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Analytic model of the cathode region of a short glow discharge in light gases
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A self-consistent analytic model of the cathode region of a dc glow discharge is suggested. The

description is based on the division of the discharge gap into a space-charge sheath and a plasma region

and on an approximate kinetic analysis of different groups of electrons. A one-dimensional short

discharge is considered for which the positive column is absent and the energy relaxation length k, of
slow untrapped electrons exceeds the gap length L. In this case, a point exists in the negative glow (NG)
region where the plasma density has a maximum and the electric field changes sign. Three groups of
electrons are treated separately. The first of them includes fast electrons with energies exceeding the first

excitation potential c,*. They are emitted by the cathode surface (primaries) or generated in the cathode
fall region. These electrons are responsible for ionization and excitation processes and electron-current

transport in the sheath and in the immediately adjacent plasma. The field reversal is caused by the non-

local ionization in the plasma part of the NG, which is determined by the fast electrons. The slow elec-

trons are subdivided into trapped and intermediate ones. The full energy c (kinetic plus potential) of the

trapped electrons is less than the anode potential eP, . These electrons determine the plasma density but

give no contribution to the electron current. In the Faraday dark space, the electron current is due to
diffusion of the intermediate electrons with energies eP, &e&e . A continuous-energy-loss model is

used for description of the fast electrons. Simple analytic solutions for the electron-distribution function

(EDF) and nonlocal ionization in the sheath and plasma are obtained from the constant-retarding-force

approximation. The EDF of the intermediate electrons is close to isotropic. Analytic solutions for it are
derived. Coulomb collisions lead in most cases to a Maxwell-Boltzmann distribution of the trapped elec-

trons. Their temperature T, at A,, & L does not depend on x. The plasma density profile is obtained from

the ambipolar diffusion equation. The kinetic analysis of the trapped electrons is necessary only for the
calculation of T, and P, values. A criterion for the field reversal is proposed. The results are compared
with experimental and simulation results of other authors.

PACS number(s): 52.80.Hc, 52.20.Fs

I. INTRODUCTION

Processes in the cathode region determine the main
characteristics of glow discharges. The recent increase of
interest in this field has been stimulated by numerous
glow-discharge applications to plasma surface processing,
lasers, and other devices. Application of new experimen-
tal methods, such as laser optogalvanic spectroscopy,
laser-induced fluorescence, and absorption [l —4] have
raised significantly the accuracy and volume of informa-
tion obtained. Detailed numerical simulations [5—8]
have proved to be very useful in understanding the main
physical mechanisms that are responsible for plasma and
electric-field-profile formation. Nevertheless, the devel-
opment of a self-consistent theory of these phenomena
turned out to be a very difficult problem.

A significant difficulty in the analysis is connected with
the enormous difference in characteristic energy, space,
and density scales. A sheath region with low charged-
particle density and large electric field is immediately ad-
jacent to the plasma, where the density exceeds that in
the sheath by many orders of magnitude, and the field is
very weak and even changes its sign. The electron-

distribution function (EDF) in the plasma contains elec-
trons with high energies, —10—10 eV, which are ac-
celerated in the sheath and are responsible for the excita-
tion and ionization processes. The range of these elec-
trons is considerable. Thus the ionization produced by
them is nonlocal. It is determined by the electron-energy
spectrum and not by the local electric-field value. Many
important phenomena —for example, the physical mech-
anism of the Faraday dark-space formation —cannot be
understood even qualitatively within the framework of a
traditional local approach. Consequently, a kinetic
description of the fast electrons is in general use now.

On the other hand, diffusion and recombination pro-
cesses in the low-field plasma region are determined by a
large amount of slow electrons with energies —10 —10
eV. For calculation of the plasma density profile, both
electron groups are equally important. However, a
unified analytical or numerical kinetic treatment of such
multiscale distributions and profiles is very labor consum-
ing. It is useful to introduce sharp boundaries between
different space and energy regions, where different pro-
cesses are predominant, to obtain relatively simple solu-
tions in all the regions and then to assemble them in a
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manner that resembles a jigsaw puzzle. The advantage of
such an approach is the physical transparency of analytic
results [9]. Besides, scaling laws and similarity rules can
be easily derived. The main shortcomings are the rela-
tively low accuracy and the necessity to correctly guess
the boundary positions. For example, the conventionally
used division of the cathode region into the dark space,
the negative glow (NG), and the Faraday dark space
(FDS) is based on visual observations. From the physical
standpoint, it is far more convenient to single out the ion
space-charge sheath, where the electron density is negligi-
ble and the field is strong. It consists of the dark space
and a part of the NG. The plasma region includes the
low-field NG part, the FDS, and its transition into the
positive column (PC). Instead of the Poisson equation,
the quasineutrality condition can be used in this region.
It is preferable to subdivide the plasma into regions with
direct and reversed fields, so that ions generated in them
are moving to the cathode or to the anode.

In the absence of electron-electron collisions, the ener-

gy relaxation length k, of slow electrons is considerable.
The electron motion in the low-pressure discharge
demands a kinetic description, and in principle cannot be
reduced to the conventional hydrodynamic equations.
The motion of electrons that belong to different parts of
the EDF is almost independent. Thus it is convenient to
divide electrons into several groups.

After the papers of Emeleus and co-workers [10,11],
experimenters have usually divided the electrons into
three distinct groups: primary, secondary, and ultimate.
In earlier papers [12—14], it was considered that each
group had a Maxwellian distribution with different mean
energies. However, there were no physical reasons for
such a distribution. Since then, it has been experimental-
ly observed that the energy distributions of primary and
secondary electrons may deviate considerably from the
Maxwellian ones [15—17].

In the theoretical treatment, electrons were usually
subdivided into two groups: bulk and beam [3,5 —9]. The
threshold between them was selected in such a way that
only the fast electrons were responsible for inelastic pro-
cesses. For a description of the energetic beam electrons,
some sort of kinetic theory was used: either Boltzmann
[18—22,25], or Monte Carlo [2,5,6,7, 18,23 —25]. The slow
bulk electrons were usually described by fluid models
[5—9,22]. Such an approach, however, cannot explain the
existence of the two slow electron groups. An unsuccess-
ful attempt to explain such a behavior in the framework
of a kinetic approach to slow electrons has been under-
taken in Ref. [26]. A correct explanation was suggested
in Ref. [5]. If there is a field reversal in the cathode re-
gion and electron-electron collisions are rare, then the
slow electrons can be divided into two almost indepen-
dent groups: trapped and free.

Thus we shall divide electrons into three groups. The
first of them includes the fast electrons, which possess ki-
netic energies that far exceed the first excitation potential
E*. Some of these electrons are generated at the cathode
surface, and the rest of them in the high-field sheath re-
gion. They are responsible for the ionization and excita-
tion processes, and for the electron current in the sheath

and the adjacent plasma region. The electron density in
the plasma is mainly due to the trapped electrons, which
give no contribution to the current. The electron current
in a part of the NG and in the FDS is determined by the
untrapped intermediate electrons, with energies less than

Their energy relaxation length A,„ in our case,
exceeds the discharge gap L, so they can freely reach the
anode. Such a division can be easily performed in atomic
gases. We restrict ourselves to this case.

Since the rigorous solution of this complicated self-
consistent problem is very cumbersome, we shall describe
here a relatively simple analytical approach to the prob-
lem. It is based on a strict division of the discharge gap
into the two regions —sheath and plasma —and on a
separate approximate kinetic analysis of the fast, inter-
mediate, and trapped electrons.

The description of the fast electrons is based on the
continuous-energy-loss model. The scattering was
neglected. The comparison of this model to numerical
simulations for light gases (Hz, He) shows that such a
crude approximation does not lead to significant error.
The intermediate electrons can be described by the kinet-
ic equation in the two-term approximation. Their EDF is
close to isotropic, and decreases almost linearly from the
NG to the anode. The density of trapped electrons is
considerable, and the Coulomb collisions, in most cases,
lead to a Maxwell-Boltzmann distribution. The tempera-
ture of the trapped electrons is very low and spatially uni-
form, since their energy relaxation length A,, exceeds the
discharge gap L.

The problem of the electric-field reversal has been dis-
cussed in numerous publications [2,3,6,27,28]. Precise
and reliable measurements of the reversal position in the
low-pressure short discharge were performed in Ref. [3].
The local approximation for ionization, i.e., an assump-
tion that the ionization rate is determined by the local
electric field, leads to monotonic profiles of the plasma
density and potential, even if the diffusion is taken into
account [29—31]. In normal and anomalous discharges,
the nonlocality of the ionization is considerable. Owing
to the nonlocal ionization, many charged particles are
generated in the low-field region, where the plasma densi-

ty peak is formed. If the density gradient is not too
small, the field reversal is necessary to retard the electron
diffusion. A field configuration that traps the slow elec-
trons is formed, while the ion motion is described by the
ambipolar diffusion. In suSciently long discharges, a
second field reversal has to occur near the FDS-PC
boundary. The potential and plasma density profiles, the
ionization mechanism in the FDS-PC transition, the stri-
ation formation in this region, the field reversal criterion,
and other important topics cannot be properly under-
stood without the kinetic analysis of the slow electrons.

We shall restrict ourselves mainly to the case of low-

pressure short discharge, where only one field reversal
occurs. The FDS-PC transition and the high-pressure
case with the monotonic potential profile will be treated
in detail elsewhere.

In Sec. II of the paper, a simple analysis of fast elec-
trons is given, and expressions for the ionization rate in

the sheath and plasma are derived. In Sec. III, the EDF
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for the intermediate and trapped electrons is calculated
and compared with the experiment. Section IV is devot-
ed to a self-consistent calculation of the electric field in
the sheath and plasma region. In Sec. V, the problem o
field reversal is discussed and rough criteria are derived.

II. DESCRIPTION OF THE FAST ELECTRONS

The most detailed description of the fast-electron be-
havior is given by the Monte Carlo simulations
[2,5 —7, 18,23 —25]. This procedure is, however, very labor
consuming. On the other hand, owing to a lack of cross-
section data, a high accuracy cannot be achieved, even in
such detailed calculations.

T ain approximations have been used for the fast-wo ma'

electron description. In the single-beam mo e
[3,6,7,32,33], the electrons were assumed to be directed
forward and to form a monoenergetic beam. The density
and the mean energy values were described by continuity
and energy equations. Since the EDF form is rat er
complicated, this approach seems to be oversimplified.

Far more realistic is the multibeam approach [6,19,32].
Its feasibility critically depends on a reasonable choice of
the beam number K. If E =1, it reduces to the single-
beam case. On the other hand, at E~~, it is equivalent
to the direct solution of the Boltzmann equation without
scattering [6,20], and demands considerable computation-
al work.

The nonlocal ionization rate is determined by integrat-
ing over the fast-electron spectrum. It is relatively in-
sensitive to the EDF details, and we hope that, for a qual-
itative description, a rather crude model is sufficient. In
this section we present such a model, which, to our mind,
accounts for the fast-electron statistics in the simplest
manner, and gives a physically transparent analytic solu-
tion. The scattering inAuence is small in the light gases
(e.g., in H2, He). We shall restrict ourselves to this case.

A. Continuous-energy-loss model

The characteristic energies of the fast electron are of
the order of the cathode potential fall, eP, —10 —10 eV.
They greatly exceed the excitation c* and ionization c;
energies. Thus it is possible to use the assumption of con-
tinuous energy losses [34—38]

= —XQ( w) —eE (x),
dg

where w is the electron kinetic energy, N the neutral par-
ticle density, 9(w} the energy-loss function, g the fast-
electron path along its trajectory, and x the spatial coor-
dinate. If the scattering is negligible, then x =g and the
kinetic equation for the fast-electron EDF F( v, x) is

re eE(x) re 8 NQ(w) / J( ) (2}
Bx m BU BU m

where J(x,v) is a source term. In this approach, we
neglect the discreteness of energy losses, so it is
equivalent to the limit c.*,c; «w in the multibeam ap-
proximation [6]. The expression for Q(w} at high electron

energies (the so-called Bethe-Block law) is of the form

2~Ze 2w9(w}= ln
w

(3)

where c. is the mean ionization energy, and Z is the
atomic number. For lower energies, 2( w) has been calcu-
1 t d in numerous publications [39—42]. In Fig. 1, valuesae
of Q(w} are presented for molecular hydrogen and e i-
um. One can see that, at energies up to —10 eV, expres-
sion (3) is not valid, and the 9(w) variation in the energy
interval from several tens to approximately 10 eV (most
important for the normal discharge and for a slightly
anomalous one) is insignificant. So we assume a simp e
approximation 9(w)=Go=const. Integration of the ki-
netic equation (2) results in

(4)F(u, x)=Fo(u, x)+ J(x', e)

where u(e, x)=[2(e+eP(x))/m)' . Integration is to be
performed at the constant "energy" c=w +NQox

er)Ir(—x)=w —erI}(x), where r)}(x) is the electrostatic po-
tential, and xo(e) is the left turning point for the elec-
trons with total energy e [Fig. 2; at x =xo(e), we have
w =0 and eP(xo(e))= —e]. The first term on the right-
hand side of Eq. (4) corresponds to the primary electrons
that are emitted by the cathode, the second to the succes-
sive generations of secondary electrons in the sheath.
Since the force NQO is nonconservative, the fast electrons
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FIG. 1. Energy-loss function 2(w) for the fast electrons in
molecular hydrogen and helium: curve l is a calculation [39]
for He; curve 2 is a calculation [40] for H2', curve 3 is a Bethe-
Bloch law (3) for H2, curve 4 is an approximation
Q(w) =90=1.5 X 10 "eV cm for He; curve 5 is an approxima-
tion 2( w) =90=3 X 10 "eV cm' for H, .
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where E= —dP/dx. The EDF in Eq. (7) depends only
on e. Multiplying Eq. (7) by eE(xp(e)} and differen-
tiating it, we obtain

eE(xp(e ) )F(e )
d

—ef{x)

f

I

I

I

I

I
I

(b)

=aF(e)+ eE(xp(e)}m15(e—eP, ) . (8)

Introducing F=Feg, /ml and Z=s/eP„we find the
solution of Eq. (8) in the form

F(Z)=5(Z —1)— exp(axp(Z)) .
aP,

E(xp(Z))

The fast-electron current is

FIG. 2. (a) Total force acting on an electron: ( —eE(x)
—NQp}; (b) effective potential energy of electrons, eP(x). Here
d is the thickness of the space-charge sheath, d is the point
where the total force is zero, and R is the electron range from
Eq. (12) for electrons, starting from the cathode surface. The
picture is plotted for the linear-field profile in the sheath, when

xo{'E)=d(1 —+E), x,'(Z) =R —P,R (1—Z)/P„j=d(1 NQp/—
eEO), P, =P,{1 NQO/eEp—)'. The value of NQO/eEp=0. 214
corresponds to a normal discharge in helium with an iron
cathode [23].

are stopped at the point x =x, (e) [x,(s) is the right root
of the equation eP(x, (e))=—e], and join the intermedi-
ate group. Neglecting the starting energy of the primary
electrons, we have

Fp(v, x) =m I 5(e —eP, ),
where I is the electron Aux from the cathode,
e((), =eP(d } N2pd, and d—is the point in the sheath
where the total force is equal to zero: eE(d ) =Neap (see
Fig. 2). The secondary electrons are born with small en-
ergies, of the order of several eV [39,42]. Neglecting this
insignificant energy spreading, and assuming a simple ap-
proximation of constant energy loss per ion-electron pair
ep [39,43), we have for the source term in Eq. (4)

%90
J(u, x)=5(v) f u'du'F(u', x)

0 Cp

eP
=v5(w)a f F(e', x)de', (6)—ep(x)

where a—:%90/Ep. The integral equation for the EDF
follows from Eqs. (4)—(6),

a eP
F(s,x)=ml 5(e —eP, ) — F(e', x (e))de',

eE(xp(e))

j/(x)=e f u dv F(v, x)du

eI exp(ax), 0&x &d,

j/(xp(a=ed(x)}), d &x &x, (eP, ) .

At x &d, the total electron current j, coincides with j&.
Accordingly, in the cathode dark space and in the NG

(10)

8J~

GfX
=ay&=I(x) .

The expressions (10) and (11) correspond to a generali-
zation of the conventional Townsend approach with the
ionization coefficient a=const. In this respect, our mod-
el coincides with the model used in Ref. [9]. The only
difference is that the ionization density I(x) is propor-
tional now to the fast-electron current j& instead of the
total electron current. The total ionization in the plasma
is equal to the fast-electron energy flux from the sheath
divided by sp [9].

It is necessary to stress that this result critica11y de-

pends on the assumption about the energy independence
of Q(w) and ep(w). Generally, the ionization rate depends

on the electron-energy spectrum. The latter is formed by
the whole potential profile in the sheath, and by the
electron-source distribution. Thus, the attempts to intro-

duce, without taking the EDF form into account, some
form of the Townsend a, depending, instead of on the lo-

cal E value, on other local parameters, or on some nonlo-
cal characteristics of the potential profile [44,45], cannot
lead, to our mind, to significant progress.

It has been proposed to describe the ionization nonlo-
cality by means of the ionization rate I(x) dependence on
the local electron temperature T, (mean energy) [46—48].
In the sheath, this approach gives reasonable results, be-
cause 2(w) and ep(w) are almost constant here, the slow
electrons are absent, and the ionization rate is insensitive
to the EDF form. But it is inadequate in the plasma,
where the nonlocal ionization is produced by the energet-
ic electrons, and the density and T, are determined by
the slow trapped electrons. As a result, the extraneous
peculiarities of the ionization rate arise in this approxi-
mation [47,48].

In several publications (see, for example, Refs. [18]and

[23]), the approximation a(w(x)) is used, where w(x) is
the mean fast-electron energy at x. Since the fast-
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electron-energy spectrum is wide and varies considerably
with x, such an approximation is based on a rather poor
physical foundation. But due to the fact that 9(w) and so
are nearly constant, the numerical results for the ioniza-
tion density in the sheath given by this approach are not
too bad (curve 3 in Fig. 5). The expression a(E(x)},
where E(x} is a certain effective field, was proposed in
Refs. [18], [49], and [50]. It also gives reasonable ioniza-
tion rates in the sheath, but may lead to a significant er-
ror in the plasma.

At x )x((e(, ) from Eqs. (10) and (11), it follows that
I(x)=0, i.e., the fast electrons do not reach this region.
This point can be identified with the boundary between
the NG and the FDS. The value of x, (e(t, ) can be calcu-
lated from Eq. (1) as the range R of the fast electrons
with the initial energy eP, [51,52],

eP
R(eg, )=x, (eg, )=f (12)

e
x —d —1/a((R =

aco
(13)

The field in the sheath decreases from its maximum at
x =0 to approximately zero at x )d —the sheath length.
For the well-known linear approximation [54]

—Eo(l —x/d), x &d
E(x)= .

0, x )d

we have

(14)

((,(I —x/d), x &d
—P(x)= '—

P, +P, (x/R —1), d &x &R

the electron-flux multiplication in the sheath is large,
then it follows from Eqs. (10) and (11) that the significant
decrease of I(x) in the plasma occurs at shorter-than-R
distances from the cathode,

In Fig. 3, the NG length values calculated from Eq. (12)
and observed in Ref. [51] are compared to the fast-
electron range [53].

The parameter ad represents the mean number of
avalanches initiated by the fast electrons in the sheath. If

F(s)=5(E—1)+ exp[ad(1 —+Z)] .
2&a

B. The model validity

(15)
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FIG. 3. Comparison of the observed NG length (points [51])
with the fast-electron range (solid line [53]) and with the calcu-
lations according to Eq. ( 12), with 9(w ) =Qp (dashed lines).
Curve 1 corresponds to helium, curve 2 to hydrogen. Values of
Qp were chosen according to Fig. 1.

The proposed model is based on several crude
simplifications. Among them, the most obvious ones are
the neglect of scattering and of discrete character of the
energy losses, as well as the approximation of the con-
stant loss function 9(w). Therefore we cannot expect to
get a precise quantitative description of the experiment.
But it is the simplest approach, which accounts for the
ionization nonlocality that determines the main charac-
teristics of the NG and the FDS [55].

The error caused by the continuous-energy-loss model
is maximum at low energies, i.e., immediately at the
cathode surface and at the NG-FDS boundary. The elec-
trons that have not suffered any co11isions cannot also be
described by this model. The magnitude of these errors
can be demonstrated by a comparison to Monte Carlo
simulations of Tran, Marode, and Johnson [23], where
the EDF and the ionization density in the sheath, with a
linearly decreasing electric field, have been calculated for
He, without accounting for scattering. In Fig. 4, the
EDF of Eq. (15) and the results of Ref. [23] are presented
for P, =150 eV, d =1.3 cm. The small electron-flux mul-
tiplication in the sheath (-2.5 for these conditions) im-
plies that the primary electron flux [represented by the 5
function in Eq. (15)] is considerable throughout the
sheath. Energy-loss discreteness leads to spreading of
this primary peak, which is roughly proportional to
QN2os;x. The Gaussian EDF of the primary electrons
with such spreading is shown also in Fig. 4. The value of
90= 1.5 X 10 ' eV cm, accepted in all our calculations,
is overstated in this case (see Fig. 1). Nevertheless, one
can see that, even in this case, the EDF of Eq. (15) in the
medium energy region, which is responsible for the main
part of the ionization rate, is not too far from the results
of Monte Carlo calculations. The accuracy of the pro-
posed model increases with the increase of electron multi-
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.0

[23]. The zero n values at small x in Ref. [23] correspond
to the ionization extinction at w & cp, where the
continuous-loss model is invalid. The plateau in a(x)
dependence in Ref. [23] at the intermediate x values cor-
responds, to our mind, to the energy independence of cp
and Q(w). The choice of the lower Qo value leads to a
better agreement with Ref. [23], but we prefer our choice,
as it accounts for the scattering to some extent.

0.5"

C. The scattering inhuence

50 100 150

E(ec(ron Ene~qq (eV)

plication in the sheath (at lower values of y).
In Fig. 5, values of the effective Townsend coefficient

I(x)
I + I x' dx'

p

(16)

are shown according to Eqs. (11) and (14) and to Ref.

FIG. 4. Electron-energy distribution at various positions in
the cathode sheath. Comparison of Monte Carlo simulations
[23] (histo grams) with calculations according to Eq. (15).
Dashed lines correspond to the primary-electron flux.

This problem is far more complicated. It is well known
that, at energies not too large compared to c*, the elastic
scattering is not far from isotropic, and significantly
exceeds the inelastic one [55]. Consequently, the EDF is
close to isotropic here. On the other hand, at energies
considerably higher than the energies of atomic electrons,
all the collisions are Coulomb-like and highly anisotropic
[34,35]. The small-angle scattering dominates in this
case. At such energies, the loss function is given by Eq.
(3). Owing to the scattering, the real electron path along
its trajectory x exceeds the distance between the genera-
tion and observation points x. This problem has been
discussed in Refs. [35] and [56]. If the influence of
scattering is small, it can be estimated according to Ref.

g=x + —,'Rlc(1 —&I —x/R )

where R ( w) is the electron range given by Eq. (12), and

Z+1 (ln[30[w(keV)]/Z ]
—1)

g ln(w/E, )

1.4

1 ~ 2
E

1.0
C

Qr

0.8
Qr
C)

0.6

0.4

C3

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Disiance )rom Cathode (crn)

FIG. 5. Effective Townsend coefticient a in the sheath as a
function of distance from the cathode: curve 1 is a Monte Carlo
simulation [23]; curve 2 is an approximation 9(w) = const,
so=const=46 eV; curve 3 is an approximation a( w ) [23];curve
4 is a Monte Carlo simulation [24); curve 5 is a Monte Carlo
simulation [25].

Since the values of the parameter ~ for Z =1,2 are small
compared to unity, the scattering influence on the elec-
tron trajectory in hydrogen or helium is not too
significant.

In the considered energy range of 10—10 eV, the angu-
lar and energy dependence of the complete set of cross
sections is not known. Therefore, even the Monte Carlo
calculations are not very reliable in this case, and the re-
sults of various authors differ considerably. These
differences are mainly due to the choice of an angular
dependence of elastic and inelastic cross sections. The
one-dimensional Monte Carlo method [23] (which com-
pletely neglects the electron scattering) has been
transformed by Boeuf and Marode [24] to account for
different angular dependences of elastic scattering. An
attempt to account for ionization-collision anisotropy has
also been undertaken. Ohuchi and Kubota [25] and
Schweigert and Schweigert [5] used isotropic elastic
scattering. Den Hartog, Doughty, and Lawler [2) used
anisotropic elastic scattering, isotropic scattering for ex-
citations, and two different angular dependences for ion-
izing collisions. Isotropic angular distributions for both
outgoing electrons leads to an overestimate of the ioniza-
tion rate in the abnormal cathode fall in He compared to
the experimental data [2]. Boeuf's assumption of aniso-
tropic angular distributions for the ionizing collisions
leads to a better agreement with the experiment [2]. The
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0.4

0.3

for the direct ionization spatial distribution in He at
j=0.519 mA/cm, p =3.5 Torr, L =0.62 cm [2] are
compared to calculations according to Eqs. (11) and (12).
The discrepancies are mainly caused by the scattering,
which leads to a higher ionization at small x and to a
steep ionization decrease at large x (compare Fig. 5). It
was noted before that the assumption of the isotropic ex-
citation cross section, used in Ref. [2], significantly
overestimates, in our opinion, the scattering role.

0.1 0.2 0.3 0.4 0.5 0.6
III. KINETIC EQUATION FOR THE SLOW ELECTRONS

Distance )vom (.'akhode (cm}

FIG. 6. Ionization rate J7 (in units of number of ionizations
per electron) as a function of distance from the cathode, for
discharge in helium at p =3.5 Torr, j=0.519 mA/cm2 [2]. The
histogram is a Monte Carlo simulation [2]; the solid line is the
calculation according to Eqs. (10), (11),and (14).

fast-electron energy losses for excitation and ionization
are comparable: the Eo value in Eq. (6) is of the order of
2c.;. Consequently, the isotropic excitation cross sections,
used in the kinetic calculations [2], lead to an error of the
order of several tens of percent. Such a value is compara-
ble to the error of our simplified model (see Figs. 4—6).

Angular-scattering-probability data in helium, which
encompass both elastic and inelastic collisions for ener-
gies between 200—1000 eV, demonstrate [57] that the
scattering in a forward direction is predominant. This
fact also justifies our approach, based on the assumption
that, at comparatively low energies, when collisions are
not Coulomb-like and Eq. (3) is not applicable, the strong
elastic and inelastic scattering anisotropy nevertheless ex-
ists, and the electron trajectories in the gases with low Z
do not [in accordance with Eq. (17)] differ strongly from
the straight lines. The scattering leads to a decrease of
the electron penetrating depth and to a growth of the
effective a(x) values in the sheath (curves 4, 5 in Fig. 5).

In Fig. 6, the results of the Monte Carlo calculations
I

The continuous-energy-loss approximation, described
in the preceding section, is valid at w »c;,c . Since the
characteristic energy of the fast electron is of the order of
eP„ it is possible to subdivide the fast-electron energies
into two intervals, [eP„wo] and [wo, e'], where eP,
»wo »c,*. The continuous-loss approach is applicable
to the first of these intervals; the discrete character of the
energy loss is essential for the second. The energy depen-
dence of the excitation and ionization cross sections at
w ~ 2c,* is relatively smooth. The fast electron, during its
evolution, quickly passes the energy interval [wo, e'], and
the precise EDF form here is not very important for the
calculation of integral characteristics, such as the ioniza-
tion and excitation rates, which are of primary interest to
us.

The situation changes radically at w (c*, where the
effective energy loss in the excitations and ionizations
does not occur. In this energy interval, the elastic and
electron-electron collisions are the only energy-relaxation
mechanisms and if L exceeds the electron mean transport
free path A, , the EDF is close to isotropic and the tradi-
tional two-term approximation is valid. It can be used
also at the energies slightly exceeding c.

' as soon as
v* «v (v and v* are the transport frequency of elastic
and frequency of inelastic collisions, respectively). Intro-
ducing the full energy e =w —eP(x) (note that this
definition differs from that used in the preceding section),
the kinetic equation for the isotropic part fo(e,x) of the
EDF can be written in the form [58—60]

1 a ~fo 1 a Bfo
vD(v) +— 5vvw fo+ T,a Bx v Bc ' ac.

+s,',"(f,)+s"(f,) = —y(e, x), (18)

where 5 is the mean energy loss in the collisions with
small energy loss (for atomic gases 5=2m /M; excitation
of molecular rotations and vibrations leads to consider-
ably higher 5 values in molecular gases), D = v /3v is the
electron diffusion coefficient, T, is the atomic tempera-
ture, P(E,x) is the source term, S,', ' is the electron-
electron collision integral, and S* is the inelastic collision
integral. If only the first excitation level is important,

i a pS„=— 2vw v„(w, x) fo+ T, (20)

I

The expression for S,', ' is given in Ref. [61]. It can be
considerably simplified for collisions of fast electrons,
with the slow Maxwellian ones characterized by the den-
sity n, and temperature T, :

S' =v*(e,x)fo(e,x)
' 1/2

v'(e+e')fo(e+e', x) . (19)

where v„(w,x)=n.n, (x}e vA/w, and A is the Coulomb
logarithm. The numerical calculations (see, for example,
Ref. [62]) demonstrate that the approximation (20) does
not lead to significant errors. The boundary conditions
for Eq. (18}can be taken as
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B p
(x =d)=0, fo(x =L)=0 .

Bx

term is [63]
(21)

$3(E,x) =N*(x)(w —c.*)cr*(w —e*)v 2/mw

In the absorbing-wall approximation v*~ ao, the bound-
ary condition at E+eP(x) =8* is

Xfo(w —e*,x), (27)

p=0.
The slow-electron density is

4m.
n, (x)= u(E, x)fo(E,x)dE

m —eP(x)

The current density transported by these electrons is

4~e
J', (x)= f u (e,x)D (E,x) d F .

3m —ep(x) Bx

(22)

(23)

(24)

where N*(x) is the metastable density and o* is the su-
perelastic collision cross section. Other plasma-chemical
processes, such as chemoionization, also give the corre-
sponding source terms [64].

The electron with the energy w —E,
* reaches the anode

during the time r, -(L d) /—D. The simplest case cor-
responds to relatively low plasma density, when this time
is small compared to v,, ', see Eq. (20), and to the low-

pressure short discharge:

NQp
g, (E,x)=

8m E*(2E*/m )'
3

F(w =O, x) . (25)

The second source is connected with the slow electrons
generated in the plasma by the fast-electron impact:

gz(E, x)= F(w', x)o,;(w', w)dw',
u E,x 0

(26)

where o.
,;(w, w) is the differential ionization cross section

[40].
If the first excited state is metastable (or if the radia-

tion for the transition 1~0 is considerably trapped), the
superelastic collisions of the slow electrons with the ener-

gy gain E* lead to generation of electrons with kinetic en-

ergy slightly exceeding E*. The corresponding source
I

Three main processes determine the source term
g(e, x) in Eq. (18). The first of them corresponds to de-
gradation of the fast electrons injected into the plasma
from the cathode sheath. In the unit plasma volume
NQOF(w =O, x)/m, fast electrons are stopped during the
unit time [where F(w, x) is given by Eqs. (9) and (15)].
Their energy spectrum is determined by various excita-
tion and ionization processes; the simplest model corre-
sponds to the uniform generation of the slow electrons in
the energy interval w & E.*:

L «X,=
5

L «ID=+D, r .

(28a)

(28b)

From Eq. (28a), it follows that the EDF of the trapped
electrons fo"(e,x) depends on c, only. If, for these elec-
trons, v„)&6v, and the source term can be neglected,
from Eq. (18) the Maxwell-Boltzmann expression follows:

' 2 /3

n [exp( E /T, )—m

2%T.
f (tI(E)

—exp( —eP, /T, )] . (30)

Here n is the maximum trapped electron density at the
point of the field reversal E(x)=0. The value of T, in

Eq. (30) can be found from the integral energy balance for
the trapped electrons:

In this case it is possible to subdivide the slow electrons
into two groups. For the intermediate group, with
E*) e )eP, (P, is the anode potential) in kinetic equa-
tion (18), only the space diffusion and the source terms
are to be left. The EDF for this energy region is [65]

d
U CX E X dX

x v(e, x')D(E, x')

(29)

e(I5'a dE x+(c)
f t dx w(e, x) 5vuwfo" 1—

p m x (c) BE,

eP d E x+(c)
+ W„+ Wf, = f f dx wug(E, x), (31)

W, , = f t w (E,x) (2v'v„fo')dx
a

(i)
( g) (32)

where

n "(x)= t u(E, x)fo(E, x)dc,
4m

m
(33)

where x+(E) are the turning points for the electron with
total energy 8, defined as the roots of the equation
E —eP(x+(E))=0. The power transferred to the trapped
electrons from the intermediate ones is

is the intermediate electron density; the expression for
the power transferred from the fast electrons Wf, is simi-
lar.

The problem of the energy balance for the trapped
electrons, Eq. (31), is rather complicated. The value of
T, is sensitive to the EDF form in the vicinity of e=eP„
where neither Eq. (29) nor Eq. (30) is valid. A significant
simplification is possible if the source term in Eq. (31) can
be neglected. For the 11, source, Eq. (25), for example,
the slow-electron generation rate is of the order of
(eP, /E*) n ' /r, . From eP, —T„ it follows that the
contribution of this source term to Eq. (31) can be
neglected, if
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r, v„(E') & ( T, /s*)'

A systematic experimental investigation of the slow-
electron EDF in such short discharges has not been per-
formed. In Ref. [4], the slow-electron temperature and
n were measured in He at p =3.5 Torr, L =0.62 cm,

j =0.8 mA/cm . Calculations according to Eqs. (31) and
(32), with the EDF of the intertnediate electrons given by
formula (29) and the EDF of the fast electrons given by
Eq. (15), with the experimental field profile in the sheath
(which is close to the self-consistent one —see Sec. IV),
results in the trapped-electron temperature value T, =0. 1

eV, which is close to the experimental value 0.12 eV.
Relaxation of the EDF in He at p =4 Torr in the

intermediate-energy region was observed in Ref. [17].
The electrode gap L =2 cm exceeded X,=1.7 cm, and
was small compared to the length [D/v„(s" )]' =6 cm
at n, = 10"cm, which corresponds to formation of the
Maxwellian EDF for the intermediate electrons. The
influence of the small plasma field on the intermediate
electrons can be neglected (s' » T, ). In this case, the ki-
netic equation (18) can be reduced to the diffusion one

calculated and observed EDF is clearly seen. The
differences can be attributed (a) to a model spatial depen-
dence of the source term; (b) to a contribution of the
remaining source terms; and (c) to whether the x values
in the experiment correspond to the distance from the
cathode surface or from the sheath boundary.

The electron current in the sheath coincides with the
fast-electron current jf. In the plasma at d (x &R, the
transformation from jf to j„see Eqs. (10) and (24),
occurs, and at R &x &l. (in the FDS), the electron
current coincides with j,. The trapped electrons, as a
rule, give the main contribution to the plasma density,
Eq. (23), but zero contribution to the current j,.

The total electron current j, in the FDS is transported
by diffusion of the untrapped intermediate electrons. It
can be roughly approximated as j, -D "dn "/dx, where
D"-D(E') is the mean intermediate-electron diffusion
coefficient, Eq. (18), and the density n" is given by Eq.
(33). The density of the trapped electrons exceeds n" by
orders of magnitude, but their current is exactly equal to
zero. The traditional approach employs the division of
the slow-electron current into diffusion and drift ones:

ae a'a
(34)

J~ dpi—=D ' —p, n, E .
8 dx

(37)

where the variables 4(x, t)=5vvwfo("(x, w) and t
=f ' 2dw'/35v mv are introduced [66], and the source
qI(x, t) is 4=35v mv g/2. The boundary conditions (21)
and (22) are of the form

ae (x =d) =0, 4(x, t =0)=0, 4~0 at x ~ ao . (35)
Bx

The solution of the diffusion problem (34) and (35) can be
written as

16 '

%(d+ lx'I, t')
o

(x —d —x')
4(t t')—

(36)

The different electron sources give additive contributions
to the function 4(x, t). The sources g, and $2, see Eqs.
(25) and (26), depend weakly on energy. On the contrary,
the source P3, Eq. (27), of electrons that have been gen-
erated in the superelastic collisions of slow electrons with
metastables or in metastable collisions with each other,
can be approximated by the 5 function of energy. In Fig.
7, a comparison of the EDF calculated from Eq. (36) and
that observed in Ref. [17] is shown. Two source terms
g3, with initial energies 15.0 eV and 19.8 eV, existed in
the plasma, corresponding to the intermediate-electron
generation in the collisions between metastable atoms and
in the collisions of slow electrons with the metastables.
The dashed lines in Fig. 7 represent the EDF of Eq. (36)
at the points x —d =0, 4, 8 mm. A spatial dependence of
the second source term was chosen in the simplest form
of e(x —x), where 6 is the step function and x is
given by Eq (42). The .qualitative agreement between the

8

10

F I'. ection Eye(t.9y (eV)

FIG. 7. Energy distribution of intermediate electrons at vari-
ous positions within the plasma. Comparison of the experimen-
tal data [17] (solid lines at x: 1 —2 mm; 2—8 mm; 3 —14mm) with
calculation according to Eq. (36) [dashed lines at (x —d): 4—0;
5 —4 mm, 6—8 mm].
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But the trapped and untrapped electron densities n'"(x)
and n "(x) vary along the FDS in an entirely different
manner. Since the electron current is transported only by
the untrapped electrons, it is in principle impossible to
express j, in terms of total n, density (and its derivatives).
Therefore, Eq. (37) is altogether misleading in this case,
and can result in substantial errors. Attempts to express
the current j, in terms of other characteristics averaged
over the entire EDF (e.g. , electron temperature), or an
addition of the thermodiffusion term [22,47,67] to Eq.
(37), do not substantially improve its accuracy. From the
physical point of view, the effective electron temperature
variation along the FDS [67] is due to a variation of the
ratio between the trapped-electron density (with uniform
temperature) and the density of the intermediate ones
(with the energy of the order of e*).

where G(x,y) is the Green function. The position of the
density maximum x =x is determined by the equation

J,aG(x, y)
I(y)dy =0 .

d BX
(40)

(x d)(L——y), d &x &y
G(x,y)= X '

D. (L —d)2 (L —x)(y —d), y &x &L

(41)

The ions generated at x )x are driven to the anode;
those generated at x (x are returned to the cathode.
In the absence of recombination, a considerable amount
of the ions returns to the cathode. The recombination is
negligible if the plasma length is small compared to the
diffusion length, i.e., (L —d) « l~. In this case the
Green function G (x,y) has the simplest form

IV. THE PLASMA-DENSITY PROFILE
AND THE SHEATH STRUCTURE

8n n
D, +I(x)——=0 .

Gfx 8x
(38)

Zero conditions at the boundaries between the plasma
and the anode and cathode sheaths are a good approxi-
mation [9]. The more precise boundary conditions are
obtained below [Eqs. (44) and (45); for a detailed discus-
sion, see Ref. [70]].

The electron density in the plasma is determined main-

ly by the trapped electrons with the Maxwell-Boltzmann
EDF (30). Accordingly, the electrostatic potential is

given by eP(x)= —T, ln(n/n ), where the density max-
imurn at x =x corresponds to the field-reversal point
and the T, value is determined by Eq. (31). The close
correlation between the field-reversal position and the
density maximum was observed in experiments [3] and in
calculations [3,5 —7].

Solution of Eq. (38) with the zero conditions
n (L)=n (d) =0 is of the form

n(x)= J G(x,y)I(y)dy, (39)
d

The quasineutral region is traditionally described by
the ambipolar diffusion equation [5,9]. For a current-
carrying inhomogeneous plasma, such an approach is val-

id only in the case of a simple isothermal plasma that
consists of electrons and one species of positive ion with
field- and density-independent mobilities. The violation
of these assumptions results in considerable complica-
tions. If the mobilities are field-dependent, or more than
one ion species is present, the ambipolar drift
phenomenon is significant [68,69]. Since ambipolar drift
velocity is usually anode directed and of the order of ion
drift velocity, this effect leads to the FDS spatial scale
-p, E~ instead of the above-mentioned scale l~, Eq.
(28b).

In the low-pressure case, when the inequality (28a)
holds, the trapped electrons are isothermal, and the ion
profile is determined with high accuracy by the ambipo-
lar diffusion equation, with the source term defined by
Eq. (11):

Using Eq. (41) for the Green function, we obtain from
Eq. (40) the equation for x

J xI(x)dx =(L +d) J I(x)dx . (42)

If the FDS length L —R exceeds R —d, it follows from
Eq. (42) that, as x ~R, the majority of plasma-
generated ions return to the cathode. In the case when
R —d exceeds L —R, the majority of fast electrons reach
the anode, and ionization in the plasma part of the NG is
almost uniform and, according to Eq. (10), is given by
I(x)= Io =NQOJ'/—(d)/ceo In this .case, x =(L +d)/2.
The ion-current values at x =d and L in this case are al-
most equal, and the plasma-density profile is close to par-
abolic, with n =Io(L d) /8D, . —

In the experiments [2], the values of R exceeded the

gap value L =0.62 cm (see Table I). This means that ap-
proximately half of the ions generated in the plasma re-
turn to the cathode. In calculations [2], it was postulated
that ions generated in the plasma do not reach the
cathode. This corresponds to the identification of the
field-reversal point, x =x, with the sheath boundary,
x =d. Such an approach underestimates the ion flux to
the cathode; thus higher values of P, are necessary when

compared to the ones calculated by taking into account
the ion flux from the plasma. The difference can be
significant, especially in the highly anomalous discharge
case.

The boundary plasma density nb at x =d may be es-

timated as follows. Let us determine the sheath bound-

ary as a point, where the deviation from quasineutrality

1 dE
n,.—n, =

4me dx
(43)

which is necessary for formation of the quasineutral
field profile with the ambipolar potential
P= —(T, /e)l [nn(x)], is of the order of n, The ion .flux

in the vicinity of the sheath boundary is

I,(x)—= D,dn/dx —= I—O=I, (x =d)-=D, n /(x„—d—).
This flux can be approximately derived from the ambipo-
lar diffusion equation (38), with the zero boundary condi-
tion at x =d. In this way, we obtain the boundary densi-

ty
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TABLE I. Discharge parameters for short discharges in helium at p =3.5 Torr. Comparison of the

experimentally observed (upper entries; [2]) and calculated (lower entries) values of the field at the

cathode surface Eo and the sheath thickness d.

cm ) 0.190 0.519 0.846 1.18 1.50

E (kV/cm) 0.897
0.96

1.426
1.56

1.870
2.04

2.395
2.54

3.017
3.28

d (cm) 0.382
0.19

0.301
0.21

0.282
0.24

0.300
0.28

0.396
0.40

171 215 359 597

E /. 2/3

R (cm)

2.72

0.955

1.77

1.24

2.09

1.60

2.14

2.36

2.30

4.66

)lb =
' 1/3

0 e

4~e 2D2
(44)

for the case of 6eld-independent ion mobility in the plas-
ma. If the 6eld at x & d is considerable, i.e.,
eE(d)A, ; & T„ the ambipolar diffusion coefficient is field

dependent. For a widely used approximation p;(E}
=k; /v E, we have for this case

1/5r,'
2mk, T,

(45)

The transition region between the sheath and the plasma
was investigated in more detail in Refs. [5] and [70).

The field profile in the sheath (for 0 & x & d} is deter-
mined by the Poisson equation

(46)—(50) coincide with the ones derived by Weizel,
Rompe, and Schon [9].

The field profile given by Eq. (50) can, in principle,
strongly deviate from a linear one (14). In the limiting
case ad « 1, when the ionization in the sheath is negligi-
ble, it follows from Eq. (50) that E/Eo=(1 —x/d)
Such profiles were observed in Ref. [71]. The ion genera-
tion in the sheath leads to the decrease of dE/dx values
in the vicinity of x =d, and to deviation of the E ~ (x)
profile (50) from a linear one (Fig. 8). The p;(E) depen-
dence and the ion-flux nonconservation in the sheath re-
sult in the opposite deviations from a linear E (x) profile.
As a result, nearly linear E(x) profiles are often formed,
such as were observed in Ref. [2] (Fig. 8).

The sheath thickness d is determined from Eq. (50) as a
point, where E (d) =0:

dE I;(x)
dx p;(E)E ' (46)

(J —Jo)(1+r }d= —ln
a 'VJ

(51)

where the ion fiux I, (x) is given by the continuity equa-
tion

The expressions (49)—(51) give the Eo and d values, and

dr,' =I(x)=ar, (x) .
dx

(47)

The boundary conditions are

yr, (0)=r,(0}=r, r, (d)=r, =j,/e .

The ion Aux at the sheath edge I 0 can be calculated as

(48)

I = I xdx. (49)

Substituting the expression for I(x) from Eq. (10) and in-

tegrating Eqs. (46) and (47), with p, (E)=k; /v'E, we .ob-
tain the field profile in the sheath

T

O
LLJ 0.8
LU

0.4

0.2

0.2 0.4 0.6 0.8 1.0

E (x)= d —x — (e —e ")
k, a(1+@)

(50)
DLsiance )rom Cathode (xld)

As was mentioned in Sec. II, our simple kinetic model is
equivalent, in the main part of the sheath, to the fluid
model with a =const. Accordingly, the expressions

FIG. 8. Electric-field profile vs the distance from the cathode
in the sheath for the experimental conditions of Ref. [2]: points
are the experimental data [2]; solid line is the calculation ac-
cording to Eq. (50).
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e'" 1+ (L ——d) = 1+—
2 r

(52)

determine their dependence on L
t e ast-electron range R significantly exceeded L (see

plasma-density profiles shoulda e I). In this case the

p oportional to the current density.e parabolic, with n ro or
'

In the approximation Q(m) =const E =, co=const, tne sheath
ic ness should be current independent' the el

ca o e surface and discharge voltage should be

f th
proportional to j . Equation (51) f d
or is case to

or a can be reduced

and one ion s ecipecies is present. In this case, E . (37 i

valid. Addition of ththe thermal diffusion term [22,74],
which does not exceed the diffusion term in E . (37
rule, does not chan eange the plasma profile qualitativel . An
ionization term I

've y. n

2, ue to the plasma electrons, should be
added into Eq. (38). This term
o t e local field, i.e., I =I

q. . is term depends on the magnitude

tion of E . (38) in

~ The corresponding solu-

the ex on
~, a spatially semi-infinite cas d be, escn es

ponential density decrease in the FDS fr
n ((n w

in e rom n to

(28b):
n, wit the characteristic scale Ie z given by Eq.

n =—n exp[ —(x —x )/li, ] . (53)
T e current dependence of the d valu
cordin to E .

e va ues calculated ac-
cor ing to Eq. (52), which are presented in Table I, is
caused mainly by the gas heatin Th d'ing. e iscrepancy be-
tween the calculated and b d do serve values at low
currents is mainly determined b thee y e significant violation

(see Fi . 1). The
o e ~ =const, Eo=const approximation in th'

ig. . e range values R at low cur t

'
n in is case

corn arable w
w currents were

p e with L, and the inhomogeneit of the
'

tion rate in the
i y o e ioniza-

in the plasma was considerable. These
cumstances alsoa so result in the lowering of the ion fl

e. ese cir-

from the lasma an
e ion uxp, and in an additional increase of the (ad)

values compared with Eq. (52). The values of the field E
in Table I were calcalculated according to Eq. (50) with the

o e e

served ion-flux v

observed d values. It turned out in Ref. L2ou in e . [2] that the ob-
serve ion-flux values at the cathode surface [which are

a ue o f o (x)dx. From this fact, it was deduced that

the ion flux from th
ingly, the field-reversal point was identified with the
sheath boundar . In oury. our opinion, this coincidence rather

on e ar o calculationsc aracterizes the reliability of M t C 1

ca cu ations wase ionization rate I(x) in our 1 1

ou % lower than in Ref. [2] (see Fi . 6). With
reduced value the

ig. . it this
e flux at the cathode observed in Ref. [2]

was equal to the sum of the ionization in the sheath and
one-half of the plasma ionization.

V. ELECTRIC-FIELD REVERSAL CRITERIA
AND FDS-PC TRANSITION

The field and densit iny in the PC are determined by

have
2, =n, r, . Accordingly, in the ion d' hg isc arge, we

LF ——tL, ln(n /n, ) . (54)

D, ( T,' ')n /I -j/e =p n EPeng

where T' '
e corresponds to x =x Us' De = Te p

and comparing Eqs. (37) and (55) we obtain7

T(o)
(x)= exp[ —(x —x )/li, ]

— . 56

(55)

Thus, at sufficiently high pressures, when

la pi' o1,
Pe

(57)

Near the FDS end, x =x, x =x +LF, the ionization I2 steeply
mcreases, the expression (53) is no ion er valid

If, for exam le tp, t"e wall recombination in the FDS
ominates, in conventional cylindrical geomet le ry,

n e case whereA being the chamber radius). I th
= x — &

z& (see Fig. 9), the ion flux from the 1

eath constitutes, according to Eqs. (49 and
(40), a considerable part of the total
quentl,

e tota current. Conse-

It is widel kn
NG lasma is n

y own now that nonlocal ionizat' h
' aionint e

p asma is necessary for the existence of th fi ld
versal. ~ But it was not clear whether this was suffi

'
o e e re-

realization of such
is was su cient for

such a reversal, or whether some additional
criteria were necessary. In Ref. j7~j

a the field reversal occurred if the slow-electron
diffusion current exceeded the total elec
Since the field-reve e -reversal problem is rather complicated and
many-parametric, we restrict ourselve t thes o e simple case

a density-independent ~, as in Eq. (38).

A. High pressure
Xm

X= X2(6)

xo

The ambipolar diffusion equation (38) with
erma diffusion, is applicable also at high

E
pressures, when the FDS length L dF exceeds the length k,

q. (28a), if the electron mobilit
p7

i i y p, is a constant (such
an approximation is traditionally used for He and H2)

FIG. 9. Th
the ion low- r

The potential profile in the NA-FDS-PC region of
ng ow-pressure discharge. The curve x =x,{c)is defined

according to c—c =e x c—e x ~ c ) ). The dashed lines show

schematic allh y the intermediate-electron energ de rad

to elastic collisions.
gy egra ation due
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the field reversal is absent. The ion flux I,- is cathode
directed in the whole discharge gap. It is generated at
the anode sheath, remains constant (I;,=p; n, E, ) in the
PC, decreases in the FDS, and steeply increases in the
NG. The characteristic scale lp, /p; is proportional to
the fast-electron range (12), and essentially exceeds the
slow-electron energy-relaxation length A, Consequently,
at I& &A,„the slow-electron energy transport is negligi-
ble, and the effective temperature T, of these electrons is
determined by a local balance of the Joule heating and
energy losses due to collisions. Since the plasma density
in the FDS varies exponentially, the field variation ac-
cording to Eq. (56) is also very considerable. The T, vari-
ation along the FDS can be roughly estimated from Ref.
[69) as

p; nE =I(x)d 7l

dx
(60)

where a connection between the plasma density and the
potential is given by Eqs. (23), (30), and (33):

netically according to Eqs. (29) and (36).
In the short discharge, (L —x )(li„which has been

treated in the preceding sections, the FDS was adjacent
to a negative anode potential fall (of the order of T, /e),
and the ions generated at x &x moved towards the
anode. In the case of the long discharge, the second field
reversal occurs at the FDS-PC boundary, and the PC
stretches out to a positive anode fall [72]. The FDS and
the FDS-PC transition region are sketched in Fig. 9. The
potential profile here is determined by the equation

T,(x}=T' '+e(E)A, , (58) n (x)= n "(x)+n [exp( eP/T—, )+exp( —U) ] . (61)

where (E) is the heating field (direct field in the FDS)
averaged over the length of the order of A, Since A,, in
atomic gases exceeds 1, as a rule, the T,' ' value corre-
sponds to x =x +A,„and the monotonic growth of
T, (x ) with distance follows from Eq. (58).

Kith the pressure decrease, two field-reversal points
appear. One of them is slightly displaced towards the
anode with respect to x . This displacement can be easi-
ly found from Eqs. (37) and (53). The position of the
second reversal x moves towards the PC boundary as the
pressure decreases:

&LF

B. Low pressure

If the energy-relaxation length A,, does not vary
significantly with the energy, comparing Eq. (54) with Eq.
(59), we see that at low pressures, when A,,& lz, the
reversed-field region occupies practically the entire FDS
length. The slow trapped electrons are isothermal, and
the ambipolar diffusion equation (38) is applicable in this
case, too; the intermediate electrons are to be treated ki-

n T
x —x =l~ln (59)

Clg) 1l E

where T,"=eD, (E, ) /p, ( E, ) is the electron temperature
in the PC, the ratio T,"'/eE, =A,," being the energy-
relaxation length in the PC. The retarding field at x & x
(and at x &x &x if the field reversal exists) should not
be included into the ( E ) value. Consequently, at
1p, /p, ) 1~ & A.„the T, (x) profile in the reversed-field re-
gion is uniform and T, =- T, . At x )x, the electron heat-
ing is considerable, and T, (x) varies up to two orders of
magnitude.

If the slow-electron collision frequency is energy
dependent, then at soine point the dependence p, (T, ) be-
comes significant, and the density-profile characteristic
scale increases from lz up to the value of the order of
p;Er)&li, [68,69].

In the short high-pressure discharge, when the gap
length L is less than the Lz given by Eq. (54), the PC is
absent. In the case where Eq. (57) holds, a positive anode
fall is expected. If L & x, the anode fall will be negative.

(x —x)'
P(x)= +

2p. 7
(62)

where r, is the value of ~=A /D, corresponding to the
FDS-PC boundary. The ambipolar diffusion coefficient in

The intermediate electron density n "(x) is to be calcu-
lated according to Eq. (29), where the upper integration
limit is to be replaced by x =x2(e), where eP(xz(c, ))
=e"—e. The trapped electron density [the second term
in the right-hand side of Eq. (61)] is equal to zero at
x )x. The source term I in Eq. (60) consists of two parts:
the ionization by the fast electrons [Eq. (11)],which van-
ishes at x &x, and the ionization by the intermediate
plasma electrons Iz, which switches on at x )x (Fig. 9).
The FDS begins at the end of the fast-electron range R
(12) and ends at x =x.

In the main part of the NG and the FDS, the
Boltzmann term in Eq. (61) dominates, and Eq. (60)
reduces to the ambipolar diffusion equation (38). The
electric-field profile is given by E(x)=(T, /e)d(inn)/dx
This implies that the reversed field in the short discharge
rises monotonically towards the anode. To our mind,
this case corresponds to experiments [3]. The trapped-
electron density is maximum at the field-reversal point.
Since the main part of the source term in the kinetic
equation (18) for the intermediate electrons is localized at
x (x, their EDF (and density) is decreasing in the vi-
cinity of x . Consequently, the field-reversal point in the
low-pressure discharge is also shifted towards the anode
with respect to x . The reason for the slight displace-
ments of the field reversal towards the cathode, observed
in Ref. [3], is not clear.

In the long discharge, the reversed field falls off as x in-
creases, and the second field reversal occurs. In this case,
the recombination in the FDS is significant. If the
recombination on the chamber walls dominates, then
7 —A /D, . The trapped-electron density decreases with
the scale 1L„which is small compared to the
intermediate-electron-density variation scale Lz given by
Eq. (54} (see Fig. 9). In the vicinity of x =x, where Eq.
(38) is invalid, n "(x) can be approximated by a constant.
Neglecting the density variation, we obtain from Eq. (60)
that the potential profile here is parabolic,
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~, corresponds to the temperature of the intermediate
electrons. If their energy losses in the elastic collisions
are negligible, this value is of the order of c*. The
charged-particle lifetime ~, at x )x is considerably less
(-c.*/T, times) than w in the main part of the FDS
(which is determined by T, ).

In the region between x and x, the excitations are ab-
sent. The length of this part of the FDS with the direct
field is

'T
X —x =LF ln

7 c

n

n'"(x )

—1/2

&&LF . (63)

The field intensity at x =x is

E= x x
Pi ~e

A Te
ln

P~ ~e

nm

n "(X)

1/2

(64)

If this value is less than the field in the PC, E„then Eq.
(60), with n =n "(x), instead of formula (61), describes
the smooth field increase from E to E, . In the opposite
case, a field overshoot in the vicinity of x =x arises.
Such a phenomenon was also predicted in Ref. [22].

The small deviation of the trapped-electron tempera-
ture from the uniform value is of the order of
(T, —T, )lD/k, It is due to the nonuniformity of the
heating sources in Eq. (31). Since these sources are maxi-
mal at the NG-FDS boundary, the T, (x) profile in this
case is decreasing towards the anode.

The precise form of the FDS-PC transition depends on
the specific ionization and recombination processes. In
the ionization model, when the charged-particle genera-
tion is correlated with the excitation rate (as in the case
of stepwise ionization or when the ionization threshold is
close to the excitation threshold), the simple tnechanism
of standing-striation formation is possible. If the FDS
length is comparable with the energy-relaxation length k,
of the intermediate electrons, their energies in the vicini-
ty of the field-reversal point x are considerably less than
c'. The ionization process begins at some point x )x,
ends at x =xo (Fig. 9), and is periodic in eP, with a
period equal to E" [73]. Such spatially periodic plasma
sources lead to the periodic-field profile in the PC that
maintains the EDF periodicity in E;, owing to the mecha-
nism of the EDF bunching [73]. As a result, the spatially
periodic field profile and the EDF that is periodic in c.

maintain each another, and a stable periodic solution
arises [73]. A similar effect is possible even at LF «A,„
since the intermediate electron sources, Eqs. (26j and
(27), are nonuniform in the energy.

The distinction between the low- and high-pressure
cases can be clearly seen if we compare the results of
Refs. [6] and [74]. In Ref. [6], the numerical modeling
has been performed for an Ar discharge at p =0.6 Torr,

L =2 cm. The recombination and the ionization by the
plasma electrons, I2, were not included. Since the
energy-relaxation length in the elastic collisions, A,, & 10
cm, far exceeded the gap length, this case corresponds to
the short low-pressure discharge. In full accordance with
the aforesaid, one field reversal was found. Its position
was slightly shifted towards the anode with respect to the
density maximum; the anode potential fall was negative.

In Ref. [74], the experiment and modeling have been
performed for a discharge in H2 at p -20 Torr, L =2.0
cm. The energy-relaxation length, accounting only for
elastic losses, is, in this case, of the order of 0.03 cm (as
was stated above, the genuine value of A,, can be consider-

ably less). The diffusion length tD-QD, /a„n =0. 1 cm

(a„ is the recombination rate constant) far exceeded A, .

This case corresponds to the long high-pressure discharge
in our notation. In the modeling, the density decrease
(and the field-magnitude increase) from the cathode in the
FDS was found to occur on the scale of about 0.2 cm.
The transition to the PC was also clearly seen. The
anode fall was positive. All these facts were also ob-
served in the experiment. A rough estimate for the ratio
in Eq. (57) is of the order of unity. Accordingly, it was
observed that the reversed-field region occupied only a
small part of the FDS.

In numerous publications, the various forms of the
slow-electron energy-transport equation were analyzed.
Within the framework of our approach, such an equation
is extraneous. In the high-pressure case, the local ap-
proximation is valid: all the characteristics of the slow
electrons are defined by the local field. At low pressures,
the energy transport results in the isothermicity of the
trapped electrons. For the intermediate ones, a rigorous
kinetic analysis is necessary.

Since the electron energy and density values in the
NG-FDS-PC region vary by orders of magnitude, the
presented view is very rough, and various intermediate
situations are possible. The problem of energy transport
in these cases needs additional investigation.

V. CONCLUSION

A simple self-consistent analytic model of the glow-
discharge cathode region is suggested. It is demonstrated
that the kinetic analysis of the electron motion is neces-
sary for a correct description of the main characteristics
of the discharge. Analytic solutions of the kinetic equa-
tion for the fast and slow electrons are derived. Simple
expressions for the nonlocal ionization produced by the
fast electrons are presented. It is shown that the field-
reversal phenomenon is kinetic in origin, the criterion of
its existence is derived, and the positions of the field-
reversal points are estimated. The field overshoot on the
FDS-PC boundary is predicted and the mechanism of the
standing-striation formation is proposed.
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