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Complete statistical thermodynamics of the cluster solid-liquid transition
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A constant (N, P, T) statistical method is developed for a finite-size system. A scaling variable a is in-

troduced to describe the size of the system following the method used for the bulk system. The histo-
grams of the Boltzmann distribution function f(E„V;T,P) (E, and V being the configuration energy
and the volume) for a 55-atom cluster bound by Lennard-Jones pair potentials are calculated at several

(T,P) values by Monte Carlo (MC) simulations. From the density of states Q(E„V)constructed from
the MC results, important thermodynamical quantities are then obtained. In the phase-transition re-

gion, f(E„V;T,P) shows a bimodal distribution on the (E„V)plane indicated by a "twin-peak" struc-
ture. The full phase equilibrium, including volume or pressure changes, of a cluster is explored in a sys-

tematic manner, and thus a complete picture of the phase diagram of a cluster is presented.

PACS number(s): 64.60.Ak

I. INTRODUCTION

The problem of phase transitions in finite-size systems
remains one of great interest, both theoretically [1—5]
and experimentally [6,7]. Second-order phase transitions
are in principle well described by size-scaling theory and
its critical exponents [8,9]. In practice, experiments on
nanometer-scale systems (10—1000 degrees of freedom)
have only begun to be treated using this theory. For
first-order phase transitions [10—13] the situation is
much less clearly defined, so that most of the evidence
has come from simulations and from specific model parti-
tion functions adapted from the bulk. Perhaps the most
ubiquitous of these transitions is the solid-liquid transi-
tion, which has been the subject of numerous simulations
and formed the basis of several interpretations of experi-
mental results [4,5,14].

One step has been the realization and formalization of
the idea that the freezing-melting transition in small finite
systems is simply different from that of large systems, but
converges with increasing N to the standard first-order
transition [3]. Where the change from bulk solid to bulk
liquid appears discontinuous across the curve of equal
free energies, G„sd(P,T)=G„q(P,T), this change is
smooth and gradual for clusters across the corresponding
curve where G„id(P,T,N)=G„(P,T,N) [1,15].
Nonetheless the curve along which G„i;d(P,T,N)
=G&;q(P, T,N ) is a useful characterization of at least one
aspect of the phase equilibrium for finite systems, certain-
ly the most important aspect with respect to how the
sharp phase equilibrium of bulk systems evolves with in-
creasing N from the phase equilibrium of clusters. This
relation will be discussed in a qualitative way in the final
section, in a manner that puts into a unified picture much
of the available information about the cluster-to-bulk
evolution of the solid-liquid equilibrium.

In this work, we construct the curves in the spaces of
various pairs of thermodynamic variables along which
the chemical potentials and free energies of solidlike and

liquidlike clusters (of a fixed number of particles) are
equal. It must be kept in mind that these curves do not
correspond to sharp changes from all liquid to all solid as
the equilibrium curves for bulk freezing and melting do.

In one important sense the theoretical and conceptual
description of the solid-liquid transition has been incom-
plete. A complete thermodynamic description of a
single-component system in the absence of external ap-
plied fields requires three parameters. In the past, only
two have been specified and varied explicitly —these have
been N, the number of particles, and either E, the ther-
modynamic (internal) or total energy, or T, the tempera-
ture. The first of these choices corresponds to an isolated
cluster, or to a microcanonical ensemble of mass-selected
clusters; the second corresponds to the cluster in contact
with a heat bath, or to a canonical ensemble of mass-
selected clusters. The natural third variable is either the
volume Vor the pressure P.

In the past people have dealt with this problem in one
of two ways [16,17]. In the first, free boundary condi-
tions have been used. If, during the course of a simula-
tion aimed at computing statistical thermodynamic func-
tions, a particle evaporated from the condensed cluster,
then it would be returned to the main cluster and the
simulation would be started again. This may be con-
sidered as equivalent to a time-scale constraint on an ex-
perirnent conducted at essentially zero pressure. Limita-
tions of this approach included its arbitrariness (although
this is usually not a serious difficulty) of the criterion of
whether a particle has evaporated —and inability to
match some experimental situations, such as an inert gas
or fluid compressed around an embedded cluster. Also,
as one will see, it fails to permit a complete specification
of the statistical therrnodynarnic properties of the system.

The second alternative has been to specify a constant
volume in which the cluster is considered to move. If the
volume is chosen comparable to the physical dimensions
of the condensed cluster, then one faces the problem that
the shape of the cluster becomes crucial, an artificial situ-
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ation far removed from that arising in most experiments
other than matrix and zeolite conditions. Potentially
better for simulating gas-phase systems is to choose V to
be several times the cluster volume, in which case one has
a gas —condensed-phase equilibrium. This procedure cor-
responds to heating the cluster along the gas-solid coex-
istence curve in the (P, T) or (P,E) phase plane until the
triple point is reached, then continuing along the gas-
liquid coexistence curve. The most severe problems with
this are the great difficulty in achieving true equilibrium
with the gas phase at the lower temperatures, near and
below the triple point, where the solid-liquid transition
characteristics are observed, and in finding experimental
conditions to which it corresponds.

In our recent research we have used a third approach:
we explicitly introduce the pressure P as a thermodynam-
ic variable. The meaning of P on the nanoscale might be
questioned. However, in experiments one can without
question increase the external pressure of an inert gas act-
ing on a cluster, and under the condition of mechanical
equilibrium this corresponds to exerting that pressure on
the cluster. Similarly, a strongly bound metal, semicon-
ductor, or compound cluster embedded in an inert fluid

may be subjected to large hydrostatic pressures that are
similarly well defined, so long as the clusters are immisci-
ble in the solvent. The variable conjugate to P is of
course the volume V. It might seem that V does not have
a precise meaning for a cluster, and this would be true if
one were to cling to a strictly geometric, continuum-
based definition. However, an unambiguous, operational
definition for changes in V can be obtained from the vari-
ations in the free energy function G(P, T) of the cluster
by inverting the integral expression dG= f V(P')dP' at

constant T, in effect using the thermodynamic definition
V = —(5G i5P )r. In practice, with inert fluid exerting
the pressure, the volume defined this way corresponds
closely to the volume of the cluster that excludes the
fluid, so that PAV is the work that must be done to
change the cluster's volume against the applied pressure.
For example, hV could be the volume change accom-
panying a solid-liquid transition, or merely the thermal
expansion of the cluster. This kind of evaluation can be
implemented in various ways, considered below, through
simulations used to compute the statistical thermo-
dynamic functions.

The outline of this work, and its significance, is the fol-
lowing. We describe how to compute a complete statisti-
cal thermodynamic description of an ensemble of clus-
ters, specifically a microcanonical or canonical distribu-
tion. To do this efficiently, we expanded the one-
dimensional histogramming Monte Carlo method recent-
ly developed [14,18] into two-dimensional histogramming
and applied it to a real-space system here. It will allow us
to compute the fundamental function, the microcanonical
density of states Q(E„V) over the range of interest in the
solid-liquid transition. Second, we adopt the simplest of
several possible methods of incorporating the pressure-
volume term into this Monte Carlo method in order to
complete the N, P, T ensemble. (This and more sophisti-
cated methods, all based on size scaling, are discussed
briefly in the final section. ) Third, we carry out a compu-

tation on a 55-atom cluster, represented by 6-12 pair po-
tentials giving rise to an icosahedral ground state, to il-
lustrate this method in detail. Fourth, we analyze the re-
sults of this calculation, a complete description of the
transition, to obtain relevant quantities. Finally, we dis-
cuss future improvements to the method, particularly in
the volume calculation, and implications for the mecha-
nism of the solid-liquid transition in clusters.

A full description of the traditional thermodynamic
machinery for the equilibrium properties of the first-
order phase transition in finite systems was given by Hill
[IS]. Our concern here is largely with the statistical ther-
modynamics, including fluctuations and thermodynamic
properties.

II. MODELS OF NPT STATISTICS
OF FINITE-SIZE SYSTEM

The difficulty of simulating a cluster under conditions
of constant number of particles, pressure, and tempera-
ture ( N, P, T ) arises largely because the concept of
volume valid for the bulk system loses it precise meaning
for a small system. The surface of a cluster is rough, fluc-
tuating, and ill defined on a scale comparable with its di-
mensions; the bulk material obviously may have a fixed,
smooth surface whose details and fluctuations can be
neglected in measurement. In experiments, the definition
of the volume of a finite cluster is much clearer than in a
simulation; e.g. , it may be taken as the excluded gas
volume. The volume of a cluster is the space occupied by
the cluster that external particles cannot reach.
Rigorously, at the microscopic level, the volume should
be defined in a way that (i) makes physical, operational
sense, (ii) has an uncertainty within acceptable range, and
(iii) leads to the precise value of the density in the bulk
material as X approaches infinity.

In a direct simulation of a system consisting of a clus-
ter plus its surrounding gas atoms the shape of the system
should be predetermined. The easiest approach in Monte
Carlo (MC) simulation would be to assume the whole sys-
tern is in a cubic box with periodic boundary conditions.
The size of the clusters should be small enough to ensure
that clusters in adjacent boxes do not interact with each
other at all. We found that this direct method of simula-
tion is too time consuming even if we model the gas
atoms to be hard spheres; far too large a portion of com-
puter time is spent on the gas atoms whose details of
motion are of no interest to us. Also, the simulation be-
comes extremely inefficient at low pressures.

We present here a more efficient approach which en-
ables us to concentrate only on the cluster itself; the role
of chemically inert gas atoms in creating a constant
(mean) pressure is accounted for through the control of a
scaling parameter a. This algorithm was introduced first
in the infinite-size MC simulation for the constant
(N, P, T) ensemble. The method could also be used for
clusters in a gas chamber. In the following discussion, we
start with the general constant (N, P, T) MC simulation
method and then look at the difference between a simula-
tion with periodic boundary conditions and our extension
of Andersen's method.
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In the conventional N, P, T Metropolis Monte Carlo
simulation, the Gibbsian free energy of a system with N
particles is

G=H+PV (la)

with

0= —ks T lnQ(N, V, T), (lb)

Q(N V T)=(N!h ) [[2~rnk T] ]Q(N V T)

(lc)

and

h(N, V, T)=f exp[ PU(r—)]dr, (ld)

5W=exp[ P[5U+P5—V 3Nks T ln(1——5V/V)]];

(3)

that is, all moves with 5W less than (3) are accepted and
moves with 5W greater than (3) are accepted or rejected
by a random-number choice.

In applying this algorithm we took two approaches.
We will concentrate on one and present only a brief
description and comments on the other, a method which
leads to a direct simulation.

In our first method, we rewrite Eq. (2) in real coordina-
tion space r; the partition function Z, then becomes

Z, =f f dV dr exp[ —P[U(ap)+PV]] . (4)

From this expression we understand now that random
moves can be made on r and a (or, say, V) with the cri-
terion

5W=exp[ P(5U+P5V))—

instead of (3).
The s~itch from p space to r space is necessary. Sam-

pling according to Eq. (3) in p space is associated with
large fluctuations in V and so that handling the statistics

where r=ap, and the value of p is constrained between
0.0 and 1.0, and kz is Boltzmann's constant. Such a di-
mensionless unit box can be replicated endlessly in the
two-dimensional (2D) or 3D space for an infinite system.
The value of the volume is reflected in the measure of a;
a is proportional to the volume of the system with N
particles. Details of this method have been described
many times elsewhere, e.g., in Abraham's review article
[19]. The configuration part of the partition function of a
constant (N, P, T) system is derived as

Z, =f f dVdpexp[ —P[U(ap)+PV NksTln—V]J .

(2)

The simulation of such a system is easy now. The idea
here is to treat a as an additional independent variable, so
the volume V=a . The total enthapy H = U+PV can be
varied by random moves of both p and a. The quantity
which determines whether or not a move is accepted now
becomes

becomes very inefficient. Recently, other applications
have been made of the change from p to r in constant-P
simulations for the bulk systems [20,21]. The remaining
question is how to relate the operationally or experimen-
tally defined quantity V to the parameter a of the sirnula-
tion for a finite-size system.

As we mentioned in the preceding section, we intend to
provide a definition and a way to measure the volume for
a microscopic system, even though this definition may
not match precisely the conventional concept of the
volume we might use for that of an infinite system. How-
ever, as N increases, this microscopic quantity merges
into the value of bulk volume, and its uncertainty de-
creases with N, becoming infinitesimally small for macro-
scopic systems. A limitation of this concept is that we
must have some prior knowledge about the nature of the
cluster, such as the radii of atoms in the cluster and in
the environment.

There are at least three ways to define the volume of a
system consisting of N atoms: spherical approximation,
convex hull, and u hull. The first is the simplest, is quite
general, and is the one we adopt here. Especially in the
solid-liquid transition region, all but the smallest clusters
can be treated approximately as spheres. A radius can be
measured from the center of mass to the outermost atoms
and a "volume" can be estimated from this radius. To re-
move part of the error in this estimation, particularly
when some atoms may escape temporarily from the clus-
ter, a criterion can be established to distinguish the atoms
that are part of the cluster and the atoms outside the
cluster at each configuration.

To execute this, we need two parameters as input: the
number of nearest-neighbor bonds and the length to
which such a bond can be stretched and still be called a
bond. These can be estimated by looking at the low-
temperature structure. If the number of bonds to some
atom is less than those of a surface atom in the cold clus-
ter, we consider this atom outside the cluster (only in es-
timating the value of the volume; this criterion is not re-
lated to evaporation) and do not use its distance from the
center of the mass in determining the radius of the
sphere. The largest center of mass to atom distance for
atom in the cluster is taken as a. The volume of the clus-
ter is then related to a by multiplying a constant factor
of 4m/3. For any prismatic clusters, a different criterion
must be used to identify whether an atom is attached to
the cluster, but the relation between volume and the
size-scaling variable a remains straightforward.

This simulation can be performed and the statistical
mechanics for a finite system can be set up. Before we
present the details of simulation in the next section we
describe the basic statistical therrnodynarnic principles.
For each MC run we obtain a distribution of number of
sampling points as a function of interaction energy and
"volume" of the system and enable us to construct a sur-
face in three-dimensional space. After normalization it
becomes the frequency distribution of occurrences of
configurations as a function of the potential energy (or
configuration energy) of the system E, and volume V. All
the thermodynamic quantities can be derived from this
distribution. We first assume that a MC simulation cov-
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ers the entire (E„V)plane.
The probability function f(E„V;P,T) can be written

as

f(E„V;T,P)=Q(E„V)exp[ P—(E, +PV)],
where E„Vare the thermodynamica1 variables; T,P are
the constant parameters and Q(E„V)is the density of
states of the corresponding microcanonical ensemble, the
quantity whose logarithm is the microcanonical entropy
of the specified ensemble. Note that Q(E„V)is an in-

trinsic function of the system independent of T and P.
Once Q(E„V)is obtained for a range of values of its ar-
guments, it can be used to extrapolate thermodynamical
quantities for other values of T and P. From the
knowledge of Q(E„V),we derive, using conventional
definitions: for the microcanonical ensemble,

rameter a in order to imitate the external pressure; the
calculation follows the same procedure as in the first
method. The advantage of this method is that volume of
the cluster obtained this way seems to be more acceptable
intuitively and the value of the volume of such a system is
equal to the cube of the scaling parameter. The price one
has to pay is to deal with hundreds to thousands of gas
atoms which can be modeled as hard spheres and also to
separate the volume of the cluster from the whole system
which includes the inert gas as well. However, in order
to keep the error small enough to estimate the change in
the total volume and the volume of the gas atoms accu-
rately enough to fix the change in the cluster volume, we
need a minimum of about a thousand inert-gas atoms.
The simulations then become very time consuming.

III. RESULTS
entropy: S(E„V) =kii in'(E„V), (7a)

temperature: 1/T(E„V)= as

and for the canonical ensemble,

internal energy:

U(T, P) =(E, ) = g E,Q(E„V)exp[ 13(E,+pV—)],
states

(gb)

8 ink
pressure: P =kB T (8c)

where b, is defined in Eq. (1),

volume: V(T,P)= g VQ(E„V)exp[ (E, +PV)), —
states

partition function:

Z(T, P) = I Iexp[S(E„V)/ks P(E, +P—V)]dE,dV,

(8a)

We performed MC simulations for the Ar» cluster
over a set of ( T,P ) values concentrated inainly in the re-
gion where a liquid-solid phase coexistence is indicated
by jumps in the configuration energy and volume. The
atom-atom interaction is chosen to be the pair wise
Lennard-Jones (LJ) potential,

u (r) =4e[(o /r )' —(cr /r ) ] .

We use reduced units in which v=1, o. =1, and kz =1.
The scaling parameter a is defined as the distance from
the center of mass of the cluster to the nucleus of the
outermost surface atom. An atom in the cluster is dis-
tinguished from an atom detached from the cluster on the
basis of the number of neighbor bonds compared with the
number of nearest-neighbor bonds of a surface atom in
icosahedral Ar», i.e., 8. The greatest length of that bond
is a parameter which is chosen to be 1.7 in our simula-
tions. This way of defining a size parameter for the clus-
ter is an approximation. However, in the case of the Ar»
cluster, in the solid-liquid region it is not a bad approxi-
mation to treat the cluster as a sphere. Refined a bit fur-
ther, the volume of the cluster is estimated by the relation

heat capacity:
V = (4n. /3)(a + a 0) (10)

aU
aT

=(1/kiiT )[((E,+PV) ) —((E,+PV)) ],
thermal expansion: a = av

aT

and

av
isothermal compressibility: y = —

( 1/ V)
aP

(8g)

The second treatment of c osnt atn-(N, P, T) conditions,
which we defined earlier as a direct simulation model, is
based on Monte Carlo or molecular dynamics simulations
to evaluate the properties of a cluster plus inert-gas sys-
tern. It is also necessary here to introduce the scaling pa-

where ao is the "atomic radius" of argon. In our simula-
tions both a0=0.0 and 0.5 are used to test the depen-
dence of the results on the choice of ao. The pressure P
was given the values 0.0, 0.1, 0.5, and 1.0 where P=1.0
in the LJ units corresponds to about 300 atms. In each
simulation we let a change three times during 150 ran-
dom moves of a single atom in (x,y, z) space. This is in-
frequent enough to a11ow clusters to relax enough before
the next overall change. On the other hand, the change
in a should be frequent enough so that the change in a
caused by a random move in the coordinates (x,y, z) is
small comparing with the explicit move in a. A typical
run in a one-phase region consists of 2000X50=100000
cycles and a run in the coexistence region requires
2000 X 500 000 cycles.

The histograms obtained for the solid region show a
sharp peak; for the liquid region the peak is broader. In
the coexistence region the plots of three-dimensional
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f(E„V)are bimodal distributions. They are shown in

Figs. 1(a)—1(c). From Fig. 1 we see that in 3D plots the
"twin peaks" identify both solid and liquid regions very
well but the peaks are aligned roughly along the (E„V)
diagonal line. Since we do see two peaks well separated it
means that the system is below its critical point, if it has
one. Near the critical point, one expects the two peaks to
join together and form a region flat on the top (a qualita-
tive description was given in Ref. [15]). The histogram
on the (E„V)plane also shows that the projection of
such a twin-peak structure can be viewed in 2D plots
most clearly along the diagonal line while along any other
direction, such as (E„O)or (0, V), the structure may be
difficult to recognize. Some earlier caloric curves from
simulations of Lennard-Jones clusters [22] seemed to sug-

gest that for clusters as small as 33 atoms, the coexistence
range is too narrow to be observable in experiments. This
was in conflict with later results of Berry and Wales [3]
and with the analysis of Ar» by Labastie and Whetten
[14]. The former found that the width of the coexistence
region should persist, for most kinds of clusters, to arbi-
trarily large N. The latter demonstrated solid-liquid
coexistence for the second Mackay icosahedron, the 55-
atom cluster.

For each (T,P) run we construct just a piece on the

FIG. 1. Histograms of frequency as functions of E, and V for
Ar», (a) solid region, (b) coexistence region, and (c) liquid re-
gion.

density-of-states surface. The procedure for connecting
these pieces together is described by Labastie and Whet-
ten [14]. The method they invented provides an efficient
tool to employ all the information from each MC run to
construct a relatively complete density of states for the
region of interest. We have extended the overlapping al-
gorithm to the (E„V)plane (see Appendix) but have not
yet implemented it in the current calculations.

Without overlapping the histograms, one is still able to
obtain all the thermodynamic quantities from each win-
dow on the density-of-states surface. Through Eqs.
(6)—(8) we constructed the density of states and calculat-
ed most of the important properties. The results are reli-
able around the center of each "window" and become less
accurate away from it because in finite simulations the
statistics get poorer away from the chosen (T,P) value.
Figures 2 —6 are, respectively, the plots of caloric curves,
heat capacity, volume, thermal expansion, and pressure-
volume curves around the phase coexistence region. For
each MC run we calculated these curves for several
(T,P) values including the set which is used in the simu-
lations. All the calculated results portray this equilibri-
um in a manner consistent with the finite-system counter-
part of a first-order phase transition. At zero pressure,
the results agree quite well with the simulations of Labas-
tie et at. , in which, below the vaporization point, the sys-
tem is actually at zero pressure. The phase transition
peak on the C, curve is at T=0.30 of LJ reduced units,
the energy changes about 22 LJ units and the volume
jumps 18 LJ units which is close to a 30% expansion
from the solid phase of the cluster. This number is about
three times as high as in bulk argon because of the large
surface of the cluster. The atoms on the surface of the
liquid cluster are more mobile than those in the core re-
gion [5,23] but at the same time they still remain attached
to the cluster and exclude the surrounding Quid from the
cluster.

It is natural to expect that as the size of the cluster in-
creases, the core region must play a proportionally more
important role since the number of atoms in the core re-
gion increases faster than the number of atoms on the
surface with the size of the cluster. As N increases the
volume expansion on melting approaches that of the bulk
material, and the error introduced by our simple method
of measuring the volume diminishes. In fact, that error
goes to zero as N approaches infinity. We should men-
tion that earlier, the mean bond length was used as a
measure of size change for Ar~, cluster [24] and there the
value of (R ) changes about only 1% from the solid re-
gion to the liquid region. In a way (R ) is a measure of
cluster size and it does show a sharp change at the transi-
tion. For a very small cluster, e.g. , dimer or trimer, this
is natural and obvious. However, as N increases the utili-
ty of this measure as a reAection of the change in the size
of the system becomes much less clear and does not pro-
vide a link to the bulk phase.

At finite pressure, the volume change in the transition
region decreases slightly as the pressure increases. The
transition temperature band moves to higher tempera-
tures as the pressure increases, according to the curves
from each and every window. These enable us to draw a



796 CHENG, LI, WHETTEN, AND BERRY 46

-230-
P

-230-

(LJ units):
-240- -240-

-250- -250-

-256 t ~ 7 I I 0 ~ l '0 0 f I I 'i 0 0 ~ 0 \

0.2 0.24 0.28 0.32 0.36 0.4
256 e r v r e a r r ~ e e i a v r y r e

0.2 0.24 0.28 0.32 0.36 0.4

P=0.5 P=1.0

(LJ units) .

-240 .

-240-

-250 .
-250-

260 I T 1 I ~ % I 'f I 1 l 1 ~ f 1 I 1 W ~

0.2 0.24 0.28 0.32 0.36 0.4

T(LJ units)

260 'I 1 I T W 'I

0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48

T(LJ units)

FIG. 2. Caloric curve, E vs T, for Ar» at P =0.0, 0.1, 0.5, and 1.0. The units of energy are the Lennard-Jones well depth c of Eq.
(9); units of temperature are nominally the same, i.e., are c/k&T but in units in which both c, and kz are 1. We refer to these as
"Lennard-Jones units of temperature. "

liquid-solid coexistence curve in the (T,P) plane, Fig. 7.
At P=1.0, the temperature T, =0.34, about 0.04 LJ
units higher than the value at P=O. O. The transition
peaks of the heat capacity and the thermal expansion be-
come broadened as the pressure is increased. On the P-V

curve the liquid-solid coexistent region is characterized
by a flat region with turning points connected more
smoothly to liquid and solid regions than for an infinite
system. The difference in the slopes of the P-V curve cor-
responds to the di6'erence in the compressibility for
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FICs. 3. Heat capacity of Ar» in the transition region at I' =0.0, 0.1, 0.5, and 1.0. Units of heat capacity are Lennard-Jones well

depth per Lennard-Jones unit of temperature; these units of temperature are explained in the caption of Fig. 2.
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FIG. 4. Volume-temperature curve for Ar» at P =0.0, 0.1, 0.5, and 1.0. Units of volume are the cube of the Lennard-Jones size

parameter 0; units of temperature are Lennard-Jones units (see Fig. 2).

different phases. These fundamental physical properties
from our calculations agree very well with the qualitative
description of thermodynamics of small systems. These
properties are given quantitatively for a finite-size cluster.
The choice of different values of ao does not change the
transition temperature too much (this indicates that some
thermodynamical properties are not very sensitive to the
error in volume calculations} but makes a difference in
the values used for the volume and the relative volume
change. One thing we have noticed is that as the pressure
becomes higher the window through which we observe an
accurate picture gets narrower and thus the scale of
simulations must be made finer as P increases in order to
maintain the accuracy of the calculation.

IV. DISCUSSION

We implemented the histogram method and constant-
pressure method, originally developed for infinite sys-
tems, in our MC simulations in order to add one dimen-
sion to the picture of phase transitions in finite systems.
The histogram of the cluster system is expanded from a
one-parameter (E} to a two-parameter (E, V} function.
Much richer thermodynamic information can thus be ob-
tained from the density-of-states function which depends
on both the configuration energy and the volume.

The Ar55 cluster has been well studied by many simula-
tions previously, but our results provide information on
the change of its size as a function of temperature and

P=0.1
4

P=0.5

0.5 .
3

2.

2.

W T T 5 0 W 0 T T0 ~ ~ I W T ~0

T(LJ units) T(LJ units)
0.22 0.3 0.38 0.46 0.22 0.3 0.38 0.46

~ I ~ 0 T0
0.22 0.3 0.38 0.46

T(LJ units)

FICx. 5. Coefficient of thermal expansion for Ar» at P =0.0, 0.1, 0.5, and 1.0. Units are K ' for the coefficient and Lennard-Jones
units for the temperature (see Fig. 2).
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0.5
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~ I I ~ I l I f I I ~
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I I I

55 65 75 85
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FIG. 6. Pressure-volume curve for Ar» at T=0.3, 0.315, 0.325, and 0.337 Lennard-Jones units (see Fig. 2). Units of pressure are

Lennard-Jones units, well depth c., per unit of Lennard-Jones volume, 0'.

pressure. This constant (X,P, T) MC simulation with
histogram method can also be applied to many other
cluster systems with a little careful consideration of clus-
ter shape.

The spherical approximation used in this work thus far
can be improved by use of either the convex-hull approxi-
mation or the a-hu11 approximation. The question is still
open as to whether the thermodynamic functions and
particularly the curves of equal free energies would be
affected significantly by replacing the spherical approxi-
mation by a more sophisticated counterpart; in any event,
it will be important to explore this issue. The convex hull
is useful for moderately complicated shapes. It can be
built up by a simplex method (tetrahedra in three dimen-
sions) [25,26]; and the volume of clusters can be obtained
by summing the volumes of tetrahedra, plus the products
of surface area and the radii of the atoms on the surface.
Mathematically, it is the intersection of many half spaces.

12

10—

P(LJ) 5

4

0—
I I I 1 1 I t I I 1 I I I l I l 1 I I

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

FIG. 7. Points on the curves of G„l;d(P,T,N ) = G&;q(P, T,N )

for Ar» in the liquid-solid coexistence region. Energy units are
the Lennard-Jones well depth e; temperature is in Lennard-
Jones units (see Fig. 2).

If the system has important concave regions or a high-
ly convoluted shape, the convex-hull method is not accu-
rate enough to evaluate the volume reliably. For such
cases, we probably need a still more sophisticated way to
define and calculate the volume. The a-shape method
[27,28] does provide a more powerful tool to study sys-
tems with arbitrary shape and topology. Instead of con-
structing the body by the intersection of half spaces (con-
vex hull), this method constructs the body from the inter-
sections of the regions excluded by predetermined
spheres, or by the intersection of many spheres of nega-
tive radius. Since the radius of the sphere is an adjustable
parameter, one can choose different values for the prob-
lem at hand according to the type of cluster and the sur-
rounding gas.

In both of these methods, the volume is no longer an
explicit function of a. The significance of a still remains
for these systems because the overall stretching and
compressing of the whole system in its environment al-
lows us to imitate the external pressure. When a
changes, all the interatomic distances change at once,
causing the volume to change, independent of the method
used to estimate the volume. A further refinement is to
allow anisotropic changes in volumes. This requires that
we use three scaling parameters we call a, b, and c. Nu-
merically, anisotropic size scaling does not consume sub-
stantially more computer time than isotropic, one-
parameter scaling and in certain types of problems it can
be important to do, e.g., shear stress on matrices. How-
ever, in the trials to approach simulations of constant-P
conditions for clusters, we adopt the very simplest way,
and consider an isotropic system with only one scaling
constant.

Within the temperature and pressure range of these
simulations, we observed no atoms evaporating from the
surface. In general, evaporation can be seen in simula-
tions at higher temperatures or, if one waits long enough,
it can be observed even in the solid region. In our past
work, when we encountered such evaporation, we have
stopped the simulation and started again with a different
initial condition and then averaged the results from each
initial condition. In this way, we preserved constant
mass in our systems.
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Finally, we ask what the relation is between the phase
diagrams presented here for a finite cluster and those of
bulk matter. Specifically we examine the traditional
phase coexistence curve in a (P, T) space and sketch in a
qualitative manner the corresponding picture for a clus-
ter. To do this, instead of simply drawing a curve in the
(P, T) plane along which the bulk chemical potentials p„
and p„&;~are equal, we add a third variable related to the
equilibrium constant,

E,q(T)= [liquid]/[solid] .

We define the equilibrium distribution D,„(T ) [1],

D, (T)=[K,q(T) 1]l[—K,q(T)+I]
[liquid] —[solid]
[liquid]+ [solid]

For a bulk system, D, is —1 in the solid region and + 1

in the liquid region, appearing to change by a discontinu-
ous step function but is in actuality an extremely steep
but strictly continuous function around p~;q=p, „~;z[29].
For a finite cluster of N particles, at constant P, however,
D,q(T, P,N) is a smoothly rising, presumably monotonic,
S-shaped function between Tf (P), the lower temperature
limit of the local stability of the liquidlike cluster, and
T (P), the upper temperature limit of the local stability
of the solidlike cluster. At Tf (P), D,q(T, P, N) is discon-
tinuous, rising from —1 to its value
tanh [N b p( Tf )Iks Tf ]. At T, D,q ( T,P, N ) again rises

discontinuously from tanh[Nbp(T )Iks T ] to + l. It
has been argued that for most substances, Tf and T can
be expected to persist and remain roughly as separated
when N~ ~ as they are in clusters just large enough to
be treated by the continuum approximation [1,3]. Figure
8 contains (a) schematic representations of D,q(T, P, ~ )

as a function of P and T, and (b} D, ( T,P, N ) for a rela-
tively small N.

At this time, we do not yet venture to speculate how
Tf(P) and T (P) behave as P grows very large. The be-
havior at the triple point is unknown. If there were a
critical point on the liquid-solid coexistence curve, then

T& and T could be expected to meet at that point, just
as the two branches of the liquid-vapor spinodal meet at
the liquid-vapor critical point. We merely present the
qualitative picture, the geometric representation shown
in Fig. 8, saving for future discussion the transcription of
E, V distributions such as those in Fig. 1 into (P, T) dis-
tributions to the kind sketched in Fig. 8, and addressing
the other open questions.
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APPENDIX

In parallel to the overlapping method in one parameter
we write down the error function for least-squares fitting
as

(a)
p. (r)

solid
t/rrr r rr/Jr// r///rrr rr/rrtr///Jr//rrrrrrrrrrr/tr/rrr//rrr r///rrrrr/rr/rtr r//r//r/r/ttrtJ/ r trtt//tr/r//rrrr tr rrrrrrrrrrrr////r rrrrrrrr/r rr rtrrrrr/rrr r/rrrrt/rr/JJ/// tt / /Jt////tt/rrrrrrt rr r rr/rrt/rrrr///r/rt r r //Jr//r///r

T r/rr//r r r r/r/Jr////rrr rrrrrrrrrtr/J//t/t/ tJ/ r/JJ//JJ/trrtr/r/rrr r/r r/rrrr//rrtf rrrr///rr rrr rrtrrtrrrrr/Jtt/tltt r/ r///Jr/Jr//rrrr//rrr rr rrrr rrrrr/rrrr/rr/rr r r r/rrr/rrrrrrttlt////r t r/tt/r////rrrr/r/rr/r r rrr/rrrrrrrrrr//r/r/rrtt/rr//r/rr r rrrrrrrrrrrrr/rrrrrrr/r r t////Jr/rrrt/Jtt/Jr/Jrr//trtrr/r/rr rr///r/rr/rr/r/t/rrrtt/r rrr/rrr/r/r//r/r///rt//t/ /Jt/ttt/t/Jrr/r/////rrrrr trrr/Jrrrtrrrtt//t//J/r r////r//rr

liquid

y„(E„V)=N„(E„V)+P(E„V), (Al)

N„(E„V)~'= XX
n gn

X [y„(E„V)—lnQ(E„V)+f„+Inn„I ~ .

(A2)

e

Minimizing b, with respect to InQ(E„V)and f„we
obtain the equations

P p (T)

VERY LARGE SYSTEM

lnQ(E„V)=

N„(E„V)
[y„(E„V)+f„+Inn„]

n gn

g N„(E„V)

liquid gn

(A3a)

rrrrr trrr/rtr rrrrr/&r rr////rr rtrrr/trr r/trrr/trrr/r //Jr//tr rrrrr/JJJJ/tr ///JrJr/Jr rrrrrrJr/Jr rrttrrrr

and

DD

ME D IUM —SIZE CLUSTER

N„(E„V) [y„(E„V)—InQ(E„V)+inn„]
n gn

g N„(E„V)
FIG. 8. Schematic displays of the surface D(P, T,N ),

[[liquid] —[solid]]/[total), for (a) N~ co and (b) some relatively
small N, e.g., 55. (A3b}
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