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Stability of isotropic self-similar dynamics for scalar-wave collapse
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The scalar model for collapse of Langmuir waves in plasmas is studied numerically in two and three
dimensions, for both radially symmetric and anisotropic initial conditions. Using a dynamic rescaling
method, singular solutions are shown to become isotropic and self-similar near collapse. In two dimen-

sions, the self-similar profile is not universal. In the limit where the mass of the wave tends to its
minimal value for collapse, the solution approaches a subsonic regime different from the generic singu-

larity of the nonlinear Schrodinger equation.

PACS number{s): 52.35.—g

I. INTRODUCTION

n, +V.v=0,
v, +Vn = —V~/~

(3)

(4)

where v is the velocity of the medium.
The scalar Zakharov system is Hamiltonian with a La-

grangian density which is invariant under time and space

The coupled system of scalar-wave equations,

ig, +I5.$ ng=O, —

n„I5.n = I5. /q/'—

proposed in [1] is often used (see, for example, [2—9]) as a
simplified description of Langmuir waves [10,11] when
the vector character of the electric field can be neglected
and is called the scalar Zakharov system. In this context,
g denotes the envelope of the electric field and n the
large-scale fluctuation of the ionic density. Other appli-
cations of these equations are mentioned in [2]. They in-
clude the electron-photon coupling in a solid-state plasma
and the problem of strictive self-focusing in three-
dimensional clusters of electromagnetic oscillations. In
the subsonic limit where n« is negligible, the system
reduces to the cubic nonlinear Schrodinger equation.
Furthermore, Eq. (2), which describes the driving of the
density waves by the ponderomotive force, can be rewrit-
ten in the form

translations, rotation, and phase shift. This leads to the
conservation of total mass

of linear and angular momenta and of energy [12]

~=f [IV@I'+nlyl'+ ,'lvl'+ ,'n']«-. -
In one dimension, the scalar Zakharov system admits
smooth solutions for all time. In higher dimensions, glo-
bal existence requires small enough initial data [13]. In
two dimensions this condition [14] reduces to
~lb~~~ ( ~R

~ &, where R denotes the positive solution of

hR —R+R =0.
For large initial conditions, heuristic arguments and nu-
merical simulations suggest a finite-time collapse both in
two and three dimensions ([15—17] and references
therein). Nevertheless, in contrast with the nonlinear
Schrodinger equation, no rigorous results of collapse are
available at present.

In the radially symmetric case, self-similar and asymp-
totically self-similar singular solutions have been predict-
ed in two and three dimensions, respectively. In three di-
mensions, self-similar solutions can only exist asymptoti-
cally close to the collapse when the regime is strongly su-
personic with the pressure term b n negligible compared
to the ion-inertia term in Eq. (2). Up to simple rescaling,
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n(r t)= N
1

(t t)4n (t„t)' —'

these solutions have the universal form [1,4]

(6)

(7)

monotonic profiles. We note that in two dimensions the
constant a in the equation for the profile tends to zero as
the mass approaches its lowest value IRI 2 for collapse.

Stability of this dynamics with respect to anisotropic ini-

tial conditions is demonstrated in Sec. IV. A few con-
cluding remarks are presented in Sec. V.

with

aP —
—,'P —NP =0,

—,'(2g N„„+13rtN„+14N)= AP (9)

where P(g) and N(q) are isotropic scalar functions given

by
II. DYNAMIC RESCALING

Equations (1) and (2) are first rewritten in the form

ig, +bg ng=—0,
n, =w,

w, bn—=El+I

(12)

(13)

(14)
2 d+-

dn' n dn

In two dimensions, the self-similar collapse is no longer
supersonic. The pressure term bn in Eq. (2) remains im-

portant and

Equations (13) and (14) are identical with Eq. (3) when
w = —V.v. The numerical method we use is very similar
to the one we have developed for the nonlinear
Schrodinger equation. We introduce a general change of
dependent and independent variables of the form

g(r, t) = P1

a(t„t}—a(t, t}— g(x, t)= U(g, ~),1

I. t

Xe
i (t - s) '-i (t —t) 'r /4

n (r, t)= N
1

[a(t, —t)]' a(t, —t)

where P(rt), N(rt) satisfy

n(x, t)= V(g, r),1

M t

w(x, t)= IV(g, r) .
1

H t

In (15)—(17)

(16)

(17)

hP —P —NP =0,
a ( rt N „„+6gN „+6N) —b N =b P

with

(10) g=D '(t)(x —xo), r= f ds,
0 0 (s)

where Q(t) is a positive scalar function of time. Further-
more,

d 1+-
dn' n dn

and a a free positive parameter.
There is no analytic proof of the existence of solutions

for the ordinary differential equations (8),(9) and (9),(10).
These equations were studied numerically in three dimen-
sions in [4] and in two dimensions in [8]. In both cases,
two pairs of localized solutions were computed, one of
them (mode I) corresponding to a monotonic profile for
both P and N.

In this paper we address the question of the dynamic
stability of the self-similar solutions for both radially
symmetric and anisotropic initial conditions in two or
three dimensions. Which of them, if any, is approached
by general singular solutions of the Zakharov equations
near collapse? Is the parameter n universal in two di-
mensions or does it depend on the initial conditions? To
answer these questions, Eqs. (1) and (2) are integrated nu-

merically using the dynamic-rescaling method introduced
in [18] and [19) for isotropic and anisotropic solutions of
the nonlinear Schrodinger equation, respectively. A brief
description of the method is given in Sec. II. In Sec. III
two- and three-dimensional isotropic singular solutions
are shown to become self-similar near collapse, with

D (t) =0 r(t }A(t), (19)

with p =2 or 3, in general. As shown in Sec. III, a more
convenient choice for the Zakharov equations is

fx, lnl "dx

f I
n I'~dx

f g, g, lv
=5,

f I
vl'&dg

(20)

(21)

with O(t) an orthogonal matrix represented by the Euler
angles and A(t) a diagonal matrix whose diagonal ele-
ments are denoted by A, ; (i = l, . . . ,d with d the space di-

mension).
When solving the nonlinear Schrodinger equation,

xo(t) and D (t) were prescribed by the constraints [19]

fx, I pl
"dx

Xo =
f Ilail

"dx

and



46 STABILITY OF ISOTROPIC SELF-SIMILAR DYNAMICS FOR. . . 7871

i [U, L—'L, U+ f VU]+SU —VU =0,
MO

M 1M V+ f PV Q7 —0

(22)

(23)

because this keeps 8'bounded away from zero near the
collapse.

Substituting (15)—(18) into (12}—(14), we get the follow-

ing evolution equations:

III. COLLAPSE OF RADIALLY SYMMETRIC
SOLUTIONS

For isotropic solutions, x0=0 and the matrix A is diag-
onal with a;;=a for i =1,. . . ,d. Therefore, the scaling
factors A, ; are also all equal and are denoted by A, . Conse-
quently, A=A, , I. =A," M=X H =A, +"

'A, ,= —aA, , and f =ah, g. Equations (22)—(27) reduce to

w —H-'8 w+f vw — sv — s(lUl')=0,'r 7 M

d~ = —a "A. 0ll l

(24)

(25)

i U +ak —U+gU +hU —VU=O,

V +QA, (2V+(V )
—

A, W=O

W +QA.' " ' 2+ —W+gw —
A, 'b, v

2

(31)

(32)

dxo =2Q' '"o'~P
d7.

(26) i= —aX' "",
g2 —d/2g~ U~2 0 (33)

(34)

do = —GO.
d~

Here

L=(Q A VV),

(27) where

p f (I —g') V"P-"Wg'-'dg

f V2pgd
—1d g

(35)

and

p f (5; —gg )V P 'Wdg
v f i

vi2pdg

2i. A,

g;;=0, g; = ai (i'�).
l J

(28)

Furthermore,

where VV=(B /Bg;Bgi) (i,j =1, . . . , d) and: denotes
summation over both indices. The matrices A =(a; )

and G = (g; ) are defined by

A. Three-dimensional solutions

We first consider an initial condition $0(r)=6e
no(r)= —~$0(r}~, Bno/Bt(r)=0. We observe that as r
increases,

~
U~, V, and W become stationary which indi-

cates a self-similar collapse. In this limit, the phase of U
at the origin is linear in r. Furthermore, A,(r)~0 and
a (r) tends to a finite limit A [Fig. 1(a)]. It follows from
(34) that

A(t)=(t, —t)'",
as predicted in [10] and displayed in Fig. 1(b). Substitut-
ing

f=Q (Bg'—2P)

where Il =(b;J ) and P=(P; ) are

2A'J
b;; =a;;, biJ 2 2 a~ (i'�),

J

p fg, V'P 'Wdg

f ~V~2pdg

(29)

U(g, r)=S(g)e+' '
in (31),we obtain, as r~ 00

hS —CS —VS =0,
where S can be chosen to be real by a phase translation.
In the equation for the density, the pressure term hV is
asymptotically negligible, making the collapse superson-
ic. From (32) and (33), we obtain

Note that (22) —(24) and (25) form a closed system for
U, V, 8'and A,;, while the translation xo and the Euler an-
gles are secondary quantities which can be determined
separately from (26) and (27}.The form of Eqs. (22)—(24)
suggest that we take L(t}=Q ~ (t), M(t)=Q (t),
H (t)=Q2+d'2(t), and Q2(t) =d /g; [1/k;(t) ].

The coupled equations (22)—(27) and (28) are solved nu-
merically by a finite-difference method with the approxi-
mate boundary conditions discussed in [19—21]. We use
an Adams-Bashforth scheme for the time stepping and a
second-order-difference scheme in space. The approxi-
mate boundary conditions allows a substantial reduction
of the spatial integration domain.

2
—(2g Vll+13$vl+14V)=AS

Defining

P =&11~S,
N= —V,1

C

q=&Cg,
we get

hP —P —NP =0, (36)
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,'(2—vPN„„+13gN„+ 14N) = b,P (37)

1.0 I

— (a)

which are identical with Eqs. (2.1) and (2.2) of [4], up to a
simple rescaling. Figure 2 shows the final profiles of

~
UI„

V (after a rescaling). We observe that they fit the profiles
P, N of mode I computed in [4].

We also consider two initial conditions for which 1(o, nII

are not peaked at the origin. The results for the initial
—r2condition go(r)=6e ", nII(r)= r—~Po(r)~, I)no/Bt(r)

=0 are shown in Figs. 2(a) and 2(b). Results for the ini-
2 —I'tial condition po(r)=6r e ", ntt(r)= r—~go(r)~,

Bno/Bt(r)=0 are shown in Figs. 3(a) and (b). In both
cases, the numerical results show that the profiles quickly
become peaked at the origin and converge to the profiles
P, N of mode I.

B. Two-dimensional solutions

0.8

0.6

0.4

0.0
0

I

20 4Q 60

Numerical integrations show that in this case also the
solution displays a self-similar collapse where a(~)~ A.
This is seen in Fig. 4(a) for initial conditions

—2
go(r)=4e ", no(r)= —~go(r)~, )In o/ )It(r)=0. This be-
havior corresponds to a scaling factor )(It)=(t, t). In-
contrast to the supersonic collapse observed in three di-
mensions, the pressure term must now be retained in the
density equation. Furthermore, the phase of the self-
similar solution can be calculated exactly. Writing

U(g, r) =S(g) exp( iCr) exp[—(i/4—)a'II,( ],
we get in the limit where A. tends to zero

0.080
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4 I

(a)
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FIG. 1. Three-dimensional problem with isotropic initial
2

conditions $0(r)=6e ', no(r)= —~$0(r)~, Bno/Bt(r)=0: (a) a
vs ~; (b) A, vs t; (c) asymptotic profiles compared to the mode

1, computed in [4] (after rescaling).

FIG. 2. Three-dimensional problem with isotropic initial

conditions 1PO(r)=6e ", no(r)= —r ~$0(r)~, Bno/Bt(r)=0: (a)

a vs v", (b) asymptotic profiles compared to the mode I, comput-
ed in [4] (after rescaling).
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AS —CS —VS =0,
A (g Vgg+6$ V~+ 6 V) —b, V =hS

With the normalization

P= —S,1

&c
1N= —V,
C

we have

AP —P —NP =0,
a (r) N„„+6rlN„+6N) bN=b—P2

(38)

(39)

Note that this system depends on the constant
2= 2a = A /C. Figure 4(b) shows that, after rescaling, the

profiles
~ U~, V of the initial-value problem, fit the profiles

P, N corresponding to this specific value of a .

The influence of the value of a on the profiles of the
self-similar solutions is discussed in [8] where the collapse
is defined as (moderately) subsonic if a is smaller than
unity, and (moderately) supersonic if it is larger. The
case a=1 is described as sonic. Our numerical simula-
tions of the initial-value problem indicate that the con-
stant a depends on the initial conditions. In order to
make this statement more quantitative, we have con-
sidered two families of initial conditions with Gaussian
and Lorentzian initial profiles go( r) =ce " and
Po(r)=(el&2)l( I+r ), respectively, with no= —

~go~ .
For the same value of c, these two initial conditions have
the same mass. As mentioned in the Introduction, the
solutions of the two-dimensional Zakharov equations
with a mass ~g~~~( R~~& remain smooth for all time.
For the above initial conditions, this corresponds to
c ~ c, =2 Ro~ 2=3.72450. Table I shows the values aG
and az for decreasing values of c, corresponding to the
initially Gaussian and Lorentzian profiles, respectively.
We see that in both cases a~0 as c approaches c, from

4

, (a)
8 I I I I I I I I I
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I I I 1 I I I I I
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FIG. 3. Same as Fig. 2 for initial conditions $0(r)=6r e 7

no(r)= —r2~go(r)l2, r)no/r)r(r)=0: (a) a vs r; (b) asymptotic
profiles compared to the mode I, computed in [4] (after rescal-
ing).

FIG. 4. Two-dimensional problem with isotropic initial con-
2

ditions Po(r)=4e ", no(r)= —i/0(r)l', Bno/Bt(r)=0: (a) a vs
~; (b) asymptotic profiles compared to the mode I, computed in
[8] (after rescaling).
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TABLE I. Columns two and three list the dependence upon c
of the Gaussian and Lorentzian profiles as discussed in the text.

6P (0)P"(0)
7

It follows from Eq. (36) that

(41)

4
3.8
3.6
3.4
3.2
3.0
2.9
2.85
2.8
2.75

1.02
0.88
0.74
0.59
0.41
0.31
0.25
0.18
0.10
0.001 068

0.86
0.76
0.66
0.53
0.38
0.29
0.20
0.175
0.09
0.001 003

X exp[i (t, t) ' i( ,r——t) 'r /4] —.
This function is an exact self-similar solution of the two-
dimensional nonlinear Schrodinger equation. As a solu-
tion of the latter, it is generally unstable. A possible ex-
ception is when the mass is exactly critical. It was re-
cently proved that in this case, it is the only singular solu-
tion [27,28].

C. Remarks on the pro61e equations

above, although the numerical computation becomes del-
icate near the limit value.

As noticed in [8], when the parameter a tends to zero,
the self-similar profile becomes (strongly) subsonic and P
tends to the positive solution R of (5). In other words,
the profile of the solution identifies with that of the non-
linear Schrodinger equation. Nevertheless, for ~i)'/~~2 arbi-

trarily close to ~R ~ » the scaling factor k(t) varies

asymptotically like (t, —t), while for the nonlinear
Schrodinger, A,(t)=(t, t)'/ g(t„—t), where g i—s a slow-

ly varying function of the form In In[1/(t„—t)]
[22—26]. It follows that as ~g~, ~R~ „ the singular

solution of the Zakharov problem tends, up to a simple
rescaling, to

P(r, t) = R
1 7"

t. —t t* —t

P"(0)=1[N(0)+1]P(0). (42)

From (41) and (42) we have

~2~2 1 (~2~2 1)3/2 i/~ (~2~2 1)I/2

where P =P (1/a). When i)~ oo, we have

C

7l

where

p2C= gdg .
i/~ (

2 2 1)i/2

It follows from the integral formula and (38) that

and

2P P'
N(1/a) =

3a

N'(I/a)= P P' + P' —
', P P' + P—2

Therefore the values of N at g=1/a are determined by
P,P'. We apply the shooting method at the sonic point
g=1/a with shooting parameters P,P'. The proper
values of P,P' are chosen such that the solution P
satisfies P'(0) =0 and P decays rapidly at infinity.

N(0)= 2P (0)
7 —2P (0)

Therefore, the value of N at the origin is not arbitrary but
depends on Po. When solving (36) and (39) by the shoot-
ing method, we only use PQ as a shooting parameter
chosen such that P'(0)=0 and P decays rapidly at
infinity.

The two-dimensional case is more difficult. We solve N
from (39) in the form

p2 p2
N= f (P P)r)' d7)—

2/7/2 Q

(40)

where Po =P (0). It is easy to see that

2PQN=—
3~'

as g~ ~. Let g~O, we have

Equations (36), (37) and (38), (39) for the profile of the
solution in two and three dimensions were solved numeri-
cally in [8] and [4], respectively. Note that r)=0 and

q = I /a are singular points for Eqs. (37) and (39). In or-
der for the solutions to be smooth, proper conditions for
N have to be prescribed.

In three dimensions, we solve N from (37) in terms of P
in the form

IV. COLLAPSE OF INITIALLY ANISOTROPIC
SOLUTIONS

We have integrated the full equations (31)—(33) with
anisotropic initial conditions in two and three dimen-
sions. In three dimensions, we start with
$0(r)=6e " ~ ', no=~go~, and Bno/c}t(r)=0. We
observe in Figs. 5(a) and 5(b) that the solutions

~ U~, V
tend to be isotropic; furthermore, the normalized rescal-
ing factors i, =f1 /3A, ; all tend to &I/3 and approach
each other. This demonstrates that the solution in the
primitive variables become isotropic near collapse. The
profiles

~ U~, V along the three coordinate planes fit the
solutions P, N of mode I. Also, the phase at origin
behaves like C~. Therefore we conclude that the solution
converges to the isotropic singularity (3) and (4).

Note that the relaxation to isotropy is significantly
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slower than for the nonlinear Schrodinger equation with
the same initial electric field. In the latter case, isotropy
is approached around ~=12, while in the above Za-
kharov case we have to run until about ~=250 to see the
convergence.

In two dimensions, we use the initial condition
Po(r)=4e '" +" ' with n o=~go~ and Bno/t)t(r)=0.
We also observe that the solution relaxes to isotropy.
Normalized rescaling factors l,. =Q /2A, ; are shown to
approach each other in Fig. 6(a). We see that at the end
of the run the profiles

~ U~, V are isotropic and also fit the
P,N profiles of mode I [Fig. 6(b)].

Collapsing solutions of the scalar Zakharov equations
with anisotropic contraction rates were constructed in
[29,30]. We did not observe such dynamics in our nu-
merical simulations.

V. CONCLUSIONS

ally symmetric and anisotropic initial conditions in two
and three dimensions. We observe that the isotropic
self-similar singular solution of mode I is dynamically
stable with respect to general anisotropic initial data that
lead to a singularity at only one point. The size of the
"caviton" scales like (t, t)—/ in three dimensions and
like (t, t) —in two dimensions as expected.

In the three dimensions, the collapse is supersonic. By
contrast, in two dimensions the pressure term remains
relevant near collapse. A specific subsonic regime is ob-
tained in the limit where the mass of the waves tends to
its lower bound for collapse. Note that the rate of blow
up remains unchanged in this limit.

It is important to note that there are major differences
between the scalar model and the full Zakharov equations
[11,21], where f is replaced by a vector E and (1) is re-
placed by

We have integrated the scalar Zakharov equations (1)
and (2) with the dynamic rescaling method for both radi-

o.ao

0.8
0.80

I40
4J

m 0.70
W

0.6—

0.50—

0.4

0.40
20 40 100

0.2
0

I

200
T

400
4 I I

I
I I I

I
I I I

(b)

4 I

(b)

Ol

~R

0 0—
0

P, N

IUI, V along x axis

IUI V along y axis 4

0
CL

0
4J
o
4l

x —axts

y —axis

i I I I I I I I I I

2 4

FIG. 5. Three-dimensional problem with anisotropic initial
( —x2 2 2 3z2)conditions $0=6e' " ' ', no(r) = —

~
gPO(r) ~, Bno/Bt(r)

=0: (a) normalized rescaling factors vs ~; (b) asymptotic
profiles along the coordinate axes (dashed lines and point line),
compared to the mode I (solid line), computed in [4].

FIG. 6. Two-dimensional problem with anisotropic initial
( —x — /4)conditions @0=4e' " ~ ', no(r)= —~t(0(r)~', Bno/Bt(r)=0:

(a) normalized rescaling factors vs r; (b) asymptotic profiles
along the coordinate axes (dashed lines and point line), com-
pared to the mode I (solid line), computed in [8] (after rescal-
ing).
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iE, —aVX(VXE)+ V(V.E }=nE .

In [21] we showed numerically that, unlike the scalar
case, singular solutions of the vector Zakharov equations
are weakly anisotropic for a large class of initial data.
Our observations support the argument given in [31] (see
also [32] for the case of axially symmetric solutions),
based on a spherical-harmonic decomposition.
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