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Boltzmann equation and Monte Carlo analysis of electron-electron interactions
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Electron distribution functions in nonthermal cold plasmas generated by classical electrical discharges
have been calculated from a powerful Boltzmann equation solution and an original Monte Carlo simula-
tion. In these two methods both classical (i.e., elastic, inelastic, and superelastic) electron-atom (or mole-
cule) collisions and electron-electron interactions are taken into account. The approximations con-
sidered to include long-range (electron-electron) and short-range (electron-atom) interactions in the same
Monte Carlo algorithm are first validated by comparing with Boltzmann equation results. Then, the
influence of electron-electron interactions on electron distribution functions, swarm parameters, and re-
action rates under nonthermal cold plasma conditions are analyzed and discussed as a function of re-
duced electric field E/N and ionization degree n, /N for different atomic and molecular gases.

PACS number(s): 52.20.Fs, 51.50.+v

I. INTRODUCTION

The nonthermal cold plasmas of concern in this paper
are generated by classical electrical discharges with an
applied electric field E which accelerates, in particular,
an electron swarm through a background gas with gas
density N.

The main features of these nonthermal cold plasmas
are particularly a relatively low ionization degree
(n, IN (10,n, being electron density) and an electron
temperature T, generally higher than background gas
temperature T (T is around ambient temperature). It is
well known that the latter characteristic is at the origin
(via electron-molecule or atom collisions) of production
in the plasma of various ionized, excited, and dissociated
species whose properties can then be exploited in
numerous plasma devices (gas lasers, lamp discharges,
plasma etching, and sputtering, flue gas treatment, etc.).
Numerical modeling, which is now considered as a neces-
sary complement to experimental investigations, can be
useful to predict the optimal operating conditions of such
plasma devices. Among the basic quantities required for
numerical modeling, the electron distribution function is
probably the most important, because electrons are re-
sponsible for most energy transfer phenomena in this
kind of plasma.

The electron distribution function, which is of course
far from being Maxwellian in the most typical non-
thermal cold plasmas, is sensitive to numerous phenome-
na: electric field heating, electron source or sink,
electron- molecule collisions (elastic, inelastic, and su-
perelastic), and in certain cases electron-electron interac-
tions.

Numerous studies based on Boltzmann equation solu-
tions (see, for example, Ref. [1])or on Monte Carlo simu-
lations (see, for example, Ref. [2)) are devoted to calcula-
tion of electron distribution functions and associated
transport coe%cient in nonthermal cold plasmas generat-

ed by gas discharges, but without including Coulomb in-
teraction efFects. However, for certain plasmas (created,
for example, in positive column of low pressure lamp
discharges or in excitation medium of excimer lasers), the
ionization degree becomes high enough so that the elec-
tron distribution function can be more or less affected by
electron-electron interactions. Therefore it becomes
necessary to include such effects on distribution function
calculations in order to avoid some more or less impor-
tant errors on the parameters depending directly (swarm
parameters and reaction rates) or indirectly (e.g. , densi-
ties of excited or ionized species, space charge distribu-
tion, etc.) on electron distribution function.

In the literature, there are also numerous studies based
on Boltzmann equation solutions which already include
electron-electron interaction effects on the distribution
function of electrons moving under electric field action
(e.g. , Ref. [3]. However, in the present paper, we propose
to investigate and to analyze in a systematic way the
effects of electron-electron interactions on the electron
distribution function and the associated transport
coefficients as a function of ionization degree n, /N, re-
duced electric field E/N, and also the nature of the gas
(atomic or molecular) either from Boltzmann equation or
Monte Carlo simulation. The method of homogeneous
and time-dependent Boltzmann equation solution pro-
posed in this paper is based on a stable and powerful nu-
merical scheme. It is different from the classical scheme
of Rockwood (used by numerous authors) since, due to
the iterative nature of the present work scheme, there is
no restriction for the treatment of any kind of collisions
involving electrons (elastic, superelastic, inelastic, and
also ionization stepwise or Penning ionization). Concern-
ing the treatment of electron-electron interactions with
the Monte Carlo method, there is a fundamental draw-
back due to the nonlinear nature of such interactions
since the scattering depends, in particular, on the elec-
tron distribution function itself which is not known in the
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beginning of the simulation. Therefore, in this paper, an
original method is proposed to avoid such a drawback for
the treatment of electron-molecule and electron-electron
interactions with the same Monte Carlo algorithm. The
first results obtained from these Monte Carlo methods in-
cluding electron-electron interactions are already present-
ed elsewhere (Yousfi et al. [4]). Other Monte Carlo re-
sults, for transport of electron swarm in gas discharges,
are also given by Weng and Kushner [5] and Hashigushi
[6] but the treatment of electron-electron interactions by
the present work method is quite different especially from
Hashigushi's.

Furthermore, the reader interested by the problem of
the treatment of electron-electron and electron-molecule
interactions with either Monte Carlo or Boltzmann equa-
tion methods can find a relatively abundant literature not
only in the field of the transport of electron swarm in gas
discharges [3—6], but also in other fields such as electron
transport in earth's ionosphere [7] or electron transport
in interstellar gas (e.g. , Shull [8]) or charge transport in
semiconductors (e.g., [9]) or plasmas generated by elec-
tron beam (e.g. , [10]). However, in particular in aerono-
my and astrophysics fields (i.e., [7] and [8]), the reader
must known that the electron-electron interactions con-
cern interactions between energetic projectile electrons
and thermal target electrons whose Maxwellian distribu-
tion is already known. This is not the case in the field of
our interest (i.e., electron swarm in gas discharge) where
projectile and target electrons have the same unknown
distribution. In any case, the problem of electron-
electron interaction treatment with particularly Monte
Carlo methods has not been, to the authors' knowledge,
rigorously treated and still remains an interesting chal-
lenge. This is why one of the purposes of this paper is to
present a Monte Carlo method based on the classical null
collision technique and using successive approximations
for the electron distribution function which ensure self-
consistency of the solution in the presence of electron-
molecule and electron-electron interactions.

The methods of Boltzmann solution and Monte Carlo
simulation including both electron-atom and electron-
electron collisions are described in Sec. II, while the
references for collision cross sections for atomic and
molecular gases used in this paper are reported in Sec. III
with the corresponding results (electron distribution
functions, swarm parameters, and reaction rates).

II. METHODS OF CALCULATION

A. Boltzmann equation

The usual approach considered in this paper to solve
the following Boltzmann equation,

BF(,t) +y dF(, t) +&(t)F(, t)= C[F],
Bt ~ Bv

(3)

where 0( t ) = [ 1 ln, (t ) ][dn, ( t) ldt] is the effective ioniza-
tion frequency and n, (t) the electron number density.

In Eq. (3), when only binary collisions are taken into
account, the scattering term C [F] can be approximated
by

C [F]= —v(u)F(v, t)+J [F] (4)

in which v(u)F(v, t)drdv and J[F]drdv correspond to
the electron number scattered, respectively, out of and
into the elementary volume of phase space drdv. In the
case when the elastic, inelastic, and superelastic electron-
atom and electron-electron collision processes are taken
into account, the scattering term can have the following
form:

v(U)=v (( )(u)+v ( )(u)

+vqUp(q g)(u) qv)(q q)(u)

J[F]=J(( )[F]+J ( )[F]

+J,„(,, ) [F]+J,((, ,) [F] .

(sa)

(5b)

In depopulation term v(u)F(v, t), v(u) is the total micro-
scopic collision frequency including the elastic v,((, ,)(u),
inelastic v,„(,,)(u), and superelastic v,„(,,)(u) electron-
atom collisions and also electron-electron v„(, ,)(u) in-

teractions; the population term J [F] involves also the
same processes. Expressions of the different terms of
J [F) are already given elsewhere [12,13].

Kinetic equation (3) has not been directly solved under
its form (3). It has been first multiplied by Legendre po-
lynomial P((cos8) (8 is the angle between y and v) and
integrated over d cos0; then the classical two-term devel-
opment (l=0 and 1) is considered. Under these condi-
tions, Eq. (3), when collisions are assumed isotropic, be-
comes

()Po(u, t) y (}u P((u, t)
+

Bt 3U BU

+ [Q(t)+v(u)]go(u, t) =J [go], (6a)

C [f] is the scattering term, y( =eEltn) the electric field
E acceleration, and e/m the electron charge to mass ra-
tio. f (r, v, t) depends on position r, velocity v, and time
t. The new distribution function F(v, t) depends no
longer on position r because development (2) is valid only
when electrons are far enough from the system boun-
daries or electron sources and if the density gradients are
small. It is then easy to obtain, from Eq. (1) and develop-
ment (2), the kinetic equation verified by function F(v, t),
i.e.,

(3f(r, v, t} df(r, v, t) t)f(r, v, t) ay, (u, t) ay, (u, t)
P((u, t) =-

O(t)+ v(u) (}u
+

at
(6b)

is based on the first term of the development of distribu-
tion function f (r, v, t) in series of electron density n, (r, t)
gradients proposed by Kumar [11]:

f(r, v, t}=F(v,t)n, (r, t) .

Po(u, t) and P((u, t) represent the isotropic part and first

anisotropy defined as follows:

21+1 + &

P((u, t)= f P (c(sOo)F(v, t)d cos9 .
2 —

1
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In fact, it, p(u, t} is obtained from numerical solution of the following equation deduced by setting (6b) in (6a) and de-
veloping the elastic population terms (J„(,,) [(t0] and J„(,,) [$0]}:

(}$0(u,t) &2 g „2 ()$0(v, t)

Bt 3 (}u Q(t) +v( v) (}v

kn T g Bi)I 0( v, t)

M Qv
el(e a)

[ V Ve)(e a)gp(U& t)] Ve)(e e)V [ A2( V& t)+ A 3(U&t)] (t)p(V&t)
a

Bv

tv, l(, ,)v A, (v, t)$0(u, t)]+ IQ(t)+v(v)]u $0(u, t}el(e-e)

~ () v W)(u t)
I Jin(e a)[4'0]-+Jsup(e-a)[00]] +

3 Q Q( )+ ( )
(7)

with the following expressions for electron-electron
Coulomb terms A l(v, t), A2(u, t), and A3(u, t):

Al(v, t)= f (t)0(v', t)u' du',
)le

A2(v, t)= f $0(u', t)v' dv',
n, 3v 0'
4 2

A3(u, t)= f (t&0(v', t)u'dv'
)le v

and with this normalization condition:
4mfp. p(u, t}v du =1. k() represents the Boltzmann con-

0
stant, T and M the temperature and mass of background
gas.

Equation (7) is a time first-order and a velocity
second-order partial differential equation. In this paper,
the numerical scheme is chosen explicit in time and im-
plicit in velocity. The discretization of d/dt and ()/Bv
operators is made by dividing the time D, and electron
speed D„variation domains in I and J intervals, i.e.,

Du IO Umaxl [Up O vl U2 ' ' ' &vi —1 vi

Vl+i » VI Vmax

D, —[0&tm,„]=[to=0&t, &t2». . . tj (&tj,

1+1»' ' ' J mes]

The left-hand side of the discretized equation thus de-
rived depends on function $0(v, t) expressed only on
$0(v; „t1), (t(0(v;, t, ), and &I)0(v;+„t. ). When the sub-
script i varies from 0 to I, we obtain for every time tj (j
varying from 1 to J}, a system of I+1 equations whose
main matrix is tridiagonal. Such a system is solved with
a classical numerical algorithm (Thomas algorithm), the
boundary [$0(v =O, t) and (()0(v =u,„,t)] conditions, and
also the initial [i)(0(u, tp=O}] condition being known.
However, as the Coulomb terms A l(v, t), A2(v, t}, and
A3(v, t) and the effective ionization frequency Q(t) de-
pend on $0(v, t), Eq. (7) is nonlinear. The right-hand
term of Eq. (7) also depends on (t)0(v, t) and &(()l(v, t). For
these reasons Eq. (7) is solved by iteration. For the first
step time t, and for the first iteration, an initial distribu-

I

tion is assumed for the unknown functions $0(u, t) ) and

p)(u, t, ) [e.g., the known initial distributions $0(u, tp) and

$)(u, tp)]. This allows a first approximation for Q(t),
Coulomb terms, and right-hand terms of Eq. (7). The
new solution (t(0(v, t) obtained is then injected in Q(t),
Coulomb terms, and right-hand terms. The same pro-
cedure is continued until the convergence of the method
is reached. The functions $0(v, t) and P)(v, t) are then
calculated for the next time t; iterations are always start-
ed from the distribution functions at time t, . It is im-
portant to note that for every time step and also for every
iteration, $0(u, t) is obtained from solution of Eq. (7) fol-
lowing the numerical procedure described above and
((),(v, t) is then obtained from Eq. (6b). The fact that
(I)((u, t) in Eq. (6b) depends on itself via a time derivative
term [B(t&)(u, t)/(}t] is absolutely not a problem because,
as the numerical method is iterative, P)(u, t) is also ob-
tained by successive approximations simultaneously with
(()0( v, t). In the literature the time derivative term
(}P)(v,t)/(}t of Eq. (6b) is usually neglected (see, for exam-
ple, Winkler, Wilhelm, and Hess [14]).Such approxima-
tion, which is certainly correct when the steady-state
solution is reached, could be completely incorrect during
the transient phase of the evolution of electron swarm
[15].

B. Monte Carlo simulation

1. Treatment of electron molecule co-llisions

The electron transport in a gas under the inhuence of
an electric field E can be simulated with the help of a
Monte Carlo method from an initially great number of
seed electrons. These primary electrons are followed one
by one until their disappearance out of the domain of the
simulation. Every electron, during its transit in the gas,
performs a succession of free Aights punctuated by elastic
or inelastic or superelastic collisions with molecules (or
atoms} of gas defined by collision cross sections. During
the successive collisions for every electron, a certain
quantity of information (velocity, position, etc.) are
stored in order to calculate, from appropriate sampling
methods, distribution function, swarm parameters, and



7892 M. YOUSFI, A. HIMOUDI, AND A. GAOUAR 46

reaction rates. The simulation is stopped when all the
primary electrons as well as the secondary electrons
(created, for example, by ionization) are treated.

The Monte Carlo algorithm used in this paper is a clas-
sical one (see, for example, Reid [2]). Between two suc-
cessive collisions the free time of flight, the electron tra-
jectory, the collision type, and the electron velocity be-
fore and after every collision must be known.

Time between two successive collisions or (time of free
flight) tfl;ght is calculated, by using the null collision
method initially developed by Skullerud [16] for simula-
tion of ion motion in gases:

flight

"flight )

Vtot
(9)

where rflight is a random number uniformly distributed in
the [0,1] range and v„t is the total collision frequency in-

cluding the total electron-molecule collision frequency
V, , and a null collision frequency Vnull chosen in order to
always have v„, constant:

dU

dt
d x dUy dy dUz=0, = =0,

dt dt
' dt

2z eE,
dt2 m

(10)

Hence, starting from a velocity vp(v„p, v~p, u, p) at time rp

corresponding either to initial velocity of primary elec-
tron or to velocity just after the last collision (at the be-
ginning of free flight), the component of electron velocity
v, (v„„u~„u„)at time t, just before the next collision
(i.e., at the end of the free flight) is obtained by integrat-
ing relations (10) over time range [tp, t, ] where

flight 1 0

eE,
Q Uy 1 Uyp U 1 U Q+ tflight

m

On the other hand, the new coordinates r, (x „y„z, ) of
an electron at time t, can be calculated from coordinates
rp(xp, yp, zp) of an electron at time tp by integrating rela-
tions (11), i.e.,

X
1 +0+ 0 fligh ~1 ~0+ U 0 flight

eE,
Z 1 ZQ +UzQt fligh + t fligh2 m

(12)

Starting from the electron parameters rp, vp tp at the
beginning of the free flight, the new electron parameters
r „v„t, at the end of the free flight are obtained, respec-
tively, from relations (12), (11), and (9). Then just after
the collision occurring at time t„the electron parameters
become rl, vl, t', . However, it is necessary to calculate

vt t v +v ll COnSt

While the trajectory between two successive collisions
is obtained from the classical mechanics equations, i.e.,
from the electric field strength F exercised on electrons
with a charge —e: F= —eE=mdv/dt =md r/dt . In
the laboratory Cartesian system of coordinates and in the
case of an electric field E antiparallel to the Oz axis, this
relation becomes

only electron velocity v', because the electron-molecule
interaction is assumed instantaneous (t', =t, ) and local
(r', =r, ). Velocity v', is calculated from knowledge of the
collision type which is given by the likelihoods ( p„i,i,
p„i;„,p„i,„orp„i „„ii ) of occurrence of every collision
kind (elastic, inelastic, superelastic, or null):

Vel(e-a)
P col, el

Vtot

Vin(e-a )~.ol .=
Vtot

Pcol, sup

Vsup(e-a)

Vtot

Vnull

P col, null
Vtot

With Pcol el+P, ol, ;„+P,ol, s„p+Pcol null
=

The type of collision is then determined from a random
number r„l uniformly distributed between 0 and 1.
Several types of collision are possible: (1) if it is a null
collision, velocities before and after the collision are the
same, (2) if it is, e.g. , an attachment, the next primary
electron is treated, and (3) if it is another real collision,
the velocity vl after interaction depends on the collision
type; the component of electron velocity vl as a function
of vp and vl is given in the Appendix for the difl'erent col-
lision types.

2. Treatment of electron electron-
and electron-molecule interactions

There are essentially two major drawbacks to treating
electron-molecule and electron-electron interactions with
the same Monte Carlo algorithm.

The first one is linked to the nature of interaction itself.
Electron-molecule interactions are short-range interac-
tions: they can then be approximated as binary collisions
and treated with laws of classical mechanics, whereas
electron-electron interactions are long-range interactions:
this means every projectile electron can interact simul-

taneously (multiple interactions) with numerous target
electrons situated inside its Debye sphere, because in-
teractions with charged particles outside the Debye
sphere (collective effects) are negligible in usual non-
thermal cold plasmas (n, IN & 10 ).

The second drawback is linked to the distribution of
target particles. In the case of electron-molecule col-
lisions, the distribution of molecular target is known
(Maxwellian at gas temperature), whereas in the case of
electron-electron interactions, the distribution of elec-
tronic target is unfortunately unknown; the latter's distri-
bution is exactly the same distribution as for the projec-
tile electrons and is therefore the distribution sought.

In order to avoid the first drawback, the multiple
electron-electron interactions are first assumed as a suc-
cession of binary collisions weakly deviated: this corre-
sponds to the classical Fokker-Planck approximation al-
ready taken into account for Coulomb scattering terms in
Boltzmann equation [see relations (8)]. Under this ap-
proximation, Coulomb interactions can be treated as
binary collisions, but there is still the problem of multiple
collisions (i.e., a simultaneous great number of collisions).
A supplementary assumption is therefore necessary to in-
clude electron-electron interactions in the Monte Carlo
algorithm with reasonable time computing. This second
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assumption consists of grouping every succession of weak
deflection binary collisions into a unique binary collision
with a larger scattering angle integrating the contribution
of all the weak scattering angles. In practice, this means
the projectile electron undergoes a binary elastic collision
with a fictitious target electron having the same mean en-
ergy as the target electrons situated inside its Debye
sphere; such a fictitious electron therefore keeps all its
characteristics from an energetic point of view.

In order to avoid the drawback of the unknown elec-
tron target distribution, for the first primary electrons
treated, a known electron target distribution is assumed
(e.g. , a Maxwellian distribution). When the following pri-
mary electrons are treated, the mean distribution of the
previous electrons is considered: for example, for the ith
primary electron, the mean distribution of the (i —1)th
previous primary electrons is considered. As the number
of treated primary electrons increases, the distribution of
target electrons is progressively improved: for the results
given in Sec. III in N2 discharge for E/N =10 Td, the
statistic fluctuations become very acceptable from 3000
primary electrons on.

Thus the previous approximations allow us to consider
electron-electron interactions as simple binary collisions
which can therefore be treated with the Monte Carlo al-
gorithm already described in Sec. II B 1. However, the
determination of the free time of flight tflght and also the
collision type necessitates taking into account the supple-
mentary electron-electron process. tfl ght becomes

III. BASIC DATA AND RESULTS

A. Collision cross sections

In the following some results are given for different
atomic and molecular gases in order to emphasize the
specific behavior of each gas when the influence of
electron-electron processes becomes significant. Refer-
ences of elastic and inelastic (excitation and ionization)
electron-atom collision cross sections for the different
rare gases (He, Ne, Ar, Kr, and Xe) have already been
given by Yousfi et al. [13] while collision cross sections
for the molecular gas chosen (N2) come from Phelps and
Pitchford [17]. Figure 1 shows, as an illustration,
momentum transfer cross sections for the different gases
analyzed in this paper. The electron-electron elastic
cross section used is the classical one (see, e.g., Rock-
wood [3)).

B. Results and discussion

The aim of this section is mainly to analyze and to dis-
cuss the influence of electron-electron interactions on
electron distribution functions, swarm parameters, and
reaction rates as a function of ionization degree n, /N, re-
duced electric field E/N, and also the gas. But first, in
order to validate Monte Carlo treatment of electron-
electron interactions as is considered in Sec. II B 2, some
comparisons between Monte Carlo and Boltzmann equa-
tion results are presented.

flight

ln(rfl' hI)

vtot
with v„,=v, , +v, , +v„ull=const . 1. Comparisons between Monte Carlo

and Boltzmann equation results

Electron-electron collision frequency v, , has the follow-
ing form:

ne
v, , = N v„cr(v„)F(r,v„t)dv, . (13)

P col, el P col, in +P col, sup +P col, null +P col, e-e

Furthermore, it is important to note that null collision
frequency v„„ll must be chosen high enough in order to
have total collision frequency v„, which always verifies
this inequality: v„,)v, ,+v, , Such caution is necessary
because v, „which depends on the electron distribution
function [see relation (13)], is not known a priori (i.e., in
the beginning of Monte Carlo simulation) contrarily to
v, . This is the reason for which v„ull must be overes-
timated to be sure that v„t&v, , +v, „particularly at
lower values of electron speed where v, , is maximum.

v„ is the relative speed (v„=v—v, ), v, is the velocity of
the fictitious target electron, and v is, as previously
defined, the projectile electron velocity [in the v, , rela-
tion, the distribution function F(r, v„t) of target elec-
trons is normalized to unit and o, , (v„) is the Coulomb
cross section].

The determination of the collision type also requires
the calculation of collision likelihood p„l, , of electron-
electron interactions: p„l, , =v, , /v„„with

io
I I I I IIII' I I I I IIII' I I I I IIII[ I I I IIIII

io
C
0

0I
g -16io

0

0

io

io
I I I I I II I I I I I I I II I I I I I I I II

io io io
Energy (eV)

io

FIG. 1. Elastic momentum transfer cross section in rare
gases (He, Ne, Ar, Kr, and Xe) and in N2.

Figure 2 shows the isotropic part of the electron distri-
bution 1 function in N2 for E/N=10 Td with and
without considering electron-electron interactions.
Monte Carlo and Boltzmann equation distribution func-
tions are comparable in the entire energy range (distribu-
tion bulk and tail). However, if in Monte Carlo simula-
tion the energy distribution of target electrons is assumed
Maxwellian (such as Hashigushi [6]), there are deviations,
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particularly in distribution bulk above mean energy value
of the Maxwellian distribution chosen (i.e., around 0.8
eV). These deviations vanish as soon as the distribution
function is calculated following the Monte Carlo algo-
rithm described in Sec. II B 2, i.e., the distribution of tar-
get electrons is progressively approximated by the distri-
bution of projectile electrons. Furthermore, the good
agreement observed concerning distribution functions is,
as expected, completely carried over to swarm parame-
ters (drift velocity or mean energy) plotted in Fig. 3 as a
function of time. Noting the classical transient phase be-
fore reaching equilibrium state and noting also the short-
ness of relaxation time of mean energy and drift velocity
as n, /N increases: it is due to the rising of total collision
frequency (inversely proportional to relaxation time) con-
secutive to the electron-electron frequency rising. Other
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FIG. 2. (a) Isotropic part of electron distribution function in

N2 for E/N=10 Td without electron-electron interactions:
+ +, Monte Carlo simulation;, Boltzmann equation solu-
tion. (b) Isotropic part of electron distribution function in N2
for E /N = 10 Td with electron-electron interactions
( n, /N = 10 '):,Boltzmann equation solution; Monte
Carlo simulation with a Maxwellian distribution for target elec-
trons (oo) and with the same distribution for target and in-

cident electrons (+ + ).

FIG. 3. (a) Electron mean energy (++, ———) and drift ve-

locity (oo, ) in N2 for E/N=10 Td without electron-
electron interactions. Symbols: Monte Carlo simulation; lines:
Boltzmann equation solution. (b) Electron mean energy (++,
———) and drift velocity ( o o, ) in N2 for E/N= 10 Td
with electron-electron interactions ( n, /N = 10 ')

~ Symbols:
Monte Carlo simulation; lines: Boltzmann equation solution. (c)
Electron mean energy (+ +, ———) and drift velocity ( o o,

) in N2 for E/N=10 Td with electron-electron interac-
tions (n, /N=10 ). Symbols: Monte Carlo simulation; lines:
Boltzmann equation solution.
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sensitive to electron-electron interactions for high E/N
in N2.

c (arbitrary unit)

FIG. 5. Schematic representation of electron-electron in-
teraction frequency v, , ( ), isotropic part of distribution
function $0 without ( ), and with (

———
) electron-

electron interactions, and the three (low-, intermediate-, and
high-) energy regions.

tion is lowered in region 2 to the detriment of energy re-
gions 1 and 3 under the effect of electron-electron interac-
tions are given hereafter. If an electron from region 2 un-

dergoes an electron-electron interaction, it can be, for in-
stance, ejected in region 1 (i.e., energy loss), at the same
time another electron is automatically ejected towards re-
gion 3 (energy gain) since electron-electron interactions
do not change the total energy of electron gas. There-
fore, if electron-electron interactions occurring in region
2 are important enough [which is not always the case be-
cause v, , (E) rapidly decreases in region 2: see Fig. 5],
this can explain, following the energy conservation prin-
ciple, the rise of $0 function in regions 1 and 3 to the de-

triment of region 2.
The schematic representation in Fig. 5 corresponds to

a relatively low E/N value. For higher E/N values, the
distribution function —but not v, , (E)—is shifted to-
wards high-energy regions. This means the relative im-
portance of v, , (e) diminishes particularly in regions 2

and 3. And as E/N becomes too high, the magnitude of
v, ,(E) can become completely negligible in regions 2 and
3. Consequently, the distribution function is practically
not affected by electron-electron interactions for high
E/N values. Such a behavior is confirmed in Figs. 6(a),
6(b), and 6(c) showing the isotropic part $0 of the distri-
bution function plotted with and without electron-
electron interactions for increasing E/N values (1, 10,
and 50 Td) in Ne, Ar, and N2. The decreasing effect of
electron-electron interactions with increasing E!Nvalues
is quite spectacular in particular for distribution tail in
Ne and Ar. However, in N2, due in particular to the high
magnitude of inelastic processes (excitation of vibrational
and certain optical levels), electrons are slowed down and
concentrated in relatively low-energy regions (lower than
around 5 eV) and therefore distribution tail is not very

3. Electron el-ectron interaction eQect
on swarm parameters

Following results of Figs. 4 and 6, the decreasing
influence of electron-electron interaction on distribution
function is clearly emphasized as E/N increases. The
problem is to know from what E/N value this influence
becomes negligible, knowing that such a limit depends on
gas and also n, /N. This can be analyzed from swarm pa-
rameters (e.g. , drift velocity W) and reaction rates (e.g. ,
ionization frequency v;,„), as they are representative, re-
spectively, of distribution bulk and tail behavior.

Figures 7 and 8 show reduced ionization frequency
v;,„/N and drift velocity W calculated without and with
inclusion of electron-electron interactions for several
n, /N values in the case of Ne, Ar, and N2.

First of all, at low E/N values the increasing of v;,„/N,
due to electron-electron interactions, observed in Figs.
7(a) and 7(b) is more pronounced for higher n, IN (10 ).
This can be explained by the rising distribution tail ob-
served in Fig. 4 which, as is known, directly influences

v;,„/N magnitude. However, v;,„/N in N2 is practically
insensitive to electron-electron interactions whatever
n, IN [see Fig. 7(c)], for the reasons already evoked in the
preceding section concerning the distribution tail in Nz
which is not very sensitive to electron-electron interac-
tions.

However, the effect of electron-electron interactions on
drift velocity W is completely different because W is
representative not only of the distribution tail as v;,„/N
but also and mainly of the distribution bulk. In Figs.
8(a), 8(b), and 8(c), 8'behaves similarly whatever the gas
(Ne, Ar, or N2) depending on the EIN range considered.
In fact, three different E/N ranges can be distinguished:
the first one (range 1) corresponds to the very low E/N
values where drift velocities calculated without W„and
with W, , including electron-electron interactions verify
this inequality: W ) W, , In the second E/N range
(range 2), this order is inverted ( 8' ( W, , ) and in the
last range (range 3) the electron-electron interaction effect
becomes negligible (W -=W, , ). Of course, boundaries
of each E/N range depend on gas and n, /N (see Fig. 8);
for instance, range 2 varies, for n, /N = 10, from
around 1 up to 130 Td in N2 and from around 0.3 up to
40 Td in Ne. Drift velocity behavior in each E/N range
can be explained as follows. Range 1 corresponds to a
situation where the distribution function is affected by
electron-electron processes essentia11y at very low energy
(energy region 1 previously defined). In this energy re-
gion where the distribution function is reinforced, as is
shown in Figs. 3—5, total elastic momentum transfer col-
lision frequency (for electron-electron and also electron-
atom interactions) increases with n, /N Then, electron.
distribution becomes more isotropic, which diminishes
drift velocity, because W is in a certain way a measure of
the anisotropy of electron swarm in the gas. This can be
better quantified from the classical relation obtained by
Phelps [1] from the Boltzmann equation:
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W=(eE/m )l/(v ), where W is inversely proportional
to the macroscopic momentum transfer collision frequen-
cy ( v ). Another proportionality relation (Phelps [1])
useful to better understand drift velocity behavior partic-
ularly in range 2 (intermediate E//1/ values) is
W= (v;„)l(D/IM kT—/e)/E], where D/p is the energy
characteristic and (v;„) the macroscopic inelastic col-
lision frequency. In range 2, as n, /N increases, the in-
elastic processes represented by ( v;„) are reinforced be-
cause distribution tail is enhanced. Therefore 8' in-
creases following the previous proportion relation be-
tween Wand (v;„).

The growth of inelastic processes for higher n, /N
values is clearly illustrated in Figs. 9(a) and 9(b) from the
energy loss per elastic, excitation, and ionization col-
lisions as a function of E/N in, for instance, Ar. At low
E/N values, when electron-electron interactions are not
taken into account, most of the electron energy is lost by
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elastic collisions until around 3 Td [Fig. 9(a)]. However,
as soon as electron-electron interactions are considered, it
is easy to observe in Fig. 9(b) that energy lost by elastic
collisions begins to decrease for lower E/N values ( & 0. 1

Td) to the detriment of energy lost by inelastic processes
(excitation and then ionization collisions). This behavior
corresponds totally to the rise of distribution tail in the
presence of electron-electron interactions already em-
phasized in this section.

Finally, whatever the gas or n, /N value, the effect of
electron-electron interactions on drift velocity or ioniza-
tion frequency becomes negligible from a limiting E/N
value (E/Nl;m) which is different according to the mac-
roscopic parameter considered (Wor v;,„/N) Thi.s limit-
ing value E/NI;m is given, as an example, in Table I for
n, /N=10, knowing that electron-electron effect is
considered negligible if the relative difference between the
macroscopic parameter with and without electron-
electron interactions is lower than 5%. We note that,
concerning v;,„IN for N2, there is no E/N lim because
ionization frequencies with and without electron-electron
interactions are not different whatever E/N [see also
comment concerning Fig. 7(c)].

The last figures show electron drift velocity calculated
in Xe for two quite low E/N values (1 and 10 Td) as a
function of ionization degree [Fig. 10(a)] and the relative
difference b, W/W between drift velocity calculated with
and without electron-electron interactions [Fig. 10(b)].
b, W/W is lower than 5% for n, IN &10 but b, W/W
increases rapidly with n, IN; for example, in Xe and for
n, /N=10, b, W/W can reach around 60% for 1 Td.
Such drastic differences on swarm parameters show, if
necessary, the important role played by electron-electron
interactions on electron kinetics under discharge parame-
ters (n, IN, E/N, gas, etc.) usual for formation of non-
thermal cold plasmas. Of course the typical nonthermal
cold plasmas where electron-electron interactions are
usually not negligible (e.g. , excitation medium for exci-
mer lasers) are formed under more complex conditions
(gas mixtures, time dependence of E/N and n, IN, etc.)

and electron kinetics is also perturbed by other collisional
processes (e.g., heavy particle collisions). However, the
results obtained in this paper concerning the relative im-
portance of electron-electron interactions on the distribu-
tion function and swarm parameters remains valid at
least qualitatively for these more complex plasmas, be-
cause electron-electron interactions concern interactions
between electrons themselves.
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APPENDIX: KINEMATICS OF COLLISIONS

Once the type of real collision has been determined, it
is necessary to calculate electron velocity v', just after the
collision. In the collision system, vector v& can be defined
in spherical coordinates by electron speed U&, scattering
angle g and azimuthal angle g.

(a) Scattering angle y, between velocity vl before and
v& after the collision, varies between 0 and m", y depends
on differential cross section o(v, y). It is determined
from a uniform random number rr belonging to the [0,1)
range:
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FIG. 10. (a) Electron drift velocity in Xe as a function of ion-
ization degree for E/N=1( ———) and 10 Td ( ). (b)
Relative difference on electron drift velocity in Xe calculated
with and without electron-electron interactions as a function of
ionization degree for E/N= 1( ———) and 10 Td ( ).
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f o.(u, y)siny'dy'

f o (u, y)siny'dy'
0

if an isotropic scattering is assumed this relation becomes
cosy=1 —2r .

X
(b) Azimuthal angle g is assumed in this paper to be

uniformly distributed in the [0,2'] range; it is then cal-
culated from a uniform random number r„belonging to
the [0,1] range, i.e., rl=2n r„

(c) Electron speed u ', just after the collision depends of
course on the type of collision which has occurred. In
the case of an elastic collision, due to the low value of
electron-molecule ratio m/M and since the target mole-
cule is considered to be at rest, the electron speed (or en-
ergy) after the elastic collision is given by

—,'mu', =
—,'mv, 1 —2 (1 —cosy)

in order to have a correct energy distribution after ioniza-
tion, it is better to use differential cross-section data
available in the literature (e.g., [18]).In this case, a conse-
quent inconvenience is that Monte Carlo calculations be-
come computationally more time consuming. Concern-
ing defIection angles of scattered and ejected electrons
after the ionizing collision, it can be assumed that the
scattered electron is deviated following the g angle and
the ejected electron following y' with y'=y+n. /2.

Once the vI components (i.e., v'&, y, and rl) are known
in the collision system, it is then necessary to determine
them in the laboratory system. The Cartesian com-
ponents of vector v& can be written in laboratory system
as a function of polar 8, and azimuthal P, angles of in-
cident vector v& by using the classical Euler transforma-
tion relations:

u„', = u ', [ siny cosy sing, + siny sing cos8, cosP,

+ cosy sing cosP&],

In the case of inelastic collision corresponding to the ex-
citation energy threshold c,„and since the energy recoil
of the molecule can be assumed negligible in comparison
to e,„, the electron speed (or energy) is approximated by
the relation —,'mU', =

—,'mU, —c.,„. In the case of superelas-
tic collision corresponding, for instance, to deexcitation
processes from energy level c,„to ground state, the previ-
ous relation becomes —,'U', =

—,'mU, +c.,„. In the case of a
simple ionization process with threshold c;,„, the residual
energy just after collision is shared between scattered
(c„)and ejected (e„) electrons following the approximat-
ed relation s„+c„=—,'mv, —c,;,„. The energy sharing de-

pends on the knowledge of differential ionization cross
section o;,„(e„s). For example, the energy of ejected
electron c,„can be obtained from a uniform random num-
ber r;,„belonging to the [0,1] range:

where o;,„(e,) is the integral ionization cross section and

e, the incident energy ( —,'mv, ). For electron swarm mov-

ing through a gas under electric field action, the inhuence
of electron-electron interactions is not negligible only for
low E/N where ionization processes do not play an im-
portant role. Therefore, concerning differential cross sec-
tion cr;,„(e&,e), it is possible to assume, with a relatively
good approximation for low E/N values, that the residu-
al ionization energy is equally shared between ejected and
scattered electrons, i.e., e„=r,,„(c., —c.;,„)/2. However,

v~,
= v ', [

—siny cosy cosP, + siny sing cos8, sing,

+ cosy sing sing, ],
v,', = v ', [

—siny sing sing, + cosy cos8, ] .

Finally, in the case of an elastic collision between two
particles without neglecting the velocity (or the energy)
recoil of the target particle, the previous relations are no
longer valid. Kinematics of such a collision need to be
reconsidered. Assume two particles of masses m and M,
velocities v, and V, before elastic collision and v', and V',

after the collision. Unknown velocities v', and V', are ob-
tained from the classical conservation equations of
momentum transfer and energy and also from knowledge
of scattering y and azimuthal g angles of vector v', in the
collision system. So, components of v& and V& in the lab-
oratory system are then determined from

mvi+MVi
1 +M r +M

m mv)+MV)
U„Q+m+M " m+M

where v„ is the relative speed (v, =v, —V, ) and u the unit
vector directed along v', . Such relations are useful in the
case of very low E/N value where thermal motion of
molecular target gas cannot be neglected in comparison
to electron incident energy and, also in the case of
Coulomb interaction treatment in the framework of ap-
proximations considered in Sec. II B 2 corresponding to
impact between a projectile electron and a fictitious tar-
get electron.
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