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Heating of solid targets by subpicosecond laser pulses
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Scaling laws for plasma temperature, thickness of the heated region, and other important plasma pa-
rameters are discussed for high-intensity subpicosecond laser plasma interactions with solid targets.
Effects of inhibited heat fluxes are taken into account following recent formulations of the nonlocal
thermal transport theories. It is shown that for constant laser intensities in excess of 10' W/cm, i.e., in
the anomalous skin-effect regime, plasma temperature increases much faster and to higher values for the
inhibited thermal conductivity as compared to heating rates with the classical thermal transport. It it
also shown, however, that the dynamical evolution of the heating process is primarily influenced by the
time evolution of the laser intensity, which on the scale of ultrashort laser pulses makes the evolution of
a plasma temperature almost identical for the classical and inhibited thermal transports.

PACS number(s): 52.50.Jm, 52.25.Fi

I. INTRODUCTION

The rapid progress in technology of short-pulse, high-
intensity laser systems has led to many new applications
in different areas, such as material sciences, development
of x-ray sources, harmonic generation in ultraviolet light,
and even in laser-induced nuclear reactions (cf. Ref. [I]
for a recent review on these subjects). One of the main
distinct characteristics of laser-plasma interaction pro-
cesses on the subpicosecond scale is almost the entire lack
of hydrodynamical evolution during the pulse duration.
Therefore, for solid targets the laser energy can be direct-
ly deposited in the overdense plasma at solid densities,
where the plasma temperature is defined by the balance
between laser energy absorption in a skin layer, plasma
heating, and thermal transport into cold and dense ma-
terial.

In our previous study [2], we derived an analytical
model for the ultrashort-pulse absorption in p1asmas with
a steplike density profile due to normal and anomalous
skin effects. We have modeled a thermal transport by the
classical Spitzer conductivity. The latter is only the
first-order approximation, especially for the high laser in-
tensities, when the characteristic dimensions of the heat
wave are comparable with the electron collisional mean
free path. It has also been shown in recent experiments
[3—6] and by means of numerical Fokker-Planck calcula-
tions [7,8,3] that for laser intensities Ip in the range of
10' —10' W/cm and higher, the classical description of
a thermal conductivity as a diffusion process is inade-
quate and one needs to include nonlocal kinetic effects.

In our present study we describe the model in which
absorption of electromagnetic energy is balanced by the
nonlocal thermal conductivity, as recently proposed by
Epperlein and Short [9]. We discuss an alternative ab-
sorption coefficient and different scaling laws for impor-
tant plasma parameters derived from the nonlocal
thermal transport theory and compare them to our previ-
ous results [2] derived for the classical transport theory.
Our formulation based on the Epperlein and Short model

[9] includes both classical and inhibited thermal fluxes.
The importance of the inhibited thermal conductivity be-
comes apparent during initial plasma evolution, when the
temperature increases much more rapidly as compared to
previous predictions [2] based on the Spitzer model. Our
scaling laws compare well with the Fokker-Planck calcu-
lations. The effect of realistic intensity variations during
the pulse duration on the temporal evolution of plasma
temperature will also be discussed.

II. FORMULATION OF A HEATING MODEL
WITH NONLOCAL HEAT FLOW

The starting point of our theory is the equation for
electron temperature T, (z, t)

where the electron plasma density n, is homogeneous in
the half space (z )0). The frequency cop of the short laser
pulse interacting with solid density plasma is much sma11-
er than the electron plasma frequency. Electron density

n, satisfies the relation n, &&n„where n, =m, mp/4~e is2 2

the critical density. Because the skin layer thickness is
usually much smaller than the depth of a heated plasma
region, we can consider the laser energy absorption in a
plasma as a surface effect, which can be accounted for by
the following boundary condition:

q (z =0, t)—:qp(t): AIp (2)

e
~sH ~sH' e

where ~sH=8(2/m. ) /Ze m,' A, Ze is the ion charge,

where Ip is a laser intensity at z =0 and the absorption
coefficient A is a function of temperature at the boundary
T(z =O, t)—= Tp(t) and therefore it implicitly depends on
time.

The classical expression for the heat flux reads (SH
denotes Spitzer-Harm)
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and A is the Coulomb logarithm. This expression is valid
for temperature profiles varying on the scale length
longer than hundred electron mean free paths [10], and
has been used before in description of subpicosecond
laser target heating [2,6]. Our previous analysis [2], how-
ever, predicted temperature variations on a much shorter
scale. Therefore we shall introduce in the present study
an integral representation of the heat flux, which follows
the formulations described before in Refs. [10,11,9],

q(z, t)= f dz'G(z, z', t}qsH(z', t), (4)

reproducing the Spitzer-Harm expression (3) in the classi-
cal limit. However, expression (4) can also properly ac-
count for the kinetic effects in the regime where the elec-
tron mean free path is comparable with the scale of the
temperature gradient. The kernel 6 in (4) will be approx-
imated by the formula recently proposed by Epperlein
and Short [9], i.e.,

16 (z,z', t)=, [
—sin8 si8 —cos8 Ci8],

naA, , (z')

where si and Ci are integral trigonometric functions [12],
A,, =T, /4m. n, e (Z+1)' A is the electron mean free
path, and for our case of constant homogeneous density
n, =const(z &0) argument 8= ~z

—z'~ I ak,,(z'). The nu-

merical constant a =50, found in Ref. [9],corresponds to
values of the heat flux (4), which compare well with the
results of Fokker-Planck calculations.

The important parameters describing laser light ab-
sorption and evolution of a solid target plasma are the
electron temperature at the boundary To(t) and the
depth of a heat wave zf(t). We shall find the approxi-
mate behavior of these parameters froin Eqs. (1)—(5).
Later, we will also show that the temporal evolution of
To(t} and zf(t) depends very weakly on the actual spatial
distribution of the temperature inside a plasma. There-
fore we can assume the following form of a temperature
profile:

T, (z, t) = To(t)rt(zlzf(t)),

where g is a monotonically decreasing function, satisfy-
ing iI(0)=1 and rt( ~)=0, and zf(t) is the penetration
depth of a heat wave. After integrating Eq. (1) with
respect to spatial variable z, one obtains the following
equation for T0 and zf ..

d = 2
(Tozf ) = —qo(t)

dt 3b, n,
(7)

where b, = f o i)(g)dg is the constant of order unity that
can be treated as a free parameter of our theory.

In order to close the system of Eqs. (2} and (7} one
needs to express the heat flux qo(t) (4) in terms of To and
zf. For small values of the temperature gradient
(zf && a A., ), i.e., when T, changes on the scale much
longer than the scale of variations of the kernel 6 (5) in
Eq. (4), one obtains a classical heat flux from Eq. (4). Cal-
culating its value at the boundary z =0 with the help of
Eq. (6), one obtains

&sHTo" (t}
qo(t)= —', b3

irzf i

where

(8)

b3 =— f d 8[sin8 si8+cos8 Ci8]
3 dn oo

2dg~oo
= —3~ dn

4 dg

is the numerical constant. The plasma evolution for the
case of classical thermal conductivity has been analyzed
in our previous paper [2], where the regime of validity
was restricted to relatively low laser intensities. Our
present analysis includes also the opposite situation of
higher intensities and hotter plasma when zf (a i,, and a
scale length of temperature variations is shorter or com-
parable with that of kernel G. For zf &(ak, we can use
an asymptotic expression for 6 (5) in the limit of

~ 8~ && 1

6(z =O, g;t}= z
ln

1

m.ah, ,orat (g}

al, ,oil (g)

zf (C

where g=z'/zf(t), A,,o is the electron mean free path for
temperature T, =TO and C =0.577 is the Euler's con-
stant. Substitution of the asymptotic form of 6 and the
expression for the classical heat flux (3) into Eq. (4) and
integration with respect to g result in the following form
of the heat flux:

itsHT0 (t} a~ 0(t}
qo(t) =— ln b2

3 naA. „(t} ' zf(t}
(9)

Equation (9) is a convenient analytical approximation to
the expression (4) valid in the limit of zf «aA, ,O and it
will be used later to obtain scaling laws and analytical es-
timates. For practical applications, however, one also
needs expression for the heat flux that is valid in the in-
termediate regime of zf -a A.,D as well. We have calculat-
ed numerically the integral in Eq. (4) with the kernel 6
defined by (5) assuming various shapes of the temperature
profile il (6). The results can be represented by the fol-
lowing expression:

2 ~SHTt
qo(t) =—

3 era A.,o(t}
zf (t)

a A,,o(t)
(10)

where, in principle, the function V depends on the partic-
ular choice of i). The function V has an asymptotic be-
havior corresponding to Eq. (9) for small values of the ar-
gument and for large arguments it gives the classical ex-
pression (8}. As one can see from Fig. 1 the relatively
simple logarithmic function

bz(1+x )+x(1+b2b3)
P(x) = ln

x (1+b2x)

where the numerical coefficient b2 —1 comes from in-
tegration of Eq. (4} over the heat wave thickness

b2 =exp ——f d(7)'~ ln
3 oo Gf

2

2 o dg Cg
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can very well approximate results of the numerical in-
tegration of Eq. (4) for arguments in a domain of practi-
cal interest x (2. Figure 1 shows comparison between
V(x) (11) and the results of numerical integration of Eq.
(4) for?)(g) =(1+() . We have also tried several other
functions g that are equally well approximated by expres-
sion (11).

We will proceed with numerical integration of Eqs. (2),
(7), and (10) to find the electron temperature and the ab-
sorption coefficient later in the paper. First, however, we
shall analyze the approximate expression for the heat flux
(9), which is valid for the strongly inhibited thermal
transport when zf «aA, Comparing Eq. (9) with the
expression for the classical heat flux Eq. (8) one finds an
electron mean free path in the denominator of Eq. (9) re-
placing the actual temperature scale length in the classi-
cal thermal flux (8). This difference is responsible for the
weak logarithmic dependence of qo (9) on zf and also for
the much weaker dependence on time of the temperature
Tp as compared to time variations of zf. Assuming that
the time derivative in the left-hand side of Eq. (7) acts
only on the function zf(t) and taking constant in time
laser intensity in Eq. (2) we derive an approximate expres-
sion for the depth of a heating front

tron temperature. For this reason we will neglect them
altogether in the analytical expressions below [Eqs.
(16)—(21)], taking b, =b? = 1.

Nonlocal heat flow in the regime of the anomalous skin erat'ect

We will derive an explicit expression for the absorption
coefficient 3, assuming that the plasma temperature is al-
ready high enough and the laser light absorption takes
place in the regime of the anomalous skin effect, i.e., for

coo/egg & UT/c =( To/me ) (14)

In this case, the expression of the absorption coefficient at
the normal laser incidence has been derived before (cf.
Ref. [2])

3 =1.4
' 1/3

Ct)p V y

Q) C
p

(15)

and it scales as Tp
Using formula (15) for the absorption coefficient and

solving Eq. (13) with the time-independent laser intensity
Ip we obtain the following scaling law:

(16)

(12)

Substitution of this formula into Eqs. (2) and (9) leads to
the equation for the plasma surface temperature

KsH To 3ab? b? n, Tok, ( To )
A (To)ID=- in

3 n.a A,, (TO) 2A(To)Iot

(13)

where the characteristic plasma temperature
- 3/4

T =40mc Z
cop Ip (17)

p
P'

depends on the laser intensity (I„=mn, c 3

=2.7X10' A, Wpm /cm is the parameter describing
relativistic laser flux) and the plasma density. The
characteristic time scale related to an inhibited heat
transport

The coefficients b i and b2, containing information about
the exact shape of the heat wave, appear in Eq. (13) only
in the argument of the logarithmic function and therefore
they have very small effect on our calculations of the elec-

t„=9nan, A, , (T., )/4KsHT, (18)
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FIG. 1. Plot of the function V (11) (b&=0.66, b3=3.03)
(solid line), compared with the results of numerical integration
of Eq. (4) for the test temperature profile function

?)(g)= ( & +g)
' (dots).

FIG. 2. Time evolution of electron temperature obtained
from the solutions of Eqs. (2), (7), (10), and (15) for the constant
laser intensity, in the anomalous skin-effect regime with the in-

hibited heat flux (solid curve). For comparison we also show

temperature evolution with the classical heat flux (dashed line).
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is approximately a =50 times longer than the electron-
ion collision time. Formulas (12) and (16)—(18) describe
also the propagation of a heat wave

r

(19)

0.6.

0 ~
5.

where z~ =ah, , ( T, ). The thickness of a heated region in-

creases approximately linearly with time and corresponds
to nearly collisionless propagation of heated electrons
from the boundary into the plasma.

Expressions (16)—(19) constitute important results of
this study. They predict very fast temperature growth
during the initial stage of interaction dominated by the
inhibited thermal transport. The region of their applica-
bility, however, is restricted to very short times of the or-
der of t ((t, . For longer times we have used the inter-
polation formula (10) and we have solved Eqs. (2) and (7)
numerically. The results are illustrated in Fig. 2, where
the temporal dependence of the plasma temperature has
been shown for the time-independent laser intensity. As
one can see after initial rapid increase, the temperature
growth levels off at approximately t-0. 1t, . Also com-
parison with the temperature evolution for the classical
thermal flux (dashed curve in Fig. 2) shows, as expected,
faster temperature growth for the inhibited heat Auxes.
Plots shown in Fig. 2 have been obtained with the
simplified assumption about the spatial temperature
profile g (6), i.e. , by taking b, =b2=b3=1 in Eqs. (10)
and (11). We have repeated this analysis with different
functions q, finding each time similar results for the tem-
perature and its temporal dependence. As we already no-
ticed before, the actual form of the temperature profile
has small effect on the evolution plasma parameters.

The fast time response of the plasma temperature
shown in Fig. 2 for the constant laser intensity suggests
that in a more realistic situation of the time varying laser
intensity, a time evolution of the temperature will closely
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FIG. 4. Time dependence of the plasma temperature ob-
tained from the solutions of Eqs. (2), (7), (10), and (15) for the
laser pulse (20) with the time duration ~0=0. 1t» (solid line).
The dashed curve shows results obtained for the same parame-
ters but with the classical heat flux.

Io( t) =Io [sin(m. t /ro) ] (20)

The results are shown in Figs. 3 and 4 for different dura-
tions of a laser pulse ~0=0.3t, and so=0. 1t„respective-
ly. As in Fig. 2 we have also shown, for comparison, re-
sults obtained for the classical heat flux (dashed curves).
As expected, temperature follows very closely time evolu-
tion of the laser pulse and reaches zero values of the van-
ishing laser intensity. Also finite extent and time varia-
tion of the laser pulse result in evolutions of electron tem-
perature, which are almost identical for the classical and
inhibited thermal conductivities.

follow variations of a laser pulse. We have solved again
Eqs. (2), (7), and (10) assuming time-dependent laser pulse
of the following form:

0, 7. III. DISCUSSION AND CONCLUSIONS

0.6.

0.5.

0.4.

To summarize our results for the anomalous skin effect
we mill express them in dimensional units, i.e., tempera-
ture in keV, length in pm, and time in ps. Taking the
Coulomb logarithm A=5, assuming the solid-state densi-
ty for ions n, =6X 10 cm and n, =Zn;, we have

0.2-

T = 16Z A.
' I kev

t =90Z A. I s,ps, (21)

0.1-

I I. . . . I I
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FICs. 3. Time dependence of the plasma temperature ob-
tained from the solutions of Eqs. (2), (7), (10), and (15) for the
laser pulse (20) with the time duration zo=0. 3t» (solid line).
The dashed curve shows results obtained for the same parame-
ters but with the classical heat flux.

A» =0.7Z '
A. I' (22)

depends mainly on Z and laser wavelength but only very

103Z —11/4g —1I3/2 pm,
where A, is the laser wavelength expressed in microns and
I =Io X 10 ' W/cm is the normalized laser intensity.
The absorption coefficient (15) exhibits very weak time
dependence A = A, ln '~ (t„/t) for t &&0.1t„and the
characteristic value
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weakly on the laser intensity. Expressions (21) and (22)
approximate reasonably well plasma parameters for
t (t, and for longer times asymptotic behavior of plas-
ma parameters has been derived for the classical heat Aux
and is given in Ref. [2] [cf. Eq. (66) in [2] ].

Expressions (21) predict reasonable values for plasma
parameters. Taking as a typical example laser intensity
Io =10' W/cm, wavelength A, =0.5 pm, and Z =10 we
obtain from Eqs. (21) and (22) T, =5.4 keV, z, = 18 lcm,
and A, =9%. The characteristic time t„=2.3 ps is
longer than the duration of the present ultrashort-laser
pulses [1,3,4,5], and as we will see below, the real limita-
tion on the extent of the anomalous skin-effect regime is
given by the time of hydrodynamical expansion. These
numerical values are also in good agreement with the re-
sults of Fokker-Planck simulations of the dense plasma
heating presented in Ref. [7].

The characteristic time t, is of order of the collision
time, which is much longer than the laser period. There-
fore studying absorption processes on the scale of t ( t,
we could neglect collisions and account only for the
anomalous skin effect. At the same time the inequality
(14) is only marginally satisfied and coo/co —Ur/c. This
means that mainly thermal electrons participate in the
laser light absorption and formula (15) may underesti-
mate the value of the absorption coefficient. On the other
hand more accurate description of the absorption process
requires detailed information about the distribution func-
tion of heated electrons, which is out of the scope of our
simple analytical theory.

The region of applicability of our results, in particular
of the expressions obtained for the anomalous skin effect,
is defined by the characteristic time scale t, , which is
longer than the laser pulse duration 70 and shorter than
the time r;,„of the hydrodynamical expansion. The first
condition defines the minimum laser intensity corre-

sponding to the collisionless absorption process

Io Z ~ok. X 10' W/cm

As before, the pulse duration ~o is expressed in pi-
coseconds and wavelength k in micrometers. The second
restriction, related to ion motion, defines the upper limit
on the laser pulse duration. According to our previous
study [2], the hydrodynamic expansion becomes impor-
tant when the plasma inhomogeneity scale length
L =(zT, /AmH )' t, where A is the atomic mass number
and mH is the mass of a hydrogen atom, equals to the
plasma skin length. Using Eqs. (21) one can find that the
hydrodynamic motion can be neglected if

0 17$ "~ Z ' s

This is the most severe restriction of our theory, derived
for the steplike density profile. For longer pulses the ab-
sorbing region shifts from overdense plasma toward criti-
cal density with the corresponding change in the absorp-
tion mechanism. Instead of collisionless effects discussed
above inverse Bremsstrahlung absorption becomes more
important. Also the amplitude of the laser electric field
in the absorption region increases and may lead to vari-
ous nonlinear effects. These new effects related to the
finite density gradient may still be included in the
theoretical approach outlined in this paper for the step-
like density profile by changing an effective absorption
coefficient.
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