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The classical method of moments is applied to determine the dispersion law of the quasi-two-
dimensional Coulomb-system soft collective mode. An interpolation formula is found for the longitudi-
nal dielectric permeability, satisfying all known exact relations and sum rules. The sum rules (the
inverse-dielectric-permeability imaginary-part frequency moments) are calculated, taking into account
the magnetic interaction between electrons.
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INTRODUCTION

An increasing interest in the investigation of quasi-
two-dimensional (2D) electron systems has been observ-
able in recent years. Quasi-two-dimensional here means
that the electrons have quantized energy levels along one
dimension, but are free to move in two dimensions.
These systems are not indeed two-dimensional because
the electromagnetic field of interacting electrons is not
confined to a plane but spills out into the third dimen-
sion. In addition, the one-electron wave function has a
finite extent in the third direction.

The best-known examples of 2D electron systems are
electrons trapped on the liquid-helium surface or elec-
trons confined in the vicinity of a junction between a
semiconductor and insulators [in a metal-oxide-
semiconductor field-effect transistor (MOSFET) struc-
ture] or between layers of different semiconductors (in
heterojunctions). In these systems electrons are confined
near an interface by an electrostatic field. Thus the elec-
trons have quantized energy levels E; (i =0, 1, . . . ) for
the motion along the z direction transverse to the inter-
face.

In inversion layers, the distance between the energy
levels is about 100 K, whereas on the liquid-helium sur-
face it is about 10 K. If temperature T and the Fermi en-

ergy EF=vrnsk /m (ns being the surface density of elec-
trons, m the electron masses) are much smaller then the
distance between the energy levels Eo and E, , the elec-
trons form a quasi-two-dimensional electron gas with a
fixed energy Eo and wave function y(z ) for the motion
along the z direction.

It can be shown that within the one-electron approxi-
mation the wave function y(z ) can be written as [1]

2b' z exp( bz), z ~0—
(') 0. Z(0

where for the 2D system on the surface of liquid helium
b =me (eH, —I)/4~(eH, +1)A', with e being the bare
electron charge, eH, =1.00572 is the dielectric constant

co, (k~0)=co (k)—:(2vrn&e k/m )' (2)

The RPA approach, however, does not take into account
correlational eA'ects, which play a crucial role in strongly
coupled plasmas.

Theoretical attempts to describe the 2D collective exci-
tations for I & 1 started with extending the RPA into the
strong-coupling regime [3]. Studart and Hippolito [4]
used the static mean-field theory to evaluate the static
local-field corrections. Their theory, however, does not
satisfy the conventional co sum rule. This latter defect
does not appear in the dynamic mean-field-theory calcu-
lation by Golden and Lu [5].

The 2D OCP is known to crysta11ize at I =137+15

of liquid helium. For electron systems in inverse layers,
the inverse "plasma thickness" b can be found by a varia-
tional method [2].

Though the electron motion is constrained in the third
direction, the potential of electrostatic interaction is
defined by a solution of the three-dimensional Poisson
equation averaged over the wave function Eq. (1). A
more detailed discussion of this problem is given in Sec. I.
For the electron system on the surface of liquid helium,
the interaction can be approximated by the Coulomb po-
tential V (r)=e /r, with e= =e/e'~ being the renor-
malized electron charge and e=(eH, + I)/2 (as long as
the 2D distance between the interacting electrons
r»b ').

Thus we can define the coupling parameter of the one-
component 2D plasma (2D OCP) as I =e /ktt Ta, where
a =(mns )

' . is the 2D Wigner-Seitz radius. Another di-
mensionless parameter characterizing the 2D plasma is
the plasma parameter y=kz&/2nns (kz ' is. the 2D De-
bye length, ko =2nens/kit T )..

The investigation of 2D plasma collective excitations
began about 20 years ago. Platzman and Tzoar, by their
random-phase-approximation (RPA) calculations, estab-
lished the qualitative features of 2D plasmons [3]. It was
pointed out that the quasi-two-dimensional Coulomb sys-
tern collective mode is a soft one with a dispersion law
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into a hexagonal signer lattice. The dispersion relation
for the crystalline state has been calculated by Bonsall
and Maradudin [6]. Using a harmonic approximation
they obtained

co,(k~0, I ~ oo )=co (k)(1—0. 172ka) . (3)

where

D(k)= —g, [S(k—q) —S(q)],1 (k q)
k'q

A is the system area, and S(q ) is the static structure fac-
tor. Expression (4) satisfies the conventional cu sum
rule at high I values such that 3ka /2I' (D (k ).

The aim of our previous discussion was to clarify the
crucial role the sum rules play in different theories. In
Ref. [9] there was found the high-frequency expansion of
the 2D dielectric permeability up to co . In this paper
the sum rules were, however, calculated taking into ac-
count only the electrostatic interaction between electrons.

Kalman and Genga [10] showed that even in a nonrela-
tivistic classical plasma the influence of the transverse
electromagnetic field induced by moving charged parti-
cles is important for the calculation of the high-frequency
properties of plasmas. In Ref. [11]it was shown that the
influence of magnetic interactions between electrons leads
to a compensation of the Coulomb term in the co sum
rule in the case of a 3D plasma. The physical reasons for
this compensation were explained as follows.

Within the RPA, Bohm and Pines [12] showed that the
magnetic interaction of two moving electrons with an
average velocity v is characterized by the screening
length Lap-cLr /u (Lu =kit T/4nen being the .3D De-
bye length, n the 3D electron density) and is similar to
the Debye interaction, but has an opposite sign and is
smaller v /c times. The average magnetic energy per
particle is ( ue /2cL&)(u/c) and —the interaction ener-

gy in the large "screening volume" LBP can be estimated
as ( eLLtn/2). On t—he other hand, the energy of the
screened Coulomb interaction in the smaller volume L~
is equal to e LI, n/2 and compensates the former. It
should be emphasized that the compensation between
Coulomb and magnetic interactions is independent of the
degree of nonideality and the degeneracy of plasmas.
Due to this fact, it is important to prove the influence of
transverse electromagnetic interactions in the case of the
2D electron gas.

Another approach to calculate the dispersion law in
strongly coupled plasmas was developed in [7] and [8].
This approach is based on the model of quasilocalized
particles occupying randomly located sites and undergo-
ing oscillations around them. The site positions them-
selves change, too. The crucial idea is to describe the
rapid oscillations by averaging the equilibrium
configurations in time. The calculations based on this
formalism lead to the following expression for the 2D
dielectric permeability:

cu (k)
e(k, co)=l-

eo —cu (k)D(k)

In Sec. I we will calculate the 2D co sum rule, taking
into account the magnetic interaction between moving
electrons. An interpolation formula for the longitudinal
dielectric permeability, satisfying all known sum rules
(the compressibility sum rule and the co and cu sum
rules), will be suggested in Sec. II. On the basis of this
formula we will calculate the 2D dispersion relations.

I. THE SUM RULES FOR A QUASI-
TWO-DIMENSIONAL PLASMA

The linear response of the system to an external potential
U,„,(R, t ) is described by the expression

p;„d(R, t)= —f d R'dt'([p(R', t'),p(R, t)])

X U,„t(R', t') .

Here [A,B] is the commutator of operators A and B,
and ( A ) is the equilibrium average of A,

p(R, t)=e%' (R, t)%(R, t)
=etlt (r, t)tII(r, t)Itp(z)I

=p(I, t ) I IF(z ) I

where R=(r, z) is a three-dimensional vector.
To find the dielectric permeability, we will connect

U,„, and p,x,. Due to the Poisson equation

ext ~Pext

and the boundary conditions at the surface z =0,

U,„,(r, z = —0)= U,„,(r,z = +0),

e„, U,„,(r, z = —0)= U,„,(r, z =+0),a
'az az

(7)

we obtain

U,„t(R,t)= fd R'p, „t(R')G(R', R)

with the Green's function

(10)

G(R', R}=e 1
—1

IR —Rl .„,+1

+(z+z'} ]

Substituting Eq. (10) into Eq. (6), we find the following

The aim of this section is to find the coefficients of the
high-frequency expansion of the 2D longitudinal dielec-
tric permeability. To include the photon degrees of free-
dom (the photons are three-dimensional) we have to take
into account the electron motion along the third dimen-
sion, transverse to the surface, described by the fixed
wave function t)u(z).

The dielectric permeability connects the induced
charge density to a weak external density perturbation:

p;„d(k, co) = [e '(k, co) —1]p,„t(k,co) .
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expression:

t
p;„d(r, t)= — ([p(r', t'), p(r, t)])

X V (lr" —r'l )d r'd r"dt' . (12}

V (k)= (1+e ) 1+—2m 1 k

X 8+9—+3-k k
b b

—3

—6

Here V„(r ) =f dz dz'G(r, z —z')l(p(z ) lq)(z')
l

is the

effective Coulomb interaction between two electrons.
Since the electron system is homogeneous at the sur-

faces z =const, the commutator in Eq. (12) is a function
of r' —r only and the Fourier transform reads

+—(1—e ) 1+—1
k

He b

In the long-wavelength limiting case we then have

V (k~0)= 1 ——'(21 —lie )
—+O(k )

=2~ k
16 He b

(15)

p;„d(k, co) = V~(k }X(k,co)p,„((k,co),

with

X(k, co)=Pi ' f ([p(r', t'), p(r, t)])

(13) Comparing Eqs. (13) and (5), we find

e '(k, co)=1+V (k)X(k, co) .

Let us consider the function X(k, co). At high frequen-
cies, the Kramers-Kronig relation

R X(k co) =—P f des'
ik (r' —r)+i cu(t —t')Xe

Xd r'd r dt'dt (14)

and V (k) = f d re'"'V (r ). With the wave function
from Eq. (1) we get [2]

(P denotes principal value) provides

M„(k)
ReX(k, co~oo )= g

n ——Z

(19)

where the moments M„(k ) are defined by the expressions

(n —1)
M„(k)= ——f co'" "ImX(k, co')da)'= ( [pk" "(0),p k(0) ] )

~ n —1l
(
—1)[("—) )/2]( [ [n —i —(n —) )/2](0) [(n —i)/2](0) ] (20)

Here pk(t) is the Fourier transform of the charge-density
operator p(r, t ) and [p ] is the integer of a real number p.
The time derivatives in Eq. (20) are defined by

Pk g
[~ Pk] Pk g

[~ Pk] (21)

where H is the system Hamiltonian in the absence of the
external field. Taking into account the photon degrees of
freedom, we have

U= f d )I/ (R)t((z))II(R), (24)

(25)

and u(z) is the potential which confines the electrons
near the surface.

In addition,

IV= f d R,d R2)II (R())p (R2)G(R„R2)%(R)))p(R2)

H=T+ U+ &+HI,
where

T= f d R i AVR+ —A'"'(R) (I/t(R)2' c

X iiIV +—A—'"'(R) %(R)R

(22)

(23)

is the electrostatic interaction energy between electrons,
and H&=g& &Aco&c& &c& & is the energy of the virtual

photon field. Here c& and c& are the creation and an-

nihilation operators of photons with a momentum ))1Q

and the polarization A, = 1,2, co& = Qc. It should be
stressed that Q= (q, q, ) is a three-dimensional vector.

We turn next to the calculation of the moments M„(k ).
Due to symmetry properties only the even moments differ
from zero. The standard procedure provides

is the kinetic energy of the electron system, A'"'(R) is the
internal electromagnetic field induced by moving elec-
trons,

lM2(k)= —[pk, p k]=fik e nzlm . (26)
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co~(k ) = V&(k )M2(k ),
with the long-wavelength behavior

co (k~O)=co (k) 1 —
—,', (21—1leH, )—+O(k )

k

(27)

(28)

due to Eq. (16), co~, defined by Eq. (2), is the plasma fre-

quency of an ideal thin 2D electron plasma (b = oo ).
From Eqs. (27), (17), and (19) we get the well-known

high-frequency expansion for the inverse dielectric per-
meability

co„(k )
e '(k, co)=1+ " +O(co ) .

6)

To calculate the fourth moment

(29)

M4(k) =—[pk, p q], (30)

it is necessary to take into account the internal elec-
tromagnetic field. At low temperature it is sufBcient to
regard only the nonrelativistic terms (which do not van-

ish if we set the velocity of light equal to infinite}.
The nonrelativistic part of the fourth moment consists

of three terms:

Let us introduce the plasma frequency of a real 2D plas-

rna by

For the photon term we obtain

M4p (k)V (k)=co ro2N
f

S(k+q} 3b

q (&0)

(k'q)
k3 f' (34)

To derive Eq. (34) we used the wave function from Eq.
(1). In Eq. (34) the effective magnetic interaction between
two electrons is

—3

V (q}= —1++(&) 2' 1

q 8 b
8+9++3

b b

(35)

[M4 g(k)+M4g (k)]V (k)

For the electron liquid on liquid helium we have 5= 1 and
thus V"'(q ) = V (q ). In this case the second term on the
right-hand side (rhs) of Eq. (34) compensates the first
term on the rhs of Eq. (33). This is a result of compensa-
tion of Coulomb and magnetic interaction, discussed in
Sec. I.

For the correlation part of the moment we obtain after
some calculation

M4'""'=M4 f,(k)+M4 ~(k)+M4g (k) . (31) =ro ~ [1+—,'h(0)]+2N ' g [S(q)—1]
3b
8k

q (%0)

For the kinetic term we have

, , '3k&E„,„&
M4 ~(k)V (k)=co~co~ +

7 277nS 8mn, e m
—2

3b q'
8k 2n.k

(36)

(32)

where (Ek;„)=N 'gz(fi2p /2m )a&~a~ is the average ki-

netic energy of an electron.
The Coulomb term reads

M4 g(k)V (k)=co co N

In the long-wavelength limit the latter expression exhibits
a peculiar (1/k ) type divergence. In Eq. (36)
h (0)= (N ) 'gz ~&0~[S(q ) —1] is the pair-correlation
function. If one uses the Debye-Huckel approximation
for the 2D static structure factor

2

q (+0) 277k

X[S(k+q)—S(q)] .

S(q)=
q+kD

we get for the correlation part of the moment

(37)

[M4 @(k)+M4 ~ (k)]V (k)=co co [1+—,'h(0)] — ln
3b, b bkD 2b kD (3—kD l2b )

b (kn /2b —1)3 (kD l2b —1)

(38)

The main result of this section is that the inclusion of
the magnetic interaction between electrons leads to a
singularity for the dimensionless expression of the fourth
moment M~(k)/co~ in the long-wavelength limit k~O.
This fact leads to an essential change of the dispersion
law of the quasi-two-dimensional Coulomb system collec-
tive soft mode. This problem will be discussed in Sec. II.

II. THE DISPERSION LAW OF 2D PLASMONS

The Nevanlinna formula from the classical theory of
moments provides an expression for the dynamic dielec-
tric permeability satisfying all known sum rules via the
function q =q (k, co ) analytic in the upper half-plane
Imz &0 and having a positive imaginary part there, and
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such that [q (k, z ) /z ]~0 for z ~ ~ within the angle
8&argz &m —8 (0&8&sr}[13,14] (see the Appendix}:

e(k, co)

co [co+q(k, co)]

co[co —0 (k)]+q(k, co)[co +co~[1 e(—k)]

e(k, co)=1+ bo(k, co) .
4~i

The evaluation of Eq. (44) at k =0 gives

Sp7
—2

Ime(k =O, co}=
co(co +r )

(45)

(46)

(39)

+—g 3
[S(k—q) —S(q )],

q(+p) k q
(40)

and expression (39) can be regarded as a generalization of
Eq. (4) which follows from Eq. (39), setting q=0 and
I =oo.

In Sec. I we have shown that the inclusion of the mag-
netic interaction between the electrons leads to a
significant divergence of 0 (k )/co (k ) in the long-
wavelength limit. Thus the expansion of Eq. (39) in terms
of co (k ) /0 (k ) provides as k ~0 a simpler expression:

Here e(k)=e(k, O) is the static dielectric permeability
and II (k)=M4(k)/Mz(k) —co&(k).

If one takes into account only the kinetic and Coulomb
parts of the system Hamiltonian we have

~P(k) 3ka + fi k'
s~n~e2m

4m.crob
r(k ~0)=

2
COp

(47)

Since we regard the collective behavior of 2D plasmas
(i.e., the k ~0 limiting case) we can set r(k )=r(k ~0).
Thus formula (42) with r(k~O) from Eq. (47) interpo-
lates between the exact value of the static 2D conductivi-
ty o.

o and the asymptotic expansion of the inverse dielec-
tric permeability at ~co~ ~ Do within the long-wavelength
limiting case.

The dispersion relation now can be obtained by the fa-
miliar

e(k, co) =0 (48)

since E(k=O)=oo and co (k~O)=co . The singularity
in Eq. (46) at co~0 guarantees the convergence of the
static conductivity crp=o (0,0) C.ombining Eqs. (45} and

(46) at co~0 we can define r(k~0) by
—2

4g sp7
Ime(k =O, co~0) = bcrp=

CO CO

e(k ~O, co)

-2

, +O(k ).
co —coq'(k, co)+co [1—e(k)]

(41) co —icoco (4mcrpb) '+c'o&E(k)[1 —e(k)] '=0 . (49)

relation, and from Eqs. (42) and (47) we obtain at k ~0

Here q'(k, co) is a function with the same properties as

q(k, co) has. There is not any phenomenological way to
choose q'(k, co). Nevertheless, to investigate the soft col-
lective mode it is sufficient to take its static value at
co=0 q'(k, co=0)=ir '(k):

COp

e(k ~0, co) = 1—
co i co7'( —k ) + c.o [ 1 —e( k ) ]

o
e(k ~0)= 1+

k
(50)

where kp=kD[P(BP/Bns)&] ', P=(k~T) '. The pres-
sure P is defined by the correlation energy density
Us= ,'ns f d r—h(r)V (r) through the connection

P =P 'ns+ —,
' Us, which yields

The exact expression for e(k ) at k ~0 is dictated by the
compressibility sum rule,

For the real and imaginary parts we obtain

Re@(k ~O, co)

co Ico +co~[1—e(k)]

[co +co [1—e(k)] 'I +co~~ ~(k)

co cor '(k)
Ime(k ~O, co) =

[co +co [1—e(k)] '] +co r (k)

(42)

(43)

(44)

k —k 1+ +
U n PU

2 ns 2 ans ns I

(51)

co (k ~0)=co 1+ k
C

1

'1/2

1

k2

16b
(21 —1 1eH, ) —k q

' (52)

Substituting Eq. (50) into Eq. (49) we can find the follow-

ing dispersion law:

On the other hand, there exists a connection between the
dielectric permeability and the internal longitudinal con-
ductivity cr(k, co) defined by Ohm's law:

k.j(k, co) =cr(k, co)[k.E(k, co)],

where the 2D current density j(r, t) has a dimension of
A /m. That is why

k z
' =nse (32rropb m)'

The imaginary part of the rhs of Eq. (52) describes the
damping of the collective plasmon mode.

For the sake of comparison we regard now an ideal
thin 2D plasma (i.e., b = oo ) without damping. In this
case k, =ko, and
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co (k~O, b=)=co 1+ +O(k )
k

2k 0
(52')

PUs [ ln(2y)+0. 1544], y « 1

ns —l. 121 +0.711 '~4 —0.38, &2 & I & 50 . (53)

(54)

Substituting Eqs. (53) and (54) into Eq. (51) we get

The explicit expression of the correlation energy density
Us is known in the weak- (y « 1 (Ref [15])} and strong-
coupling ( I &) 1 (Ref. [16])}regimes

dependence of the Fourier transform of the potential of
electrostatic interaction, and only in the k~0 limit do
we reproduce the familiar V (k ) =2m /k e and the disper-
sion relation co, (k~O)=co =(2nnse k/m)'~. The
latter one leads to the divergence of the co frequency
moment.

On the basis of these results we have constructed an ex-
pression for the dynamic dielectric permeability [see Eq.
(42)] which in the long-wavelength limiting case provides
the well-known dispersion law with corrections depend-
ing not only on the electrostatic interaction via the static
permeability (which satisfies the compressibility sum rule)
but also on geometric effects and on the static conductivi-
ty of a 2D plasma [Eq. (52)].

k =.
0

kD 1+ [ ln(2y)+0. 6544
2

k (
—0.841 +0.399I' +0.81)

y«1

(55)

&2 & I & 50 . (56)

In the weak-coupling regime we have now the following
dispersion law:

co, (k~O, b = cc,y &&1)
T

=co 1+ —++[ ln(2y)+0. 6544)
k 1

2 4
(57)

In the strong-coupling regime we obtain

co, (k~O, b= ~, I &&1)

=co [1—(0.21 —0. 10I —0.20I ')ka] .

Equation (58) provides in the I ~ ~ limiting case

co, (k +O, b = cc, I =—~ ) =co~(1 —0.21ka ),

(58)

(59)

CONCLUSION

In this paper we have considered the dynamic proper-
ties of quasi-two-dimensional plasmas consisting of elec-
trons with a fixed wave function along the z direction:
y(z ) =2b ~ ze '. The second and fourth frequency mo-
ments of the inverse dielectric permeability imaginary
part were calculated, taking into account both the third
dimension and the magnetic interaction between elec-
trons. The former one leads to a more complicated k

which is slightly different from the Bonsall and Maradu-
din relation Eq. (3). We believe that the reason for this
difference is the inclusion of the magnetic interaction in
our calculations.

The dispersion law Eq. (52') with ko from Eq. (51) coin-
cides (excluding a thermodynamic factor c /c„) with
Baus's dispersion relation [17]. In the strong-coupling
limit I ~ ao we have c /c„~l and (52') will not differ
from Baus's expression. On the other hand, at y «1,
c /c„=2, and there will appear a departure of (52') from
the expression in [17].

APPENDIX

n, m =0, 1, . . . .

The family of conjugate polynomials [E„(k,co) ],
n =0, 1, . . . is determined by the formula

D„(k,co) —D„(k,co')
E„(k,co) =f, g(k, co')dco' .

The polynomials D„(k,z) [and E„(k;z)] can be found in
terms of first 2n moments as a result of the Schmidt or-
thogonalization procedure. If they are normalized so
that the coefficients at the senior powers of z are unity [or
MQ(k)], then

D2 =z —
co/, D3 =z(z —co2),

Ez =MD(k)z, E3 =MD(k)[z +co, —co2] .
(A2)

Here co& =M2/Mp co2=M4/M2.
Let A„be the set of all nondecreasing functions of lim-

ited variation s ( k, co ) such that

co ds k, co — co 7f k, co dc' —M» k

r =0, 1, . . . , 2n .

Nevanlinna showed that there is a univalent correspon-
dence between the %„ functions and function Q„(k,z),

Let us consider the construction of the function
X(k,co) satisfying the sum rules Eq. (20). The explicit ex-
pression is obtainable from the Nevanlinna formula of
the classical problem of moments [13]. The latter is, in
particular, to construct the function r)(k, z )
= —[ ImX(k, z)/nz] (analytic in the upper halfplane
Imz )0 and having there a positive real part) according
to its first 2n frequency moments. In our case n is n ~ 2,
since there exists the finite zeroth frequency moment

M0(k)= f g(k, co)dco= —X(k, O) (A 1)

due to the Kramers-Kronig relation as well as the second
and fourth frequency moments M2(k) and M4(k) [Eqs.
(26) and (31) taking into account Eqs. (32) and (36)].

Denote by [D„(k,co)], n =0, 1, . . . the system of or-
thogonal polynomials with the weight function rI(k, co):

f D„(k,co)D (k, co)g(k, co)dco=5„ iiD„(k, co)ii
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analytic in the upper half-plane Imz &0 and having a
positive imaginary part there, and such that uniformly
within the upper half-plane the ratio [Q„(k,z)/z]~0
converges to zero as z ~ ao.

This correspondence is set up by the Nevanlinna for-
mula [13]

X(k,z }=—1 ItnX(k, to) z —to —z

7T oo Cc) z co

E3+q&E2
=Mo+z

D3+q2D2
(A5)

ds(k ~) E„+&(k,z)+Q„(k,z)E„(k,z)
z —to D„+,(k,z )+Q„(k,z )D„(k,z )

(A3}
Using Eq. (A2), one rewrites Eq. (A5) as

In particular, among the functions Q„(k,z ) there is (for a
given n ) only one q„(k,z ) satisfying the equality

q2+z
X(k,z) =M2

z(z —co~)+q2(z —
toi )

(A6)

&(k ~) E„+&(k,z)+q„(k,z)E„(k,z)
dao= . (A4)

z —co D„+,(k, z )+q„(k,z )D„(k,z )

Taking into account the Kramers-Kronig relation, we ob-
tain

From Eq. (A6) we get finally expression Eq. (39) for the
dynamic dielectric permeability of a 20 OCP
e(k, to) = [1+V (k )X(k, to)] ', where we substituted
q2(k, to) =q(k, co).
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