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Universal power law observed in an exponentially growing particle system
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We generalize open random aggregating systems to the case of exponential growth of each aggregating
unit. A statistically stationary state is confirmed under the uniform injection both numerically and
theoretically. The steady-state mass distribution shows two different characteristic ranges: a small-mass

range where the random aggregating process dominates, and a large-mass range where exponential
growth rules the system. In both ranges, mass distributions follow power laws. In the large-mass range,
the distribution converging asymptotically to P(m ) o- m ' is observed universally.

PACS number(s): 05.40.+j, 05.70.Ln

Recently, critical behaviors found in far-from-
equilibrium open systems are attracting much attention
on the point that they are realized without tuning any
control parameter [1]. A successful attempt to model
this behavior is done by Bak and Tang in the models of
sandpile avalanches [2] and earthquakes [3]. In these
models the phenomena are represented by the threshold
dynamics based on the local conservation law and such
models became widely known under the name of self-
organized criticality.

On the other hand, open systems with nonthreshold
dynamics, such as floating aerosols, are also known to
realize critical behavior automatically and power-law dis-
tributions are commonly observed in such systems [4].
The basic processes of forming aerosols are diffusion and
aggregation of particles. If the system is closed, the num-
ber of clusters decays monotonically in the irreversible
aggregating process and the steady state will be a trivial
configuration in which all particles gather into one large
cluster. So the system is required to be open in order to
reach nontrivial steady states.

Steady distributions are observed in the systems of ran-
dom aggregation with continuous uniform injection of
small-mass particles. The steady-state mass distribution
follows a stable power law and it has been shown that the
system recovers the same distribution regardless of any
perturbation [5]. In that sense, we call this condition a
"statistically" steady state. The steady state is supported
by the balance of increasing the number of small particles
by injection and decreasing it by aggregation process. In
other words, if we single out a cluster of any size it grows
larger and larger by repeating coalescence„but the num-
ber of small clusters of given size is kept constant by new-

ly injected particles. Moreover, the cluster's aggregation
rate is controlled by the injection rate so that the power
law is always maintained.

Mean-field approaches to explain the steady distribu-
tions have been introduced by solving the Smoluchowski
equation and have succeeded in explaining the power-law
distributions [6]. A one-dimensional case is studied
rigorously by Takayasu and co-workers by analyzing a
model originally proposed by Scheidegger as a model of
rivers [5]. They use the technique of characteristic func-

tions to obtain the power-law mass distribution
P() m) ~m '~3. Also the stability of the steady state
with respect to an arbitrary initial condition and to any
statistically uniform injection is mathematically proved.

Let us consider the situation when an aggregation with
injection system has dissipation proportional to mass at
each time step. In such a case the mass distribution
shows a power law with an exponential decay at large
mass due to the dissipation. For smaller dissipation the
exponential decay becomes more gentle and for very
small dissipation the distribution looks practically the
same as in the case of nondissipated system. What will

happen to the mass distribution when the system has an
effect opposite to dissipation? Namely, we consider a
mass growing effect, i.e., the particle grows proportional
to its own mass at each time step. Does a stationary state
still exist? In this paper, we discuss the surprising fact
that a steady state exists even in such mass self-growing
systems. Now, let us introduce the detail of the model in
the case of one dimension.

We consider an aggregation process in one-dimensional
discretized space-time with a periodic boundary. In one
time step each particle jumps randomly either to the
right or left neighbor. If two particles happen to jump on
to the same site simultaneously, they immediately
coalesce into a single particle with mass equal to the sum
of the masses of the incident particles. In addition, we in-

ject a unit mass particle onto each site. At the end of
each time step operation, we multiply the total mass of
each site by 1+A, (A, ) 1).

A space-time configuration of particles trajectories is
shown in Fig. 1. The particles at the latest time step are
at the bottom of this figure. The pattern is similar to
branching trees covering the whole space-time. This
figure is formed by the random-walk process, although
both the structure of the branches and the mass self-

growing process contribute to the mass of each particle.
Figure 2 shows the cumulative mass distributions for

four different values of A, calculated by numerical simula-

tions using the same random numbers. It is done on 1000
sites for 4000 time steps. The distribution has two
characteristic ranges. In the small-mass range
(0(m ~ 2' ), the random aggregation process dominates
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FIG. 1. A space-time configuration of particles trajectories.
The thick branched line shows the history of aggregation pro-
cesses of a particle.
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over the mass self-growing effect and a power-law distri-
bution P( )m ) ~ m '~ appears to be independent of A, .
In the large-mass range (2' m, where m is dimension-
less) the mass self-growing effect rules over the system
and the distributions clearly depend on A, . Note that the
tail of this range is extraordinarily long (about 10' for
A. =0.01), and exponential decays caused by finite-size
effect are observed only at the very end of the tails.

The dotted line in Fig. 3 shows the numerical result of
the mass distribution for A, =0.01. The data are obtained
by taking average over ten realizations. It is clear that
the functional form of the distribution does not depend
on the number of maximum time steps. In this figure, we
have more manifest appearance of the large-mass range.
If we observe mass in relatively short scale, then it may
be regarded as a part of a power law. However, we can
tell that the tail is making a gradual curves on the log-log
plot, i.e., the tail does not follow a rigorous power law.

A theoretical explanation for this tail is given as fol-
lows. Let us estimate the mass of a particle whose trajec-
tory at time t is characterized by the height L with width

log zm

FIG. 3. Numerical results of the finite-time-step effects ob-
served in the cumulative mass distribution in the case of
A, =0.01. The stars are the theoretical results for the steady
state plotted as a comparison.

t=O t=O

When L » I/A, )& 1, Eq. (1) can be approximated as

m=e~ g w(t)e
t=O

As the summation can be proved to remain finite the
mass is estimated as

m ~e, L))1/A, .

This implies that the mass self-growing effect becomes
prominent for the particles having height L longer than
I /I, .

As for the particles satisfying L ~1/A, , we can treat
them simply as the random aggregating particles with in-
jection in one dimension. In this case the mass is given

w(t) as shown in Fig. 4. The mass m of the particle is
given by

L L
m = g w(t)(1+A, )'= g w(t)e"""+~'
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FIG. 2. Numerical results of the cumulative mass distribu-
tion for different k's.

FIG. 4. Definition of the lifetime L and width m(t) of a
particle's trajectory.
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by the summation of w (t), which equals to the area of the
branches in the space-time in Fig. 4. The relation be-
tween I and L is known from the problems of random
walk. Thinking of the first encounter of the two random
walkers starting from the same point, the area surround-
ed by the two trajectories in the space-time gives the area
of the branches because the edges of the branches can be
regarded as random walkers' trajectories [5]. As the
width of the branches is nearly proportional to L ', the
mass for a particle with L & I /A, is related to L as

10

m~L, L& 1/k. (4)

The inequality L &1/A, corresponds to the small-mass
range in Fig. 3 and L ))1/k corresponds to the large-
mass range. Namely, L=1/)(, gives the threshold of
these two characteristic ranges.

Figure 5 shows the relation between m and L for nu-
rnerical data of A, =0.01 simulated on 1000 sites with
4000 time steps. We can confirm the validity of Eq. (3)
for L »1/A, =100. The maximum value of L in the
figure is 4000, which is restricted by the maximum num-
ber of steps of the simulation. Ten realizations are plot-
ted on the figure yet we have practically no fluctuations.
For L ~1/X, evidently the exponential relation between
m and L is broken, which is consistent with our previous
discussions. By plotting the same data in log-log scale,
Eq. (4) has also been confirmed for small L.

Let us consider the size distribution of L. This distri-
bution is equivalent to the distribution of two random
walkers' first encounter time and is known to be given as
[7]

P( &L) ~L (5)

Note that the patterns of branching trees are independent
of the exponential growth, therefore L is independent of
A, . Equation (5) is confirmed numerically in Fig. 6, which
is obtained for the same situation as Fig. 5. It shows that

log 2L

Eq. (5}holds in the range 10 & L & 4000.
The distribution of m is obtained by assuming that L is

uniquely determined for a given m by a monotonous
function L (m }. Then we have the following relation:

P(&m)=P[&L(m}] . (6)

From Eqs. (3), (5), and (6), and Eqs. (4), (5), and (6), we

get, respectively,

P( &m) ~A, ' (inm) ', L &&1/A, ,

P(&m) ~m ', L &1/i, .

(7)

(8)

Differentiating Eqs. (7) and (8) with respect to m, we ob-
tain

FIG. 6. The cumulative size distribution of L for one-
dimensional case. The slope is close to the theoretical value
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P(m) ~ —(inrn )
~

A, '~, L &&1/A, ,

P(m) ~m ~, L &1/A, . (10)
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FIG. 5. Mass m vs lifetime L in semilogarithmic scale for
one-dimensional case. The slope for large L fits nicely to the
theoretical estimation A, /ln2 (A, =0.01).

In the limit of m-+ ~, Eq. (9) behaves as P(m) ~1/m,
which is often called the Zipfs law [8].

The stars plotted in Fig. 3 are the theoretical values ob-
tained from Eqs. (7) and (8) with an appropriate choice of
the proportional constants. It shows a good fit with nu-
merical results.

Now we discuss the case of mean field. Let us figure
the system with all sites connected to each other directly
so that a particle on an arbitrary site can jump to any
site, even to itself, in one time step. As in the case of one
dimension, merged particles and injected unit particles on
a site are combined to form a new particle with mass con-
served at every time step. In the case without the mass
self-growing process, the mass distribution is known to
form a stable power law P ( & m) ~ m '~, like in the case
of one dimension but with a different exponent. Then let
us take into account the mass self-growing effect. Equa-
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FIG. 7. Mass m vs lifetime L in the semilogarithmic scale for
the mean-field case.

FIG. 8. The cumulative size distribution of L for the mean-

field case. The slope is —1 as is estimated theoretically.

P( &L)~L (12)

tion (3) holds again as we have seen in Fig. 7. The nu-

merical results shown in Fig. 7 are obtained for the same
condition as in Fig. 5; the system size is 1000, the max-
imum number of time steps is 4000, A, =0.01, and ten
realizations are plotted without taking an average.

In the mean-field case we cannot apply the results from
the random-walk problem but we can directly derive an
equation for P( &L) (see Fig. 8}. The following are the
processes contributing to the probability of having a par-
ticle with a lifetime longer than L,P( & L) at step t. Con-
sider a particle having a lifetime longer than L —1 at step
t —1. Both in the case when it aggregates with particles
having lifetimes smaller than L —1 and when it is not in-
volved in any aggregation, it produces a particle of life-
time longer than L in the next time step. But if two or
more particles having the lifetime longer than L —1 at
time t —1 combine together to form a heavy particle at
time t, then the probability P( &L, t) decreases. There-
fore the equation for the probability P ( & L, t) is given as

P( &L, t)=P( &L —l, t —1)—P( &L —l, t —1), (ll)

where higher-order terms are neglected. The stationary
solution of Eq. (11) is obtained by taking continuum limit
with respect to L as

P(trt) ~ttt, L (I/t(, . (14)

P (X)~ —(lnX) 3,
X

This simple mechanism can be proposed as a model for
the systems having long tails satisfying Zipf's law X ' in
various fields of science. Concerning the model intro-
duced in this paper, the diffusion and aggregation pro-
cesses of particles are not so essential to the universality
of P(X) 0-X ', but the exponential growth and the
power-law distribution of P(Y) play an important role.
An application of this model to ecological systems is now
under consideration. In that case, we consider X as a
population of a colony and Y as its lifetime.

Again we have P (m) ~ I /trt in the limit of rn ~ ae.
Our results for one-dimension and for the mean-field

case indicate that the asymptotic behavior of the mass
distribution converging to 1/m may be universal in the
exponentially growing particle system. The mechanism
of having such a universality can be summarized as fol-
lows. Imagine an exponentially growing variable X;
X ~ exp(A, Y), where the characterizing variable Y has a
probability distribution in the form of power law

P( Y) 0- Y . In the same way as we derive Eqs. (9) and

(13), the probability density for X is shown to become

P(m}~ —(lnm) A. , L &&I/A, , (13)

From Eqs. (3), (6), and (12), we obtain the probability
density as
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