
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Nonthermal dusty plasmas can be found in plasma-processing applications as well as in space phsyics.
A model based on a particle-in-cell Monte Carlo simulation has been developed to study the physical
properties of such plasmas and the plasma-dust particle interactions. Assuming a uniform dusty plasma
with a given size and concentration of dust particles, the model provides self-consistently the average
electric field necessary to sustain the plasma for a given current density flowing through it, the charge
and floating potential of the dust particles, the potential distribution, and the velocity distribution func-

tions of electrons and positive ions. The model has been applied to situations where the distance be-

tween dust particles is much smaller than the electron Debye length (particulates interact electrostatical-

ly with each other) as well as situations where the distance between dust particles is larger than the De-

bye length (particulates are isolated electrostatically from each other). Questions concerning the

momentum and energy transfer from electrons and ions to dust particles are also discussed. Simple scal-

ing laws are also derived and compared with the numerical results.

PACS number(s): 52.80.Pi

I. INTRODUCTION

Low-pressure nonthermal plasmas such as those used
in plasma etching or deposition can generate solid parti-
cles whose size ranges from molecular to hundreds of mi-
crometers [1—7]. The formation of these particulates (or
dust particles) is system dependent and is not well under-
stood. They may be introduced in the discharge by plas-
ma surface interaction [4,5] or created in the volume by
polymerization of the gas or its dissociation products
[6,7). The presence of dust particles in the plasma is a
serious problem in etching and deposition applications
because of the contamination of the substrates being pro-
cessed. On the other hand, the ability of these plasmas to
generate nanoscale particulates could be attractive and
find some applications in material science if the size and
physical properties of these particulates can be controlled
[8—10].

In this paper we shall concentrate on the problem of
the electrical interaction between small particles and
nonequilibrium plasmas, without considering the produc-
tion mechanisms of these particles. Plasma-dust interac-
tion in laboratory plasmas has been studied by Emeleus
and Breslin [11]before it was an important issue for plas-
ma processing and a good introduction to this problem is
given in this reference.

Small particles in plasmas behave as microscopic prob-
lems. Like a floating probe, they acquire a negative
charge due to the large mobility of electrons with respect
to positive ions. Their charge and potential adjust in
such a way that at steady state, the flux of electrons to
the dust particle is exactly balanced by the ion flux. Oth-
er processes such as secondary emission from the dust
due to ion bombardment, photoemission, and thermionic
of field emission can also affect the charging of a small
particle in a plasma. Plasma-dust particle interaction is
therefore relevant to probe theory which has attracted a

considerable attention in the past [12—15]. An important
research effort has also been directed toward the under-
standing of the charging of spacecraft or of natural ob-
jects such as dust grains in space plasmas and a large part
of the literature devoted to this subject [16—20] is also
relevant to our problem.

However, in most of the studies cited above, the plas-
ma is considered to be a source of charged particles, elec-
trons, and ions, with given velocity distribution func-
tions, and its properties are supposed to be unaffected by
the presence of dust particles. Since each dust particle
acts as an electron and ion sink, it is clear that a large
concentration of dust particles will have some effects on
the plasma properties (at least in laboratory plasmas) and
on the plasma sustainment conditions.

It is the purpose of this paper to study in a self-
consistent way the charging of the dust particles due to
the plasma environment as well as the charge in the plas-
ma properties due to their presence, in the context of lab-
oratory plasmas. Large concentrations of dust particles
are more likely to occur in radio-frequency plasmas. In
these plasmas, negative ions or heavy negatively charged
particles are confined by the oscillating sheaths (the mo-

bility of these particles being much smaller than the elec-
tron mobility, they cannot reach the electrode during the
anodic part of the cycle for that electrode [21,22]). Ex-
perimental measurements [1,23] in low-pressure parallel-

plate rf discharges have shown that the dust particles
tend to accumulate near the plasma-sheath boundary.
This phenomenon has been attributed [24] to the positive
ion drag force which pushes the dust particles toward the
electrodes and which is balanced by the sheath electric
force at the plasma-sheath boundary. However, in some
conditions, large concentrations of particulates in the
bulk plasma have also been observed, with a not-so-
important accumulation near the sheaths [6]. It is this
kind of situation which is studied in the present paper
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where for simplicity we consider a uniform dc plasma.
The dust particle density and size are supposed to be
given (with a monodisperse size distribution) as well as
the nature and pressure of the gas. The conditions we
have chosen are close (except for dc instead of rf excita-
tion) to the experimental conditions of Boufendi et al.
[25] where dust particles created in a silane-argon plasma
are subsequently trapped in a pure argon plasma where
the size and density of the dust particles can be kept con-
stant for a long time. Comparisons between models using
the results of the present paper and the experiments of
Boufendi et al. [25] are described in a related paper [26].
The plasma we considered is a dc macroscopically uni-
form plasma similar to the positive column of a low-
pressure glow discharge [11,27]. In such a plasma, the
electric field adjusts so that creation (ionization) and loss
(volume recombination, recombination on the walls, at-
tachment, etc.) of charged particles are balanced. In our
problem, the only creation and loss processes which are
taken into account are direct electron impact ionization
of the gas atoms and absorption on the dust particles, re-
spectively.

Under these conditions, the questions we are address-
ing in this paper are the following: (1) What are the
current-voltage characteristics of a dusty plasma, i.e.,
what is the change in the plasma impedance due to the
presence of dust particles for size and density typical of
processing plasma? Practically, the knowledge of the
plasma impedance could be used to detect in a simple
way the formation of dust particles in the plasma [28].
(2) How are the electron and ion transport properties
(density, velocity distribution function) affected by the
presence of dust particles? (3) When the concentration of
particulates is such that the distance between them is less
than the electron Debye length (i.e., several dust particles
lie within a Debye sphere), the particulates can no longer
be considered to be isolated and start to interact electro-
statically with each other. How do the charge and float-
ing potential of the particulates adjust under these condi-
tions? (4) What are the forces acting on the dust particles
due to momentum transfer from electrons and ions and
what is the energy transfer from charged particles to dust
particles? Some of these questions have been discussed
by Mc Caughey and Kushner [29] on the basis of a nu-
merical model. However, this model was not fully self-
consistent and could not be applied to situations where
the particulates interact electrostatically.

A self-consistent particle-in-cell Monte Carlo (PIC-
MC) simulation of a dusty positive column plasma has
been developed to address these questions. The condi-
tions considered are similar to those of the experiments of
Boufendi et al. [25] dusty O. l-torr argon plasma with
10 -cm dust particle density and size in the hundreds
of nanometers range. Results for larger size and lower
densities will also be discussed.

We present in Sec. II a brief overview concerning the
charging of small particles or probes in a nonthermal
plasma. Section III contains a description of the
particle-in-cell Monte Carlo simulation. Results are
presented and discussed in Sec. IV. Some simple analyti-
cal scaling laws are derived in Sec. V and compared with

the numerical results. The validity of the model and its
possible extension to rf conditions are discussed in Sec.
VI.

V(r) = V~ —exp[ —(r —a )/1, ], (2)

where V~ is the floating potential of the particulate, a is
its radius, and A. =[(eakT, )/(n e )]'~~ is the electron
Debye length. The assumption of a constant ion density
is generally not a good approximation and a careful
analysis of the ion trajectories in the sheath around the
particulate leads to better (numerical) solutions of the po-

II. CHARGING OF DUST PARTICLES
IN A NONTHERMAL PLASMA

A. Isolated particle

A dust particle immersed in a plasma acquires a nega-
tive charge and potential which adjust in such a way that
the particulate current to the particulate is zero at steady
state. An ion sheath forms around the particulates, its
length being related to the electron and ion Debye
lengths. For conditions where the electron and ion mean
free paths between collisions with neutrals are much
larger than the sheath length, the spatial variations of
electron and ion number densities and potential are solu-
tions of Vlasov and Poisson's equations, the boundary
conditions being (1) the charged particle velocity distribu-
tion functions given (generally Maxwellian with tempera-
ture T, and T for electrons and positive ions, respective-
ly), with the plasma density being n

„

far from the parti-
culate, and (2) the total current to the particulate is set to
zero.

Berstein and Rabinowitz [14] and Laframboise [15]
have solved this problem in the context of probes, with
different representations of the ion velocity distribution
function. Very often in such problems, the electron den-
sity is supposed to obey a Boltzmann law

[n, =n„exp(eV/kT, ), where V is the local potential, k
the Boltzmann constant, and e the elementary charge] al-
though more exact expressions accounting for electron
absorption on the particulate or on the probe can be ob-
tained ana1ytically. Analytical expressions can also be
derived for the ion density if one assumes, for example,
that the ion energy distribution function is monoenerget-
ic [14].

When analytical expressions are used for electron and
ion number densities, the problem reduces to an implicit
Poisson equation (i.e., the space charge depends on the
potential) which can be solved iteratively [14,15,30].
When the ion temperature in the plasma is large enough
that ions are not deflected by the sheath potential, the ion
density can be considered as a constant equal to n „and
Poisson s equation takes the well-known implicit form

d2V 2 dV e+— = — n„[1—exp(e V/kT,—)],r dr E'0

where r is the radial distance to the particulate.
If one can assume ~eV/kT,

~
&&1, the right-hand side

of this equation can be linearized and one obtains the
Debye-Huckel solution:
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tential distribution [14,15]. Parameters such as the ratio
between the radius of the particulate and the electron De-
bye length play an important role in the calculation of
the ion trajectories, the constants of motion being the ion
energy and angular momentum. Depending on the
values of these parameters, an ion can be either absorbed
by the particulate (or probe), reflected, or trapped (col-
lisions will actually prevent indefinite trapping) by the po-
tential around the particulate [14,15]. Daugherty et al.
[30] have shown recently that for conditions where the
particulate radius is small with respect to the electron
Debye length the Debye-Hiickel potential formula (2) still
gives a good representation of the potential distribution if
the parameter A, is taken to be a "linearized Debye
length" whose value is between the ion and electron De-
bye lengths but closer to the ion Debye length.

B. Large concentration of dust particles

When the concentration of particulates increases, the
distance necessary for the electron-positive ion plasma to
shield each particulate can become larger than the dis-
tance between them and the dust particles start to in-
teract electrostatically. Under these conditions the plas-
ma behaves as a three-component plasma (electrons, posi-
tive ions, and negatively charged dust particles).

The dust particles can therefore no longer be con-
sidered isolated when the a,verage distance between them,
d, is not large with respect to the electron Debye length

If ND is the dust particle concentration, electrostatic
influence between particulates will occur when
d =ND ' —or & A, . If the distribution of dust particles
in the plasma can be considered to be uniform (cubic net-
work), the condition of macroscopic neutrality of the
plasma implies that on the average, the electron and ion
space charge within a cube of dimension d around each
particulate is exactly equal to the charge carried by the
particulate. In such a situation, the actual (not Debye)
shielding distance has to be less than about half the dis-
tance between particulates [17]. One of the consequences
of the shielding of the particulate charge within one ele-
mentary cell of the network is that the average electron
number density in the plasma can be much smaller than
the average positive ion density if ND is large enough
(i.e., when d (A, ) [17,19,20].

Whipple, Northrup, and Mendis [17] have developed a
"spherical capacitor model" where elementary cells
around the dust particles are supposed to be spherical in-
stead of cubic, in order to make the problem tractable
analytically. If b is the cell radius (2b is of the order of
the distance between particulates) and a the dust radius,
and if n, and n are the space-averaged electron and ion
number densities, the charge QD on the dust particle
must satisfy the equation

QD
= (n —n, )(4/3~)(b——a3) .

This relation ensures the charge neutrality of the cell
and is equivalent to imposing a zero electric field at r =b
(Gauss's theorem).

Assuming that the electron and ion densities are relat-
ed to the electrostatic potential by the Boltzmann factor,

n, =C, exp(eV/kT, ) and n =C exp( e—V/kT ), and
linearizing these expressions, Whipple, Northrup, and
Mendis obtain from Poisson s equation an analytical ex-
pression for the potential distribution. For large electron
Debye length to particulate radius ratios (e.g. , A, /a )20
for b /a =50) the potential distribution becomes indepen-
dent of the Debye length and depends only on QD, a, and
b. This distribution can be obtained very simply analyti-
cally by integrating Poisson's equation for constant n,
and n with a zero-field boundary condition at r =b and
E ( a ) =QD /4~eoa .

The spherical capacitor model is a very simple and
elegant way to account (only through boundary condi-
tions) for electrostatic interactions between dust particu-
lates in a plasma. The approach we have used to describe
self-consistently (without assuming given shapes of elec-
tron and ion distribution functions) the plasma-dust par-
ticles interaction presents some similarity with the spher-
ical capacitor model. The principles of this approach are
described below.

III. PRINCIPLES OF THE PIC-MC MODEL
OF A DUSTY PLASMA

A. Principles of the model

To study the plasma-dust particle interaction in a labo-
ratory, positive column like plasma, we want to obtain
the electron and ion velocity distribution functions
(which can be very different from Maxwellian distribu-
tions), the charge of the dust particles, and the potential
distribution. Assuming that the only mechanisms for
creation and loss of charged particles are respectively
direct electron impact ionization of the gas molecules and
absorption on the particulate, the average plasma electric
field has to adjust in order that the losses on the particu-
late and ionization be in balance.

In order to obtain a self-consistent solution of this
problem, it is necessary to solve the electron and ion
Boltzmann equations coupled with Poisson's equation.
As in the spherical capacitor model of Whipple, North-
rup, and Mendis [17], we assume that the dust particles
and plasma form a periodic network. In these conditions,
symmetry considerations enable us to solve the above
equations only in one elementary cell of the network, us-

ing adequate boundary conditions. The shape of an ele-
mentary cell should be cubic for consistency with periodi-
city. In order to avoid the numerical complexity associ-
ated with a full three-dimensional (3D) geometry, we ap-
proximate the cell and dust particle geometries by
cylinders whose radii are noted as b and a, respectively,
and lengths 2b and 2a. The axes of the cylinders are
parallel to the direction of the average electric field

(discharge axis) sustaining the plasma and to the total
current density flowing through it. Assuming axial sym-

metry, the problem reduces to two dimensions in space.
In this geometry the problem is solved using a

particle-in-cell [31,32] Monte Carlo simulation (2D cylin-
drical in space, 3D in velocity). Particle-in-cell Monte
Carlo simulations have recently been used for the model-

ing of rf discharges (1D in space) and some examples of
such simulations can be found in Refs. [33,34]. In
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particle-in-cell Monte Carlo simulations, the trajectories
of a large number of electrons and ions under the effect of
electrostatic forces and collisions with neutrals are fol-
lowed in the phase space, the electric field being recalcu-
lated at each time step. In our model, the electric field is
calculated by solving the 2D Poisson equation in an ele-
mentary cell at each time step. The charged particle tra-
jectories between collisions are obtained by integrating
the equations of motion in the known electric field. Col-
lisions are treated with a classical Monte Carlo simula-
tion I35] using a null collision technique. When an elec-
tron or ion trajectory intersects the dust particle surface,
the charged particle is supposed to be absorbed and is re-
moved from the simulation. Since only one elementary
cell is considered, boundary conditions for the trajec-
tories and electric field and potential on the cell surface
are very important. The boundary conditions which
have been used are described below.

B. Boundary conditions for the charged particle trajectories

When an electron or ion exits the cylindrical cell
volume through one face, it is reinjected with the same
velocity on the opposite face, its position on the face be-
ing uniformly distributed (and deduced from a random
number generated by the computer). Note that this
boundary condition does not imply periodicity for the
charged particle densities. We found it necessary to
redistribute the position reentry of the charged particle
on one face when it exits the cylinder through the oppo-
site face, in order to avoid correlations: A perfectly
periodic distribution of dust particles would imply some
preferential paths for electrons and ions (around the mid-
planes between dust particles) which are not "natural. "
Radially redistributing the positions of the charged parti-
cles on the faces of the cylinder avoids this effect. An
electron or ion whose trajectory intersects the side of the
cylinder delimiting the cell is supposed to be reflected by
this surface.

C. Boundary conditions for the electrostatic Beld and potential

As mentioned above, the symmetry of the system im-
plies charge neutrality in each cell and therefore a zero
electric field flux through the cell cylindrical surface (as
in the spherical capacitor model of Whipple, Northrup,
and Mendis [17]). Charge neutrality within the cell im-
plies equality between the dust particle charge and the
opposite of the electron and ion total charge within the
cell. Knowledge of the electron and ion density in the
cell at a given time therefore implies the charge on the
dust particle. For symmetry reasons, the electric field
perpendicular to the side of the cylinder must be zero.
The electric field parallel to the discharge axis must be
periodic. In our problem this axial field must have a
nonzero average in order to sustain the plasma (i.e., to
provide enough energy to the electrons to compensate by
ionization the loss of charged particles on the dust). The
average electric field which is necessary to sustain the
plasma is related to the current density flowing through
it. The boundary conditions for the electric field are thus
the following.

Let x be the direction parallel to the cylinder axis (and
average electric field) and x =0 and x =b be the abscissa
of the cylinder faces. The electric field perpendicular to
the side surface of the cylinder is set to zero: E,(x, b ) =0
for 0&x &b. The boundary condition for the electric
field along x is periodicity: E„(b,r)=E„(0,r) for
0(r (b.

A convenient way to obtain the value of the average
electric field for a particular value of the current density
flowing through the plasma is to use a fictitious external
circuit connected to the considered cell and consisting of
a generator and a resistor whose voltage and resistance
are given. Such a circuit has been included in the simula-
tion. The conduction current density can be deduced at
any time step of the simulation from the knowledge of
the positions of the electrons and ions in phase space.
The average voltage drop and average electric field across
the cell can then be obtained from the external circuit.
We therefore used the following boundary conditions for
the potential: V(b, r) = V(0, r)+ Vc, Vc being obtained
from the circuit equation,

(4)

where J is the conduction current density (electron and
ion), U is the generator voltage, R the resistance of the
external circuit, and s the area of the face of the cylinder.
At each time step, Vz is changed according to the new
value of the current density. At steady state J and V&

must converge toward constant values. Another bound-
ary condition is necessary for the potential and this corre-
sponds to the reference potential. We take the reference
potential on the dust particle (which is supposed to be
conducting and therefore equipotential): VD =0.

D. Evolution toward steady state

The simulation is started with an initial arbitrary
phase-space distribution of electrons and ions. The initial
charge on the dust particle is therefore also given (charge
neutrality within the cell). The generator voltage and
resistance of the external circuit are imposed. As the cal-
culation goes on, the voltage across the cell varies and is
given by the circuit equation (4). If the ionization rate is
larger than the electron loss rate on the dust particle, the
current density increases which leads to a decrease in the
voltage across the cell, i.e., in the average electric field.
After a number of time steps which is very dependent on
the initial charged particle density distributions and on
the generator voltage and external circuit resistance, the
electron impact ionization rate, the electron loss rate on
the dust particle, and the ion loss rate on the dust con-
verge toward the same value. At this stage, the dust par-
ticle charge and floating potential, the voltage and
current across the cell, and the charged particle distribu-
tions within the cell reach constant values.

Acceleration of convergence toward steady state has
been achieved in some cases by integrating the ion
Boltzmann equation (with the PIC-MC model) with
larger time steps than those taken for the electrons. It
has been checked that the results are independent of this
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acceleration process. More details concerning this
method are given below (Sec. II E).

Since the numerical method is statistical, some fluctua-
tions in quantities such as current density, voltage across
the cell, and floating potential of the dust particle can
occur. Convergence toward steady state can be made
difficult by these fluctuations. In a statistical method, the
fluctuations in the drift velocity are always larger than
the fluctuations of the number density (because the drift
velocity is the average of a quantity which can be positive
or negative). The current density which is proportional
to the drift velocity can therefore exhibit important fluc-
tuations. These fluctuations introduce through the cir-
cuit equation (4) some fluctuations in the voltage across
the cell and so on. In order to minimize this effect, the
circuit equation (4) has been changed by replacing the
current density J by the electron density averaged over
the cell (R is no longer a resistor but is a given constant).
This reduces considerably the fluctuations. Since the
external circuit is used only to find the steady-state
current voltage characteristics of the plasma, this
"artifice" does not affect the results.

Note that in some of the results presented below (Sec.
IV), the size of the cell is very small (large dust particle
densities) and the real number of electrons or ions at a
given time in each cell can be of the order of one or a few.
This means that in such conditions there will be real fluc-
tuations of the cell parameters such as charge of the dust
particle or floating potential. In this paper we consider
that we are averaging over a large number of real cells
and we do not address the problem of fluctuations.

trons and ions are not the same (in the simulation). Prac-
tically, when an ionization occurs, one electron is created
in the simulation and the number of new ions can be
larger than 1, according to the ion to electron weight ra-
tio (if this ratio is not an integer, a random number is
used).

When acceleration of convergence is used (see above)
the integration time step of ions can be much longer than
that of electrons; when an ionization occurs, the number
of ions created in the simulation must be therefore pro-
portional to the time step ratio. The method of accelera-
tion of convergence has been used and is seen to work
well when the steady-state electron density is much small-
er than the ion density (i.e., for electron Debye length
much larger than the cell dimensions). When the elec-
tron and ion densities are close together the acceleration
method can lead to instabilities, however.

Poisson's equation is solved with a standard overrelax-
ation technique, for a cylindrical geometry on a nonuni-
form grid, using the boundary conditions described
above. The charged particles are weighted on the grid
with a cloud in cell method [31]. Typical numbers of grid
points used in the results presented below are of the order
of 20 along the cell axis and 10 along the radius. Al-
though the overrelaxation method is time consuming
[fast Fourier transform (FFT) methods cannot be used
because of the presence of the dust particle inside the
cell] the variations of the electron and ion densities be-

tween two successive calls to the Poisson solver were
small enough so that only a few iterations were necessary
at each time step to obtain the potential distribution.

E. Charged particle weighting and other details
of the PIC-MC simulation

In a particle-in-cell simulation [31—34] the number of
particles, electrons, and ions used in the simulation is
generally much smaller than the real number of particles
in the plasma which is simulated so that each particle in
the simulation represents a large number of real particles.
This number defines the weight of the particle. Note that
in some of the conditions considered in this paper the
average number of real electrons or ions in a cell can be
of the order or less than unity (see above). In such situa-
tions the weight of the charged particles can become less
than 1 (i.e., there are more electrons in the cell in the
simulation then in reality). Since we do not address here
the problem of real fluctuations, this apparently awkward
situation (particle weight less than 1) can be justified by
considering that the simulation deals with one average
cell.

Generally, in plasma simulations, the same weight is
used for all charged particles, electrons, and ions. In our
case, as mentioned above, the electron density might be
much smaller than the ion density. In order to better
control the statistics we choose to keep similar the num-
ber of simulated electrons and the number of simulated
ions, and therefore to assign in some cases different
weights to electrons and ions. One of the consequences
of different weighting of electrons and ions is that when
an ionization event occurs, the numbers of created elec-

IV. RESULTS AND DISCUSSION

In all the results presented below, the buffer gas is ar-
gon at 0.1 torr (300 K). The plasma is supposed to be
uniform and infinite, with a given uniform distribution of
dust particles. Results are given for different size and
density of the particulates. The problem is characterized
by three important parameters which are dust particle ra-
dius a, cell particle diameter 2b, and electron Debye
length k. The cell size is related to the dust particle den-

sity Nr by the relation N~ —(2b) '~ . Note that this re-

lation is only approximate since, in order to make the
problem 2D in space, the cells we consider are cylinders
(volume 2vrb ) and not cubes [volume (2b) ].

Sections IV A and IV B below correspond to situations
where the relative values of these parameters are
different. Section IV A presents some results corre-
sponding to a distance between particulates 2b =20 pm
(dust particle density of the order of 108 cm 3) with radii

ranging from a =100 to 300 nrn. These conditions are
close to the experimental work of Boufendi et al. [25]
where dust particles created in a silane-argon plasma are
subsequently trapped in a pure argon rf plasma. For
these values of the size and density of the particulates, we

shall see that the electron Debye length is much larger
than the distance between dust particles (even for large
current densities flowing through the plasma)

(k »2b »a). In Sec. IV B we present some results cor-

responding to situations where the electron Debye length
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is of the same order of magnitude as the cell size, but
much larger than the dust particle radius (2b =200 and
1000 tMm for a =5 and 50 pm, respectively} (A, -2b »a).
Potential distributions within the cell are discussed in
Sec. IV C for conditions corresponding to the results de-
scribed in Secs. IVA and IVB. Finally considerations
concerning transfer of momentum and energy from the
plasma to the dust particle are given in Sec. IV D.

A. Debye length much larger than dust
radius and distance between
particulates ( A. )&2b )&a )

10

(a))
8

a—~a
Ee 4

t ~m
o ~ 02
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~ 10'
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g ~ Otttm
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In this section the dust particle density and radius are
set to Nz —10 cm and a =0.1-0.3 pm. The distance
2b between dust particles is 20 pm. Figure 1 shows the
average plasma electric field versus current density curve
for three different values of the dust particle radius. It
appears that the sustaining electric field is practically
constant over a large range of current densities (from tens
of tttA/cm to mA/cm ). The small variations of the elec-
tric field with current density are due to statistical noise
and do not indicate real trends. Note also that the results
corresponding to values of the current density larger than
a few mA/cm are not realistic because second-kind pro-
cesses (superelastic collisions, stepwise ionization} have
not been taken into account. One can conclude from Fig.
1 that under the conditions of dust particle radius much
smaller than distance between particulates and Debye
length, the dusty plasma behaves electrically like a plas-
ma controlled by ionization and attachment. In a plasma
where the only creation and loss processes are direct elec-
tron impact ionization and attachment, the sustaining
electric field is the field E, for which ionization and at-
tachment frequencies are equal: v; (E, /p ) =v, (E, /p )

where p is the gas pressure. E, depends only on the elec-
tron molecule cross sections and is independent of the
current. The voltage versus current characteristic curve
of such a plasma is therefore constant. As expected, the
value of the sustaining electric field in the dusty plasma
increases with dust particle radius. Note that the values
of the reduced sustaining field E, /p deduced from the

FIG. 2. Variations of (a) electron temperature and (b) elec-
tron impact ionization frequency with current density in a dusty
argon plasma at 0.1 torr (300 K), distance between particulates
20 pm, and for three values of the dust particle radius (same
conditions as in Fig. 1).

simulation (Fig. 1) are large in these conditions of dust
particle size and density: for a =0. 1 tttm, E, /p is of the
order of 100 V/cm torr, which is the same order of mag-
nitude as the sustaining field in a strongly attaching gas
such as SF6.

The electron temperature and ionization frequency
averaged over one cell are plotted as a function of the
current density in Fig. 2. As expected from Fig. 1, elec-
tron temperature and ionization frequency are constant
(except for statistical noise) in this range of current densi-
ties. These values are very close to the electron tempera-
ture (defined as —', of the mean energy) and ionization
coefticient which can be obtained in a pure argon plasma
for the same value of the electric field. This means that
under these conditions, the main effect of the presence of
dust particles is to increase the electric field in the plas-
ma. The electron-energy distribution function (EEDF) in
the dusty plasma is very close to the EEDF in a pure ar-
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FIG. 1. Variations of the sustaining electric field with
current density in a dusty argon plasma at 0.1 torr (300 K), dis-
tance between particulates 20 pm, and for three values of the
dust particle radius.
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FIG. 3. Electron-energy distribution function (lines) in a dus-
ty argon plasma at 0.1 torr (300 K), distance between particles
20 pm, and for three values of the dust particle radius (the cor-
responding reduced electric fields are 120, 200, and 280
V/cm torr, 300 K, for 0.1, 0.2 and 0.3 pm, respectively, see Fig.
1). The symbols correspond to the EEDF calculated in pure ar-
gon for the same reduced electric field (100 V/cm torr) as in the
dusty plasma for a particulate radius of 0.1pm, (same conditions
as in Fig. 1).
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negative charges with current density in a dusty argon plasma at
0.1 torr (300 K), distance between particulates 20 pm, and for
three values of the dust particle radius (same conditions as in
Fig. 1).

FIG. 5. Variations of electron number density ne, positive
ion number density np, and charge number density ZDND of
dust particles with current denstiy for 0.1 pm radius particu-
lates; (b) electron Debye length vs current density for three
values of the dust particle radius. Argon plasma at 0.1 torr (300
K), distance between particulates 20 pm (same conditions as in

Fig. 1).

gon plasma for the same value of the reduced electric
field, as shown in Fig. 3. This similarity can be under-
stood if one looks at the variations of the dust particle
charge and floating potential shown in Fig. 4(a) (the float-
ing potential is defined here as the difference between the
dust particle potential and the average potential in the
cell, i.e., the average plasma potential). The floating po-
tential is therefore much smaller than the electron tem-
perature under these conditions and almost all the elec-
trons, whatever their energy, can be absorbed by the dust
particle. This explains why the presence of the dust par-
ticle does not induce a significant distortion of the EEDF
with respect to an uncontaminated argon plasma for the
same value of the reduced electric field.

The variations of the number of negative charges car-
ried by the dust particle with current density are plotted
in Fig. 4(b). This number is relatively low and of the or-
der of a few tens of negative charges for current densities
of one mA/cm . Since macroscopic neutrality must be
satisfied within each cell, this implies that if ZD is the
number of negative charges on the dust particle and ND
their number density, the difference between ion and elec-
tron number densities in the plasma must be equal to
ZDND, i.e., a few 10 cm if ZD is a few tens and
ND = 10 cm . It is therefore clear that under such con-
ditions of large ND, the electron number density has to be
much smaller than the ion number density, as shown in
Fig. 5(a) where the variations with current density of the
electron and ion number densities averaged over one cell
are shown. The dominant charged species in the plasma
are therefore the positive ions and negatively charged
dust particles. Figures 5(b) presents the variations of the
electron Debye length with current density for different
dust particle sizes and shows that the electron Debye
length is always much larger than the distance between
particulates under these conditions, even for large values
of the current density.

B. Debye length of the same order of magnitude as the cell size
and much larger than the dust particle radius (A, -2b ))a )

We present in this section some results corresponding
to the following conditions: case (1), ND —1.25X10
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FIG. 6. Variations of (a) sustaining electric field and dust

floating potential (the potential references is the average plasma
potential) and (b) electron temperature and ionization frequency
with current density in a dusty argon plasma at 0.1 torr (300 K),
distance between particulates 200 pm, radius of particulates 5

pm.

cm (distance between dust particles: 2b =200 pm) and
a=10 pm; case (2), ND —10 cm (2b=1000 pm) and
a =100pm.

Figure 6 shows the variations with current density of
the average electric field, dust particle Aoating potential,
electron temperature, and ionization frequency for case
(1). Contrary to the previous cases described in Sec.
IV A, the voltage current characteristic curve of the dus-

ty plasma under these conditions is not constant but has a
negative slope. The sustaining field decreases from 18
V/cm (180 V/cmtorr) for current densities below 1

mA/cm to less than 8 V/cm (80 V/cmtorr) above 10
mA/cm . The floating potential increases from less than
1 —10 V in the same current density range. The electron
temperature and ionization frequency also decrease with
increasing current density, the decrease in the ionization
frequency being much more pronounced. Similar results
have been obtained for case (2) and are presented in Fig.
7. These results can be understood as follows. For low
values of the current density the Boating potential is
small and the situation is similar to that described in Sec.
IV A, i.e., the sustaining electric field is almost indepen-
dent of the current density. When the current density in-
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FIG. 7. Variations of (a) sustaining electric field and dust
floating potential (the potential reference is the average plasma
potential) and (b) electron temperature and ionization frequency
with current density in a dusty argon plasma at 0.1 torr (300 K),
distance between particulates 1000 pm, radius of particulates 50
pm.

creases, the electron and ion density and therefore the
number of negative charges on the particulate increase.
The floating potential therefore increases in magnitude
with the current density. As the floating potential be-
comes closer to the mean electron energy, the electron
loss frequency to the dust particle decreases since elec-
trons are repelled by the negative potential of the dust
particle and fewer and fewer electrons are able to over-
come this potential barrier. Therefore the sustaining
electric field decreases with increasing current density be-
cause the number of electrons able to reach the dust par-
ticle diminishes. If the current density increases further,
one reaches a point where the electron Debye length be-
comes smaller than the distance between particulates. In
that case plasma-dust particles interaction evolves toward
a situation where the dust particles can be considered iso-
lated and their electrical properties (number of negative
charges, floating potential) should become independent of
the current density or plasma density. This evolution to-
ward isolated particles can be seen in Figs. 6 and 7. As
the current increases above 1 mA/cm in Fig. 7(a) the
floating potential seems to evolve toward a constant value
around 10 V (the electron temperature is about 5 eV in
these conditions). Similarly, the sustaining electric field
seems to converge toward a constant value around 6
V/cm (60 V/cm torr).

In summary, one can distinguish three regions in the
voltage current characteristic curve of a dusty non-
thermal plasma. For "low" current densities, the floating
potential of the dust particle is small with respect to the
electron temperature and the sustaining field is almost in-
dependent of the current density. For intermediate"
values of the current densities, the floating potential be-
comes sufficiently negative to repel most of the electrons
and the sustaining electric field decreases with increasing
current density. For "large" current densities, the dust
particle becomes isolated and the floating potential and
sustaining electric field become practically independent of
current density. The meaning of "low," "intermediate, "
and "large" current densities in the above description is
actually relative and depends on the cell size. For exam-
ple, the cell volume is so small (10 cm ) in the condi-
tions of Sec. IV A that, for electron and ion densities in
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FIG. 8. Variations of electron Debye length A, and number of
negative charges Z& on the dust particles in a dusty argon plas-
ma at 0.1 torr (300 K); (a) distance between particulates 2b=200
pm, radius of particulates a =5 pm, (b) distance between parti-
culates 2b= 1000 pm, radius of particulates a =50 pm.

the usual range for nonthermal plasmas, macroscopic
neutrality implies very small values of the negative
charge and therefore floating potential of the dust parti-
cle. Even for current densities up to tens of mA/cm in
this condition, we are in the "low" current density regime
described above, i.e., the sustaining electric field stays
constant. It would need current densities larger than
hundreds of mA/cm to obtain large enough floating po-
tentials to induce a decrease in the sustaining electric
field. For larger cell volume (8X10 cm ) such as case
(1) of Sec. IV B, low current densities mean less than 0.1

mA/cm (see Fig. 6). The limit between intermediate and
large values of the current densities as described above
correspond to a situation where the Debye length be-
comes smaller than the half distance b between particu-
lates. This limit is above 20 mA/cm for case (1) (see Fig.
6) and of the order of 2 mA/cm for case (2) where the
cell volume is much larger (10 cm ) (see Fig. 7).

Figure 8 shows the variations of the electron Debye
length and number of negative charges on the dust parti-
cle as a function of current density. One can see by com-
paring Figs. 8 and 7 that the regime where the floating
potential no longer increases with increasing current den-
sity corresponds to an electron Debye length becoming
on the order of and smaller than the cell dimensions.

Finally, Fig. 9 shows electron distribution functions for
two different values of the current density and sustaining
field in the conditions of case (1). These distribution
functions are compared with distribution functions ob-
tained in a pure argon plasma, for the same value of the
reduced electric field. It appears that in the low current
case, the distribution functions with and without dust
particles are very similar (for the same average electric
field). This is again because for this relatively low value
of the current density the floating potential of the dust
particle is small and the electrons can be captured by the
dust particle whatever their energy, i.e., each part of the
distribution function is affected equally by the presence of
dust particles (therefore the normalized distribution func-
tions are the same). For higher values of the current den-
sity, the floating potential becomes larger (of the order of
8 eV) and only the electrons above 8 eV can be absorbed
by the dust particle. This explains the difference in the
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0—10-eV energy range [see Fig. 9(b)] between the distri-
bution functions with and without dust particles for the
same average electric field, in this case.

C. Distribution of potential and charged particle
density around a dust particle

FIG. 9. (a) Electron-energy distribution function in a dusty
argon plasma (straight lines) at 0.1 torr (300 K), distance be-
tween particulates 200 pm, radius 5 pm, for two values of the
current density and electric field: (1) 0.86 mA/cm, 17 V/cm;
(2) 29 mA/cm, 8.6 V/cm. The lines with symbols correspond
to the EEDF calculated in pure argon for the same reduced
electric fields as in the dusty plasma [(1) 170 V/cmtorr, (2) 86
V/cmtorr at 300 K]; (b) same as (a) with linear scale for the
EEDF to enhance low-energy behavior and for the 29-mA/cm,
8.6-V/cm case only.

therefore (0.34 V on 200 )Mm) 17 V/cm (see Fig. 6). The
spatial distribution of electrons and ions in the same case
are plotted in Fig. 11. One can see the increase in the ion
density in the vicinity of the dust particle. This feature is
characteristic of a dust particle radius much smaller than
the Debye length. The spatial distribution of the electron
number density [Fig. 11(a)] does not exhibit strong gra-
dient in this case. This is because the floating potential is
relatively small, and less than the electron temperature (a
density distribution following the Boltzmann law, i.e.,
proportional to exp[eV/(kT, )] tends to a constant when

kT, is much larger than the Aoating potential). Note
that the electron number density is much smaller than
the ion number density in the whole volume of the cell.
This means that we are in a situation where the electron
Debye length [=1.5 mm, see Fig. 8(a)] is much larger
than the distance between particulates, i.e., the electron
space charge cannot neutralize the positive ion space
charge within one cell. The plasma under these condi-
tions is, as mentioned above, a positive-ion-negative-
particulates plasma.

Figure 12 shows the electron and ion density distribu-
tions for a larger radius and a smaller density of dust par-

(a)

Figure 10 shows the calculated potential distribution in
a cell for 2b =200 pm and a =5 pm and for a current
density of 0.86 mA/cm . The reference potential is taken
on the dust particle (situated in the center of the cell).
One can see on this figure that the floating potential in
this case is around —2 V. The faces of the cylindric cell
are equipotential, the potential difference between faces
being of the order of 0.34 V. The average electric field is
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FIG. 10. Potential distribution in a cylindrical cell around a

dust particle; dusty argon plasma at 0.1 torr (300 K), distance

between particulates 200 pm, radius 5 pm, for a current density

of 0.86 mA/cm (average electric field 17 V/cm); r is the dis-

tance from the axis. The position of the dust particle center is

x=100pm, r=0 pm.

FIG. 11~ (a) Spatial distribution of electron density (distance
between particulates 200 pm, radius of particulates 5 pm) for a

current density of 0.86 mA/cm, sustaining electric field

17/V/cm. (b) Spatial distribution of ion density (distance be-

tween particulates 200 pm, radius of particulates 5 pm) for a
current density of 0.86 mA/crn', sustaining electric field 17
V/cm.
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FIG. 12. Spatial distribution of electron and ion density (dis-
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pm) for a current density of 3.5 mA/cm .

conditions of isolated particulates (large current densi-
ties).

Figure 13 shows also that for low current densities the
energy transferred by electrons to the dust particles is
larger than the energy transferred by positive ions. This
is because the floating potential is small in these condi-
tions so that the average energy of electrons reaching the
dust is much larger than the average energy of ions.
When the current density increases (and thus the floating
potential) the situation is reversed [see Fig. 13(b)] since
electrons reaching the dust lose energy in the sheath
while ions reaching the dust particle are accelerated.
These results concerning the energy transfer from plasma
particles to dust particles predicted by the model will be
used in the future to determine the energy balance of the
particulates and to estimate their temperature.

D. Momentum and energy transfer from electrons
and ions to dust particles

The ion drag force on the particulate, due to momen-
tum transfer from positive ions to the dust particles, has
been deduced from the simulation and is represented in
Fig. 13 for different dust particle size and density. For
0.1 pm radius and 10 cm density of particulates, the
ion drag force is of the order of 10 ' N for a current
density of 1 mA/cm . It increases by 2 orders of magni-
tude when the current density increases from 0.1 to 10
mA/cm (because of the increase in ion density). For 5
pm radius and 1.25X10 cm dust particle density, the
ion force is on the order of 10 ' —10 ' N (roughly pro-
portional to the particulate radius). The ion drag force
seems to reach a constant value when one approaches the
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FICz. 13. Ion force on particulate and electron and ion power
transferred per dust particle in a dusty argon plasma at 0.1 torr
(300 K): (a) distance between particulates 20 pm, radius of parti-
culates a =0.1 pm, (b) distance between particulates 200 pm, ra-
dius of particulates 5 pm.

ticles (50 pm radius, distance between particulates 1000
pm). The current density (3.5 mA/cm ) is such that the
electron Debye length in this case is smaller than the cell
dimension [0.36 mm, see Fig. 8(b)]. It appears clearly in
Fig. 12 that the dust particle is shielded by the electron-
ion plasma within the cell. In these conditions the dust
particles can be considered to be isolated and do not in-
teract electrostatically.

V. SCALING LAWS

3a
SD = n, —exp[e5V/kT, ] .D ~3 e 4

The ionization rate S; can be defined by S;=n, v,-

where v; is the mean ionization frequency by electron im-
pact. Equating SD and S;, we obtain

3 a
v; =v, — 3 exp[e5 V/kT, ] . (6)

We have seen above (at least for low values of the float-
ing potential) that the electron distribution function in
the dusty plasma is very similar to the electron distribu-
tion function in pure argon for the same value of the

In this section we present an analytical approach
whose aim is more to derive some simple scaling laws
than to obtain a rigorous or accurate analytical descrip-
tion of the plasma-dust particle interaction, to compare
these scaling laws with results from the particle-in-cell
Monte Carlo simulation.

We still consider that, due to periodicity and symmetry
considerations, only one volume element around a dust
particle need be studied. In order to solve the problem
analytically, we must (1) write that the electron impact
ionization rate is balanced by the electron loss rate on the
dust particle, (2) equate the electron and ion currents to
the dust particle, and (3) write Poisson's equation in the
cell.

Let n, and n be the average electron and ion number
densities. The electron flux y, and electron current I, to
the dust particle can be approximated classically by

y, =
—,'n, v, exp[e5VlkT, ], I, =eAy, ,

where v, is electron thermal velocity, 5V= VD
—( V),

( V) is the average potential in the cell, and A is the total
area of the dust particle (6n.a for a cylinder of radius a
and length 2a). The electron loss rate SD to the dust par-
ticle is SD =p, A /W, where W is the volume of the cell.
For cylinders or spheres: A l W =3a lb (a is the radius
of the particulate, b the radius of the cell). The electron
loss rate is therefore
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p~ =4n~v [1 e5V/kT ]—, (7)

where v is the ion thermal velocity. Equating the elec-
tron and ion currents to the dust particle, we get

1/2T me

Te mp

ne
[1 e5V/kT~ ]ex—p[ e5V/kT, ] . —

n

This equation shows that the electron to ion number

density ratio increases when the floating potential be-
comes more negative, i.e., when one goes from a situation
where the particulates interact electrostatically to a situa-
tion where they can be considered to be isolated. For
very low values of the floating potential, the electron
number density can be much smaller than the ion density,
the minimum value (for 5 V =0) of the ratio of electron to
ion density being typically of the order of 10 —10
This situation is not far from that of Fig. 5(a) and corre-
sponds to large Debye lengths (and low current densities).
Comparisons with the numerical results presented above
show that Eq. (8) gives correct trends but is too small by
about one order of magnitude. This is probably because
Eq. (7) neglects the effect of the ion-directed velocity and
underestimates the ion flux to the dust particle in our
conditions. A better estimation of the ion flux could be
obtained by replacing the thermal velocity and energy
terms in Eq. (7) with the mean speed which accounts for

average electric field. v; and T, are therefore the same
functions of E/p as in pure argon. Knowing the func-
tions v, (E/p) and T, (E/p), Eq. (6) enables us to calcu-
late the sustaining electric field for each value of the float-
ing potential. Note that for conditions where the floating
potential is much smaller than the electron temperature
Eq. (6) reduces to

3 a
V- V

1 84b3

One can check that this expression of the ionization
frequency is in reasonable agreement with the numerical
results of Fig. 2(a). For example, the numerical results
give v;-8X10 s ' for a=0. 1 pm while the analytical
expressions above gives v; —10 s '. However, the ion-
ization frequency deduced from the numerical results in-
creases with radius less rapidly than predicted by this
analytical expression. This is probably because Eq. (5)
neglects the possible effects of the directed electron veloc-
ity and tends to overestimate the electron current to the
particulate when the radius of the particulate increases
(which implies an increase in the plasma field and elec-
tron drift velocity). We have also checked that Eq. (6)
predicts reasonably well the variations of v, with

[5V/kT, ] obtained with the numerical model (which can
be deduced from Figs. 6 and 7).

It is also difficult to obtain an expression of the ion flux
to the particulate because of the nonzero average plasma
field superimposed on the field due to the ion sheath
around the dust particulate. Assuming that the classical
expression in the orbit motion limit of this fiux [12,17,18]
is still valid, we can write

the ion-directed velocity as suggested by Barnes et al.
[36].

It is easy to show that for situations where the Debye
length is larger than the cell size and if b &&a, the float-

ing potential can be estimated by 5 V= QD /477eoa for a
spherical particulate, where QD is the charge of the dust

particle. Because of charge neutrality within the ce11

volume, this equation can also be written as

e b5V= —— (n n—, ) .
0 3a

(9)

This equation gives a reasonable estimate of the varia-
tions of the floating potential with electron and ion densi-

ties for large Debye lengths with respect to distance be-

tween particulates (low current regime) as can be checked
in Figs. 5(a) and 4(a).

Equations (6), (8), and (9) together with the equation
J-en, p,,E for the total current density J (p,, is the elec-

tron mobility in pure argon), with the knowledge of v;

and T, as a function of E/p, form a closed set of equa-

tions which can be used to obtain a rough estimation (and

correct trends) of the parameters characterizing a dusty

plasma for given dust particle size and density [Eq. (9) is

valid only for Debye lengths larger than the distance be-

tween particulates].

VI. VALIDITY OF THE MODEL
AND EXTENSION TO rf DISCHARGES

As mentioned above, the model described in this paper
is based on the following assumptions: (1) The plasma is
uniform (sheath effects are not included) and the dust

particle concentration is uniform in the plasma, (2) the

plasma is created by a dc discharge, and (3) electron im-

pact ionization from the ground state is dominant.
We briefly discuss here the validity of these approxima-

tions and the possible extension of the model to rf
discharges.

(1) The assumption of a uniform plasma is reasonable
provided that the gap length or pressure is large enough
so that the length of the plasma is longer than the dis-

tance necessary for energetic electrons coming from the
sheath regions to reach an equilibrium with the plasma
electric field. The dust particle concentration has also
been supposed uniform in the plasma. Although it has

been observed experimentally under some conditions that
the dust particles tend to accumulate at the plasma
sheath boundary, such accumulation has not been ob-
served under the conditions of Sec. 1V A [25,26]. Strong
nonuniformity in the dust particle concentration is prob-
ably less likely to occur in situations where the distance
between dust particles is much smaller than the electron
Debye length because of the strong electrostatic interac-
tion between dust particles in these conditions.

(2) The results presented above concerning a dc plasma

could be extended to the positive column of a rf plasma if
one can assume that the number of charges carried by the

dust particles is not strongly modulated during a rf cy-
cle. In that case, the results given by the dc model could
be generalized to rf situations by replacing the calculated
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dc sustaining field by an "effective field" related to the
amplitude of the rf field. An accurate description of the
rf regime is beyond the scope of this paper, but a very
simple and rough approximation for frequencies in the
10-MHz range and for our pressure conditions, would be
to consider that the rms plasma field in the rf regime is
on the order of the sustaining field calculated in the dc
case. On the other hand, it is easy to check that the
charged particle loss rates calculated in this paper would
lead to a small modulation of the number of charges car-
ried by the dust particles, for frequencies in the 10-MHz
range.

(3) Only electron impact ionization from the ground
state of argon has been taken into account in the results
presented above. Ionization from metastable levels can
become important in a positive column plasma, depend-
ing on parameters such as the charged particle loss rate
and the current density. Ferreira, Loureiro, and Ricard
[37] developed a self-consistent model of a low-pressure
argon positive column including stepwise ionization from
metastable levels. In this model, the plasma electric field
is obtained by equating the total ionization rate to the
loss rate of charged particles to the discharge walls. The
results of Ferreira, Loureiro, and Ricard can be used to
estimate the importance of stepwise ionization in our cal-
culations (charged particle losses to the wall are replaced,
in our case, with electron and ion losses to the dust parti-
cles). In the results presented above, the dust particle
concentration and size were such that the calculated ion-
ization and electron loss frequencies were on the order of
10 s ', corresponding to a rate on the order of 3 X 10
cm s '. This large loss rate led, in our calculations, to
values of the reduced plasma electric field on the order of
100 V/cmtorr (i.e., E/N-3X10 ' Vcm ). The model
of Ref. [37] shows that, for such high values of the elec-
tric field, the contribution of stepwise ionization to the
total ionization rate should be negligible in our condi-
tions for current densities up to a few mA/cm . We
therefore expect the results presented above to be realistic
in the in the range 0—10 mA/cm .

VII. CONCLUSION

A 2D particle-in-cell Monte Carlo model has been
developed to study the plasma —dust-particle interaction
in a nonthermal plasma. This model provides, for a given
density and size of particulates and assuming a macros-
copically uniform positive column like dc plasma, the
current-voltage characteristics curves of the plasmas, the
charge and floating potential of the dust particles as well
as the space distribution of potential and electron and ion
density and distribution functions. Only the average be-
havior of the plasma —dust-particle system has been stud-
ied and the question of fluctuations has not been ad-

dressed. The model has been applied to a 0.1-torr argon
plasma for conditions where the dust particles interact
electrostatically (Debye length larger than the distance
between particulates) as well as for conditions where the
dust particles are isolated from each other by the
electron —positive-ion plasma. No systematic study of the
effect of gas pressure on the results has been done.

The model has shown the following.
(1) For large concentration of dust particles (i.e., for

distance between particulates smaller than the electron
Debye length), the floating potential and charge of the
dust particle can be much smaller than in the isolated
particle case. As long as the floating potential is small
with respect to the electron temperature, the electric field
which is needed to sustain the plasma stays constant and
independent on the current density flowing through the
plasma. In this situation the electron density is much
smaller than the positive ion density and the plasma is
dominated by positive ions and negatively charged dust
particles.

(2) When the current density and therefore the electron
density are large enough so that the distance between
particulates is no longer negligible with respect to the
electron Debye length, the floating potential and negative
charge of the dust particle increase. The increase in the
floating potential leads to a decrease of the electron loss
frequency on the dust particles. The sustaining electric
field therefore decreases with increasing current density.

(3) When the electron Debye length becomes small
with respect to the distance between particulates, the
floating potential and number of negative charges on the
dust particle reach constant values corresponding to the
case of isolated particles. In this limit, the sustaining
electric field becomes independent of the current density.

This model could also be used to generalize the classi-
cal collisionless results of probe theory to situations
where the sheaths are collisional and the distribution
function are not Maxwellian.

The results presented in this paper can be used to pre-
dict the changes in the plasma impedance due to the pres-
ence of particulates in a radio-frequency discharge.
These predictions and some comparisons with experi-
ments are presented in a related paper [26].
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