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We present a theory of branched growth processes, notably diffusion-limited aggregation (DLA). Us-
ing a simple model of the dynamics of screening of competing branches, we compute statistics of the
growth probability distribution. These statistics are multifractal only for stochastic models. Applying
this general approach to diffusion-limited aggregation, we obtain results for the dimension D of a DLA
cluster that are extremely close to the Muthukumar formula, D =(d*+1)/(d +1), in spatial dimen-
sionality d [Phys. Rev. Lett. 50, 839 (1983)]. This formula is believed to be accurate for DLA clusters in
dimensions d >2. The maximum growth probability of the cluster scales as p,,, ~ 7!~ 2, with r the clus-
ter radius, as predicted by Turkevich and Scher [Phys. Rev. Lett. 55, 1026 (1985); Phys. Rev. A 33, 786
(1986)]. We also discuss the scaling of the minimum growth probability, the behavior of nonstochastic
models, and possible approaches to direct computation of the screening dynamics. Our results are in
good qualitative, and in some cases good quantitative, agreement with numerical studies of the screening

dynamics.

PACS number(s): 68.70.+w, 64.60.Ak, 05.20.—y

I. INTRODUCTION

Over ten years ago, Witten and Sander discovered that
diffusion-limited aggregation (DLA) leads to highly
branched, fractal structures [1]. Although some theoreti-
cal progress has been made, many properties of these
structures remain mysterious. In this study, we will ana-
lyze the growth of branched structures through a method
that stresses the hierarchical structure of the branching
process. This method leads to surprisingly good esti-
mates of the fractal dimensions of diffusion-limited aggre-
gates in various spatial dimensionalities. However, our
principal interest is in the light that this approach may
shed on the qualitative nature of the scaling structure,
not only of diffusion-limited aggregates, but also of the
more general branched structures which seem to be ubi-
quitous, not only in model calculations, but also in na-
ture.

In its simplest form, diffusion-limited aggregation is a
model for cluster formation in which particles arrive
sequentially at a cluster surface and stick irreversibly.
Before a particle strikes a cluster, it performs a random
walk; particles are generally released (or created) at a
large distance from the cluster, in order to simulate ar-
rival of the particles from infinity. The n + Ist particle is

TABLE I. The cluster dimension D as a function of spatial
dimensionality d for diffusion-limited aggregation, as obtained
by numerical simulation in Ref. [3]. For d > 5, the numerical
results are not reliable.

d D
2 1.71
3 249
4 3.40
5 4.33

introduced into the system only after the nth particle has
contacted, and stuck to, the cluster.

A two-dimensional off-lattice result with 34000 parti-
cles is displayed in Fig. 1. The highly branched nature of
the cluster is immediately evident. Less obvious is the
fact that the cluster is a fractal. Let us define a radius r
(radius of gyration) of the cluster by

n
ri= 3 (r;—ry)l/n, (1.1)
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FIG. 1. A two-dimensional diffusion-limited aggregate of
34000 particles. The structure is highly branched. In addition,
it is fractal: there exist empty spaces in the structure on all
length scales.
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with n the number of particles, r; the position of the ith
particle, and r, the position of the seed particle. For par-

ticles of diameter a, one finds that n ~(r/a) é. For two-
dimensional clusters, D, =~1.71. Results for D, in higher
dimensionalities are displayed in Table I [2,3]. Since
D, <d, the spatial dimensionality, the asymptotic density
of the clusters is zero. This is reflected in the fact that in
Fig. 1, holes appear in the cluster on every length scale,
the larger the cluster, the larger the proportion of the re-
gion occupied by the cluster that is covered by such
holes.

Given the apparent self-similarity of the cluster in Fig.
1, a natural approach is to attempt some sort of real-
space renormalization-group analysis. A number of
workers have proposed such methods [4,5]; special note
should be taken of the “fixed scale transformation” of
Pietronero, Erzan, and Evertsz [6]. Generally these
methods succeed in finding values for D, in the two-
dimensional case that are within 5% of the computation-
al result. These methods are based on the idea that the
geometry of the cluster should in some sense reflect a
fixed point in the renormalization group.

Another approach has been to develop Flory type
theories for the dimension based on the interaction be-
tween a random walker and a rough surface. One of the
earliest such proposals was that of Muthukumar, who
suggested a formula for the dimension [7]

_d*+1
¢ d+1

These proposals are somewhat controversial; the conser-
vatively minded will prefer to view Eq. (1.2) as a phenom-
enological formula for Dg. Of course, such theories do
not make any specific predictions regarding cluster struc-
ture beyond the value of D, and possibly the multifractal
dimensions (see below) [8].

Yet a third approach is based on the study of the sta-
tistical properties of the growth probability distribution.
If one takes an n-particle cluster, one can define the
growth probability measure on the accessible surface of
that cluster, which is simply the probability that the
n -+ 1st particle will attach itself to the surface at any par-
ticular point. If one defines p; as the probability that the
n + 1st particle will attach itself to the ith surface particle
of the cluster, then

(1.2)

mq)

a0 (1.3)

r
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where 7(q) is a nontrivial function of g [9]. One often
works with the Legendre transform of 7(q), a function
f (a) satisfying the following relations [10]:
—4drlg) - _ ar _
alq) dg flg)=qalq)—1(q), do
The functions 7(q) and f(a) have been computed for
DLA clusters by a number of groups [11-14].
Beyond their phenomenological usefulness, these func-
tions, which encode the “multifractal” statistical proper-
ties of the growth probability distribution, satisfy certain

(1.4)
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scaling relations, which follow from the nature of
diffusive growth. The first of these, proposed by Turke-
vich and Scher, is that [15]

D,>1+a (1.5)

min >

where a;, is the minimum value of a appearing in the
spectrum; it is easily shown from Egs. (1.4) that
QAmin=lim,_, ,d7/dq. [Turkevich and Scher actually
proposed Eq. (1.5) as an equality.]

The growth probability measure can be shown to be
proportional to the normal electric field [P(s), where s
indexes position on the cluster surface] at the surface of
the cluster given that the cluster is at potential zero and
some distant conductor is at a fixed nonzero potential.
Another scaling law can be derived from the following
formula for the moments of P (s), which follows from ele-
mentary electrostatic considerations [16]:

2 fas o) (TED)

(1.6)

Here the brackets ) refer to averaging over the ensem-
ble of DLA clusters. If one replaces the average of a ra-
tio on the right-hand side of this expression by a ratio of
the averages, one obtains the following scaling law:

D,=7(3)+2—d .

g (1.7)

The appearance of averages of moments of the growth
probability distribution over the ensemble of DLA clus-
ters introduces the question of how this averaging might
best be performed. By analogy with statistical mechan-
ics, one can define two possible averaging procedures,
quenched and annealed averaging, and their correspond-
ing functions 7(q), by [17]

) <]n [gp;ip

n(r/a) (1.8a)

ln< gp,-">

Ta(q):-‘m . (1.8b)

Although in some ways 7,(g) appears to be a more nat-
ural quantity, it is very sensitive to unusual members of
the ensemble with eccentric distributions of the {p;} [18].
As with the statistical mechanics of systems with
quenched disorder, we thus expect 7,(gq) to be more
relevant for typical members of the ensemble. For small
values of g, one expects 7,(q)=~7,(q), but for larger
values of g significant deviations are possible. Often one
finds negative values of f(a) for annealed averaging
(analogous to negative entropy in statistical mechanics)
[19]. The scaling laws above are quite accurate for the
quenched dimensions that have been computed numeri-
cally; whether they hold for the annealed dimensions is
uncertain. Direct computation of the annealed dimen-
sions, because they are sensitive to rare members of the
ensemble, can only be done by exact enumeration of all
DLA clusters of a particular size. This was done by Lee
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and Stanley [18,20]; however, their results are for very
small clusters and are probably not quantitatively reli-
able.

Another scaling law refers to the “information dimen-
sion” of the measure, which is D,=d7'(q)/dq|q=1.
Makarov has proven that for d =2, D; =1 for probability
measures proportional to the normal electric field under
quite general conditions [21]. It has also been hy-
pothesized that D;,=d —1 for general dimensionality
[22].

For the purposes of this study, it is useful to define the
multifractal dimensions in a slightly different way. We
consider all clusters with a fixed number of particles n,
and consider the scaling of moments of {p;} with n. In
this way we define functions o,(q) and 0,(q) by

(i [301])

o,lqg)=— nn (1.9a)
and
1n< Zp,f’)
o,(lg)=— nn , (1.9b)

analogously to Egs. (1.8a) and (1.8b). For the quenched
dimensions, one expects o,(q)=7,(q)/Dy, where
Dy=—1,(0) is the dimension of the cluster surface.
Naively, one would expect D, = D,, but this equality is in
fact a matter of some controversy. Argoul et al. have
claimed that direct computation of the surface dimension
in d =2 through box-counting techniques yields values of
Dy=~1.60 that are significantly less than D, ~1.71 [23];
however, these efforts have been criticized on grounds
that they incorrectly handle logarithmic corrections [24].

Of course, for the annealed dimensions the situation
might be even more confusing. In this paper, we will as-
sume the formula o,(q)=7,(q)/D, ,, with D, , the an-
nealed surface dimension. We hope that this does not in-
troduce appreciable inaccuracies into our results.

Discussion of this somewhat bewildering menagerie of
dimensions is, unfortunately, necessary for us. This is be-
cause, in our theory, we can conveniently compute only
o,(q), which we then wish to compare to numerical re-
sults for Tq(q). Although, as the reader will see, the re-
sults are quite close (for small values of ¢), we do not
know if the remaining discrepancies are due to inadequa-
cies of our theory, or are due to differences between
quenched and annealed dimensions. If DLA is analogous
to other statistical systems, all such fluctuation effects are
less important in higher dimensions, and we do obtain
better results for 3=<d <5 than for d =2. For d > 5, the
literature values for Dg have rather large error bars, and
we can only make qualitative judgements regarding the
success of our approach.

Our model is based on two quite general features of
DLA growth. As these features are observed in other
types of growth as well, we believe that our approach will
be useful in other growth problems. The first relevant
feature of DLA growth is that it exhibits continuous tip
splitting, so that local parts of the cluster consist of linear
chains of particles that then split in two. Splitting of a
growing tip into more than two tips is a rare process, seen
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only in the very early stages of growth.

The second relevant feature is that branches compete
with one another for growth probability on all length
scales. This process leads to the existence of dead
branches, which have lost this competition, on all length
scales. Furthermore, the branches compete for a
diffusing field, which has no intrinsic length scale. Thus
we expect that, in some sense, the dynamics of this strug-
gle will be the same for two rather small branches com-
peting against one another and for two quite large
branches in competition.

Based on these two observations alone, we construct a
general framework for hierarchical, competitive
branched growth [25]. This framework has the property
that for stochastic processes, it leads naturally to mul-
tifractal growth probability statistics without any further
assumptions. The multifractal dimensions are calculable
from an integral. For nonstochastic processes, multifrac-
tional statistics are not possible. This framework differs
from the “conventional wisdom” regarding fractal
growth in two respects. In the first place, the dynamics is
dominated not by a stable fixed point (as in the real-space
renormalization methods), but by an unstable fixed point.
It is the escape of the system from this unstable fixed
point at all length scales which, combined with stochasti-
city, leads to multifractal statistics. In the second place,
the system is not self-similar in any simple way; in partic-
ular, the statistics of branch sizes in slowly growing re-
gions of the cluster explicitly differ from these statistics in
quickly growing regions of the cluster [26].

To make quantitative predictions, we must introduce a
specific model of the competition dynamics of branches.
It is possible to construct such models from physical ar-
guments regarding the extent to which different branches
will succeed in monopolizing a diffusing field, indeed,
such a model is discussed in Appendix A. However, we
prefer a more robust and less elaborate approach (model
Z), in which we make the simplest possible assumption
for these dynamics consistent with the principles outlined
above. In Ref. [27], an alternate approach, based on
screening in real and not hierarchical space, is proposed.

Using this ansatz, we self-consistently compute the di-
mension of DLA clusters as a function of spatial dimen-
sionality d, assuming implicitly that D, =D, =D. We ob-
tain D =1.66 for d =2, and D =2.50 for d =3. As
d —1, we find D — 1; we always have d —1 <D <d, as re-
quired by exact results. As d — o, D—d —1. Values of
D for various dimensions d are displayed in Table II.

TABLE II. A comparison of simulation results of the dimen-
sion D of diffusion-limited aggregates with the results of our
model Z and with the Muthukumar formula, Eq. (1.2). The
model Z results are within a few tenths of a percent of the
Muthukumar formula over the entire range 1 <d < «.

d Dsimulation DModel z DMu|hukumar
2 1.71 1.66 1.67
3 2.49 2.50 2.50
4 3.40 3.40 3.40
5 4.33 4.33 4.33
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Our results are extremely close to but are not exactly
equal to the Muthukumar formula, Eq. (1.2).

It is also possible to compute the other multifractal di-
mensions 7(q), subject to the restrictions mentioned
above. Here significant deviations are seen at large g
from the simulation results; we believe this is a conse-
quence of the difference between annealed and quenched
dimensions.

We also discuss the scaling of the maximum growth
probability p_ .. for typical members of the ensemble of
clusters. We find that a simple mean-field type averaging
procedureﬁlleads to the Turkevich-Scher hypothesis,
Pmax~n? 1. The computation of the minimum
growth probability is more difficult. No competition dy-
namics model will give universal values of annealed di-
mensions for g <O0; this agrees with the results of Lee and
Stanley [18]. The typical minimum growth probabilities,
which have been the subject of some controversy [28], are
dependent on details of the branch dynamics model.

Finally, it is also possible to study branch dynamics by
direct numerical simulation. This we have done, and we
have found qualitative agreement with the picture pro-
posed above. However, certain features of the realistic
branch dynamics are not reflected in our theoretical mod-
el; this model must thus be viewed as an idealization of
the true situation, though one that seems qualitatively
and even quantitatively adequate.

This paper is organized into six sections and four ap-
pendixes. Section II introduces the hierarchical frame-
work, and shows how stochasticity leads naturally to
multifractal statistics. Section III addresses the construc-
tion of specific competition dynamics models, and intro-
duces and solves model Z. We compute multifractal ex-
ponents for this model and compare them with previous
work. Section IV addresses the estimation of the
minimum and maximum growth probabilities for a typi-
cal cluster. In Sec. V, we show how competition dynam-
ics can be extracted from numerical data, and discuss
similarities and differences between these results and the
idealized picture of Secs. II and III. Section VI con-
cludes and discusses shortcomings of the theory. In Ap-
pendix A, we discuss a different competition dynamics
model (model 4) which, though not quantitatively ade-
quate, has some interesting features. In Appendix B, we
discuss nonstochastic models, and discuss why these
models can show power-law behavior of growth probabil-
ities without possessing multifractal statistics. In Appen-
dix C, we discuss the mathematical reasons for the close
agreement between the Muthukumar formula Eq. (1.2)
and the results of model Z. In Appendix D, we present
an alternative computation of the multifractal partition
function.

II. THE HIERARCHICAL MODEL

The possibility of constructing a binary hierarchical
model for branched growth follows from two simple
empirical observations. Each particle that arrives at a
DLA cluster has a well-defined parent, the particle to
which it sticks. Thus one can define a genealogical tree
of particles, leading back to the original seed particle (see
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FIG. 2. Since each particle in off-lattice diffusion-limited ag-
gregation attaches itself to a unique parent, one can construct a
genealogical tree corresponding to, e.g., the aggregate of Fig. 1.
Except near the top of the tree, close to the seed particle, each
particle has either one or two descendants.

Fig. 2) [25]. Almost all particles have asymptotically ei-
ther one or two children; particles with more than two
children are seen only at the very top of the hierarchy,
near the seed particle. Furthermore, almost all of the
growth takes place at the bottom of the hierarchical tree,
downstream from the last “node,” or particle with more
than one child. Our numerical results (see Sec. V below)
show that for large two-dimensional clusters 92% of the
growth probability is downstream from the last node in
the hierarchical tree, and 97% is downstream from the
second to the last node. Not only is DLA growth dom-
inated by an active zone when seen in real space, but it is
also dominated by an active zone in this genealogical
space.

We will assume a binary hierarchy, in which growth
takes place entirely in the last level of the hierarchy. We
will further assume that the growth process is such that
the competition between two siblings (branches emanat-
ing from the same node) at any level in the hierarchy is
determined by their relative masses and probabilities, but
not by the structure of the cluster exterior to these two si-
blings, nor by their own internal structure.

We thus seek to describe two sibling branches by their
masses n, and n, and by their total growth probabilities
p, and p,. We use n,=n,;+n, to describe the entire
mass of the two siblings taken together. These quantities
are perfectly well defined for any dynamics; we introduce
an assumption in saying that their change as the cluster
grows is affected only by one another. We introduce two
normalized quantities,

x——pl—- (2.1)

pitp;
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n
= 2.2
N n,+n, 2.2)

We immediately obtain an equation of motion for y from
the definition of p, as a growth probability,

R T T (2.3)

This is generally valid. The quantitative form of our as-
sumption about competition is that we can write a similar
equation for x,
dx
d Inn,

=g(x,y), (2.4)

where g is not a function of any other variable describing
structure. Clearly we expect by symmetry that
glx,y)=—g(l—x,1—y).

There are three obvious fixed points of these dynamics.
At (x,y)=(3,1), symmetry implies that g (x,y)=0, and
dy /d Inn, =0. This corresponds to the case where both
branches have equal mass and equal growth probability.
We expect that (x,y)=(0,0) and (x,y)=(1,1) will also be
fixed points of the dynamics, as in these cases one branch
has all the mass and all the growth probability. This im-
plies that g (0,0)=g (1,1)=0.

If the fixed point at (x,y)=(1,) is stable, then the
other fixed points must be unstable, and vice versa. If the
former case holds, all sibling branches, no matter how
unequally they are created, will always asymptotically ap-
proach a state in which the two siblings are perfectly
equal in both mass and growth probability. This is prob-
ably the case in some branched growth processes, notably
for the “dense branched morphology” [29]. On the other
hand, if the fixed point at (x,y)=(4,1) is unstable, then
we expect that asymptotically at most one sibling of any
pair will remain active, while the other will be perfectly
dead. This is characteristic of diffusion-limited aggrega-
tion.

An unstable fixed point may have two unstable direc-
tions; one unstable direction and one marginal direction
(in which case it lies on a fixed line), or one unstable
direction and one stable direction. The reader will see in
Sec. V that the numerical evidence suggests the second of
these possibilities for DLA; here we shall concentrate on
the latter possibility (actually, we believe that the first
possibility leads to a very similar theory, but we will not
consider it further in this study.)

Now if the fixed point at (x,y)=(4,1) is hyperbolic,
with one unstable and one stable direction, then most of
the trajectories of branch competition will lie rather close
to the unstable manifold of the fixed point (see Fig. 3).
This is particularly the case for trajectories that start
quite close to the fixed point; we shall see below that
these trajectories dominate in determining the asymptotic
scaling properties of the system. We are thus led to the
following simplified model. Consider the unstable mani-
fold of the fixed point at (x,y)=(1,1). We regard pairs
of sibling branches as starting out on this manifold at the
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FIG. 3. This diagram exhibits an approximation to the com-
petition dynamics of two sibling branches. The x axis measures
the relative growth probabilities of the two branches,
x =p,/(p,+p,), and the y axis measures the relative masses of
the two branches, y=n,/(n;+n,). The development of these
two quantities as functions of n, =n, +n, can be represented in
this diagram. The fixed point at the center represents equal
branches, the two fixed points at the corners represent branch
pairs in which one branch completely dominates the other. At
the central fixed point, we suppose that there is one stable and
one unstable eigenvector.

value n,~1 at some distance from the unstable fixed
point. As they mature, and acquire more particles, they
move along the unstable manifold, ending as n,— « in
one of the two stable fixed points for which one of the
branches has entirely won the competition. Of course,
the entire pair could die at finite n, to competition on yet
longer length scales, in which case the relative probabili-
ties and masses of the two siblings will remain fixed at
some intermediate values for the remaining history of the
growth process.

It is useful to make a preliminary analysis of the dy-
namics near the unstable fixed point. Suppose that

dglx,y) =g, (2.5)
ox (1/2,1/2)
and
g(x.y) =g (2.6)
W i

Then the product of the two eigenvalues is —(g, +g,),
which we are assuming to be negative. Suppose the
eigenvector in the unstable direction has the form

(4

A= 14 2.7

Then we know that the corresponding eigenvalue is
v=c —1, because we know the second row of the stability
matrix at the fixed point from Eq. (2.3).

A second preliminary is related to the initial distribu-
tion of the distance of branch pairs from the unstable
fixed point. From the equations of motion for (x,y), we
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see that near the fixed point we expect

x=1—kon; (2.8a)
and
1 kon
y=o (2.8b)
c

where |k,| is proportional to the initial distance of the
branch pair (when n, = 1) from the fixed point. Instead of
kg, we use € as our random parameter, and find it con-
venient to define

x=1—(en,)" (2.9a)
and
(€n,)”
y=1_ Lo (2.9b)
2 c

If we assume that the probability distribution of
branch starting positions p(e€) is uniform in the x-y plane
near the unstable fixed point, then we need
lim,_,o0(€)=pye” " !, with p, some constant. The distri-
bution function p(e) is really determined by the micro-
scopic processes which nucleate branches; the assump-
tion that we have just made can be strictly justified only
by a detailed theory of these processes. It is difficult to
see, however, how such a theory could lead to singular
behavior near (x,y)=(4,1) at a microscopic level. Thus,
although we will write lim, _op(€)=pye” !, we actually
believe that v=wv.

A final preliminary is related to this exponent ¥. Sup-
pose that asymptotically during the branch competition
process, we reach a situation in which not only does
y—0 (or y—1), but it goes to zero at least as fast as
1/n,. This is a feature of all of the specific models that
we shall propose for DLA, and implies that the dis-
favored branch dies completely, so that it asymptotes to a
final mass n, which no longer changes as the other si-
bling continues to grow. In this case, it is easy to see that
due to the way in which € and n, combine in Egs. (2.3),
(2.4), (2.9a), and (2.9b), we have

ng Yo

lim y(en,)=—=—,
ny — ny €ny,

(2.10)

so that n,=y,/€, where y,~1 is a constant depending
on details of the trajectory. Thus the distribution of sizes
of dead branches is related to the distribution of €, and
thus to v.

Now consider a growing cluster, in which we regard
the main genealogical line as corresponding to the path
down the binary tree that always chooses the stronger si-
bling. If this path is directed outwards from the seed par-
ticle in a more or less straight line, as is the case for
DLA, then the total number of sidebranches off of this
path is ~r, because the sidebranches are separated by a
microscopic distance. But the largest sidebranch should
have a number of particles of the order of n, as otherwise
there would be no dead branches of a size of the order of
magnitude of the cluster size, and the entire cluster
would be made up of the active, growing zone, which
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contradicts the assumption that most branches are dead
(as well as numerous observations of DLA [2,3]. Actual-
ly, the converse of this implies that n ~r, or Dg =1. The
probability P(n) that a particular sidebranch is of size n
is
Yo /n -
P(n)~ d ~n" Vv, .
)~ [ depte)~n (2.11)

so the probability P, ,(n) that one of the ~r sidebranches
has this size is

P (n)~n""r, (2.12)

which is ~1 by the argument above. Thus we conclude
that ¥=1/D,, where D, is the radius of gyration ex-
ponent discussed in Sec. I above.

Now we are in a position to relate the trajectory of Fig.
3 to the multifractal spectrum of the growth probabilities
for the associated growth process. For a particular
branch, we can write

x(n,,€)=x(n=eny), y(n,,e)=y(n=en;) . (2.13)

Given the unstable manifold y (x), we can construct the
functions x (%) and y(7) from an integration of Eq. (2.3).

We will compute o,(g) using the partition function ap-
proach [10]. In this approach, we consider all branches
below the last node, on which we are assuming all growth
probability to lie. Indexing these branches by j, we define
Z(q,0)by

pi
Z(g,0)=n°3 >,
i

(2.14)

with p; the total probability of the jth branch, n; its
mass, and n the total number of particles in the cluster.
Now we expect that o(g) may be defined implicitly by the
condition

lim Z(gq,0)=1, (2.15)

n-— oo

as is customary for multifractal systems.

Consider a hierarchical tree as in Fig. 4. We will as-
sume that all mass and probability of a branch on a large
length scale can be unambiguously attributed to its con-
stituent sub-branches (although this is difficult for seg-
ments of particles close to the seed). It is a trivial matter
to deal with this omission, and we shall henceforth ignore
it. We will now compute the contribution of the partition
function of two sibling branches at the bottom of the tree.
We suppose that the path from the top of the tree passes
first through a node for which the value of € is €, then
through a node for which the value of € is €, and so forth
down to the node for which springs the two siblings that
concern us, for which the value of € will be €y5. For nota-
tional convenience, we also assume that we always choose
the path at every node corresponding to the weakest
branch (except at the end, when we include the contribu-
tions of both of the two sibling branches). Then the con-
tribution of the two branches 4 and B at the bottom of
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FIG. 4. Two branches A and B at the bottom of the
hierarchical tree.

the tree to the partition function is

xUegn) x%eny)

Z(gq,0) p=
9748 yo(egn) y°(en,)

[1—x(eyny)]?

[1—y(eyny)]®

Xq(eNnN)

y2eyny)

)

(2.16)

where n,=ny(eyn) is the mass of the entire weaker
branch at the top of the tree; similarly, ny is the mass of
the branches 4 and B taken together. This mass depends
on all values of € along the path that was taken to the
bottom of the tree. Thus averaging Z(q,0) 4 p over {€}
is not necessarily an easy task. Note that we have taken
x <4

er will start by performing the average over €y. This
particular random variable appears only in the term in
braces in Eq. (2.16), so the (annealed) average that we
need to perform is

xUeyny) [1—x(eyny)]?
y7(eyny) [1—y(eyny)]’

(2.17)

’

zA,B=fdeNp(e,,)[

which has a nontrivial dependence on ny, and thus on all
of the other random variables. Since f deple)=1, we
can rewrite this as

xUeyny)
ya(eNnN)
[1—x(eyny)]? _

[1=y(exny)]”

zA,B=1+fd6Np(6N)[

(2.18)

Although this seems like a trivial charge, it is crucial to
the successful computation of o,(g). The quantity in
braces { ] now goes to zero for large values of eyny.
Suppose that ny is large (i.e., that we stopped this decom-
position into branches well above the microscopic scale).
Then the integral will be dominated by its behavior for
small values of €y, provided that the quantity in braces
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goes to zero faster than ey " at large €y. If we assume
this to be the case (this proves to be true for all physical
models that we have examined; it is also in agreement
with our numerical results), then we can replace p(ey ) by
its small €y form given above. Substituting n=eyny, we
then obtain

(1=x(p])? _
(1=y(m]°

Po v—1 | x97)
N

(2.19)

so that all of the effect of the other random variables is
included in a simple factor multiplying the integral. It is
now elementary to show that a necessary and sufficient
condition for (Z(g,0))=1 is that z,4p=1, because in
this case one can simply repeat the decomposition that
we have performed here by integrating over €5 _, (which
also influences the “first cousins” of 4 and B), etc. In
Appendix D, we present an alternative calculation of the
partition function, which implies that the corrections to
Eq. (2.19) do not asymptotically affect the partition func-
tion.

Thus we arrive at our equation relating the trajectory
followed by two competing branches to o,(q),

[1—x(n))? 1
[1=y(n)]°

This holds provided that the quantity in braces {} is
bounded as 7— o by a power law 7~ 7, with y>%. If
branch death occurs, then y =1; furthermore, for the
small 7 portion of the integral to converge, we need ¥> 0.
Thus we conclude that we must have 0 <¥ < 1 for this in-
tegral criterion to be meaningful. Note that this tallies
nicely will our claim above that for branched growth in
which branch death occurs, ¥V=1/D,. Obviously, D, <1
is impossible for branched growth.

x(n) 4
y2(n)

i) 0°°dn 7" ! =0. (2.20)

III. A SPECIFIC CASE: MODEL Z

In this section, we will introduce a family of specific
models for the trajectory y(x), and compute the corre-
sponding multifractal spectra o,(g). We can fix the di-
mension by using the result from Sec. I regarding the in-
formation dimension, which implies that
wd —1)=[do,(q)/dq]l,~,. The model that we shall
propose possesses one free parameter; by varying this pa-
rameter while requiring this equality we can obtain a
self-consistent result for D (d), and also for other mul-
tifractal dimensions as a function of d, subject to the as-
sumptions regarding averaging discussed in Sec. I above.

This model, which we call model Z, is based on the ob-
servation that near the unstable fixed point, we expect
y(x) to be a linear trajectory y —1=(x —1)/c following
the most unstable eigenvector at that fixed point. For
large values of |x —1| and |y — 1|, the trajectory should
curve down into the stable fixed point at (x,y)=(0,0). A
reflected trajectory goes into the other stable fixed point
at (x,y)=(1,1). In model Z we assume that the linear be-
havior round the unstable fixed point persists as long as
possible, i.e., until x =0 (or 1—x=0) and one of the
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branches has completely won the competition for growth
probability. At this point, the branch that has won con-
tinues to grow, while the other remains with a fixed num-
ber of particles and no growth probability. In the x-y di-
agram, this corresponds to a vertical trajectory into the
fixed point (see Fig. 5).

We are assuming, for reasons discussed in Sec. II
above, that if the slope of the trajectory near the fixed
point is 1/c, then ¥=c —1. Thus fixing the value of ¢
determines all properties of the model. Furthermore,
0<wv <1 implies that 1 <c <2, so that the trajectory leav-
ing the fixed point must pass between the dashed lines in
Fig. 5.

Model Z is equivalent to assuming that the form of the
function g(x,y), which determines the redistribution of
growth probability between the competing branches, can
be approximated everywhere in the x-py plane by its form
near the unstable fixed point, which is given by Egs. (2.5)
and (2.6). Obviously, we can give no physical justification
of this, nor do we expect it to be exactly true. The virtue
of model Z is that it is simple, and that it is only a one-
parameter model, which allows us to make a robust quan-
titative comparison between its results and simulation re-
sults on DLA. In Sec. V below, the reader will see that
the actual trajectories followed by competing branches
have considerable qualitative similarity to those assumed
by model Z. In Appendix A, we discuss a more ela-
borate, physically motivated model.

The integral, Eq. (2.20), will now be given by two terms
corresponding to the two portions of the model Z trajec-
tory. The first portion leads from the unstable fixed point
to the boundary line x =0. Writing §=7", we can write
this portion of the integral as

(1/2—8)7
(1/2—8/c)o

ILigo,c)=—— [

o=,
(12487
(1/2+8/c)°

0 1

FIG. 5. In model Z, we suppose that branch competition fol-
lows the trajectory indicated. First the branches follow a con-
tinuation of the unstable eigenvector at the fixed point. After
one branch has lost all growth probability, the branches follow
vertical trajectories into one of the stable fixed points. The un-
stable eigenvector must lie between the dashed lines.
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The other part of the trajectory contributes to term
I,(o,c), which is given by

——-1———1 ] , (3.2)
[1—=(ng'/m]°
with 9} =1, and n'/n,=(c —1)/2c.

We  determine o,(g) by requiring that
I1,(q,0,(q),c)+1,(0,(q),c)=0, which determines o,(q)
as a functional of ¢, and thus of ¥=c—1. We then fix
c(d), or ¥(d), by requiring that U’(q)|q:1=(d—l)‘17.
Lengthy but straightforward algebraic manipulations of
Egs. (3.1) and (3.2) then give the following relation be-
tween v=D ! and d:

Iz(o,c)=_]'T:dn'q“1

|
o=V, (3.3)
and
| AP v
Gv)=1—v— |[— | In
2 2+v
= v |
+2 (3.4)
,,2:"1 (n—v) | 2(1+%)

This equation is easily solved numerically to give D (d).
Results are displayed as a continuous function of d in
Fig. 6; Table II shows numerical results for various low
dimensionalities. As d —>o, D—>d—1, and as d —1,
D —1. Furthermore, d —1 <D <d always. As noted in
Table II, the Muthukumar formula D =(d?+1)/(d +1)
gives a highly accurate approximation to these results
over the entire range of d; however, the Muthukumar for-
mula is not exactly the same as the model Z results. We
discuss the mathematical reason for the close correspon-
dence between the model Z results and the Muthukumar
formula in Appendix C.

For fixed d, one can also compute the multifractal
spectrum o ,(q) or 7,(q)=Do,(g). Results for d =2 are
shown in Fig. 7 and are tabulated in Table III. The

lOﬁﬁ—“—T“ T T T T T
8_ —
6_ —
[Q
41— -
2 —
|- | | | L | 1
2 4 6 8 10
a

FIG. 6. Model Z leads to the illustrated cluster dimension D
as a function of spatial dimensionality d. D always satisfies
d—1<D=d. The cases D=d—1 and d are indicated by
dashed lines.
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FIG. 7. (a) The annealed multifractal spectrum 7(q) for mod-
el Z in two dimensions. The fact that lim,_om(q)7D is an ar-
tifact of model Z. (b) The annealed multifractal spectrum f(a)
for model Z in two dimensions. At small a, f(a) becomes nega-
tive.

reader will note that at large values of g, negative values
of f(a) are obtained, as is typical for annealed averages
[19,20]. Furthermore, the value of 7,(3) is significantly
different from D, suggesting that the electrostatic scaling
law may not hold for annealed averages. Finally, for
g <0, model Z gives no answers for 7,(q); these dimen-
sions are unlikely to exist for real DLA either.

As ¢g—0,, model Z is unrealistic because the growth

TABLE III. Model Z values of the annealed multifractal di-
mensions 7(q) or f(a) for various values of q and the corre-
sponding values of a. For large g, or small «, we find negative

fla).

q 7(q) alq) fla)

1 0.00 1.00 1.00
2 0.87 0.75 0.64
3 1.53 0.58 0.21
4 2.04 0.45 —0.23
5 2.47 0.36 —0.66
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probabilities of the weaker siblings have been set to zero
exactly over part of the trajectory. This is a good ap-
proximation to the real case, in which these probabilities
are extremely small (see Sec. V below), but gives an in-
correct result for limq_,o+aa(q).

IV. MAXIMUM AND MINIMUM GROWTH
PROBABILITIES

As we remarked in the Introduction, annealed averages
for o(q), although relatively early to perform, are not
necessarily very relevant for typical members of the en-
semble of clusters, particularly at large values of ¢g. In
this section, we will present simple arguments regarding
the scaling behavior of the maximum and minimum
growth probabilities, p,,, and p_;,. These arguments are
specifically designed to be appropriate for typical
members of the ensemble. Our result for the scaling of
Pmax 1S, in fact, identical to a scaling law proposed by
Turkevich and Scher, which we reviewed in the Introduc-
tion. Thus our approach is at least superficially con-
sistent with the result of Turkevich and Scher.

The maximum growth probability of all sites in the
cluster is obtained by going down the binary tree, choos-
ing always the branch with the largest growth probabili-
ty. Thus we can write

In(p,)=23 In[1—x(€;n;)], 4.1)

where €; and n; are, respectively, the random parameter
and the mass at the ith branching, as in Sec. II above.
Our procedure will be to average x(e;n;) over ¢;, thus
obtaining an average loss of growth probability to the
sidebranch at the ith branching. We will then use this
averaged x to obtain the average loss of mass.
In particular,
fde,-e,?_lx(e,-n,-)=f£ ,

v
i

(4.2)

where x is a constant of order one. Since this quantity is
typically small, we write

X
(In(pp))=— 3 — . 4.3)
i N

To perform the sum, we must have at least an approxi-
mate form for n;. But we can compute {dn;/di) from
Eq. 4.2),

dn; i X0
—)=— dn(x)=———, 4.4)
< di > f (v—1)n] !
so that we obtain
X0 n dn\_;*o
(=3 5= ()%
=®%—1)Inn . 4.5)
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Using ¥=1/D, this reduces to the Turkevich-Scher re-
lation

1
In(p o) = ) —1|Inn . (4.6
Or, since n < r?, and In(p,,,, )= —au, Inr,
D=1+a,,. . @.7)

Note that we have made no assumptions about the ori-
gin of the growth probability measure in this argument,
so we expect this result to hold for a larger class of mod-
els than DLA models alone. The reader will observe that
our averaging procedure has a mean-field flavor; this may
account for deviations from the Turkevich-Scher law
seen in numerical computations of «,,, [13,14].

Now we turn to the minimum growth probability p ;. .
In the above discussion of p_,,, the exact nature of the
trajectory in the x-y plane, or equivalently the function
g(x,y)=dx /d Inn,, did not figure. However, although
we believe that the maximum value of the growth proba-
bility is not sensitive to details of the function g (x,y), we
believe that the minimum value of the growth probability
is quite sensitive to its form near (x,y)=(0,0) [or
equivalently near (x,y)=(1,1)].

We expect on physical grounds that a branch, once
dead, does not resurrect itself. This implies that
g(0,y)=0. In a physically motivated, model A, dis-
cussed in Appendix A, g(x,y) has the following form for
small x, y:

glx,y)=—kx , (4.8)

with k a constant.

Now let us suppose that the lowest probability region
of the cluster corresponds to the disfavored branch at the
first branching in the hierarchy. Since typically e~1, we
expect the total number of particles in this branch to be
~ 1. Furthermore, it is the most completely screened
dead branch. The growth probability of this branch p ;.
is then easily computed from

dp in
yielding
Pmin<n ©, (4.10)

in agreement with multifractal statistics.
Schwarzer et al. have claimed that p_;, actually scales
in a qualitatively different way with n [28],

In(p,;,) < (Inn)?, 4.11)

with B=2. It is easy to show that this corresponds to the
following behavior of g (x,y) for x,y small:

1=1/B 4.12)

Thus if Schwarzer et al. are correct, we expect a logarith-
mic singularity in g(x,y). This implies a trajectory
steeper than any power law near (x,y)=(0,0), which is
consistent with the claim that model Z is a good approxi-
mation to the trajectory.

g(x,y)<x[In(x)]
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V. NUMERICAL RESULTS

In this section, we present results of a numerical study
of branch competition. We use these results to determine
an averaged trajectory in the x-y plane, and thereby
directly compute annealed dimensions for DLA (within
the hierarchical model). We find reasonable qualitative
agreement with the discussion of Secs. II and III; the an-
nealed dimension that we compute, D =~ 1.6, is consider-
ably lower than the radius of gyration exponent of a typi-
cal cluster.

To measure growth probabilities and branch sizes for a
cluster we must first create a DLA. Efficient algorithms
for diffusion-limited aggregation are described elsewhere
[2,3,30]. In using these algorithms, it is important to
record not only the position of each particle that joins the
cluster, but also the identity of each particle’s parent, the
particle to which it sticks. In order to insure that each
particle has a unique parent, all of our clusters are grown
off lattice.

Next, we determine the growth probability for each
particle in the cluster. This can be done by relaxing the
diffusion equation with the cluster as a boundary. We use
the method of simultaneous overrelaxation to solve this
problem [31]. (This method proved to be unstable in the
deepest fjords of the DLA, and we follow the overrelaxa-
tion with several iterations of simple relaxation in order
to get accurate results.) Unfortunately, this numerical
method requires the use of a lattice, and thus we project
our off-lattice clusters onto a square lattice. As a result,
we actually measure the probability for growth at a par-
ticular lattice site, and not the probability for a diffusing
particle to attach itself to a particular particle. In cases
where several particles are adjacent to a growth site, we
divide the growth probability equally between the neigh-
boring particles. From these growth probabilities, we
directly find that 92% of the total growth probability is
downstream from the last node of the cluster, and 97% is
downstream from the second to the last node, as men-
tioned in Sec. II.

There are two possible methods of studying branch
competition. In the first, we create a cluster with n(1)
particles. We then relax the diffusion equation onto the
cluster and determine the values of (x,y) for all pairs of
sibling branches. We then continue the growth process
for the same cluster up to a larger size n(2). For this
cluster, we determine the values of (x,y) for all branch
pairs appearing in the cluster. In this way we can direct-
ly measure the evolution of those branches that were
present in the smaller cluster. We repeat this procedure
up to a cluster of size n(m). The extent to which the
growth trajectories for different branches follow a single
path indicates how well the branched growth is described
by the hierarchical model. Because in this approach we
follow the development of each branch sequentially
through the growth process, we call this the sequential
time picture.

In a second method, we consider all of the branch pairs
in a single DLA of n particles. From each pair, we ob-
tain one set of values for (x,y) which, according to the
hierarchical model, completely describes the state of
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growth for that branch pair. If we assume that in a large
DLA there will be branch pairs at every stage of develop-
ment, then a plot of (x,y) for all pairs should illustrate
the complete branch development trajectory. The advan-
tage of this method is that it is possible to grow many
DLA'’s of the same size, and each of these clusters should
have the same statistical distribution of branch pairs in
each stage of development. Thus we can average over
many realizations of the DLA cluster to get a more accu-
rate description of the proper evolution trajectory. We
will refer to this as the equal time picture.

We can make use of either of these approaches to find a
trajectory that describes the branch development in DLA
clusters. Once this trajectory is known, we then integrate
Eq. (2.3), dy /d Inn,=x —y, to determine the functional
dependence of x and y on Inn,. We can then numerically
integrate Eq. (2.20), thus determining the annealed mul-
tifractal spectrum. The exponent ¥=1/D is determined
self-consistently from the slope of the multifractal spec-
trum at g =1.

A. Sequential time results

The data presented in this section are derived from 5
DLA clusters whose branch structure and growth proba-
bilities were first measured at n (1)=2000 and then again
every 1000 particles up to n(9)=10000. In order to
keep the plots uncluttered with the inherently noisy data
that describe the earliest stages of branch pair growth, we
plot only those branch pairs which satisfy the following
conditions: (i) each individual branch has at least four
particles, and (ii) the total number of particles in a branch
pair is greater than 100. Typical results are shown in
Fig. 8.

Not all of these sequential trajectories lie on a common
path. Thus the hierarchical model does not completely
describe the branching structure of DLA. However, the
trajectories rarely cross one another, thus the supposition
that there exists a function g (x,y) that determines branch

.00 T
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X

FIG. 8. Branch competition trajectories from the sequential
time picture. These results show the competition of
the branches of two DLA clusters whose branch structure
and growth probabilities were measured at n =2000,
3000, ...,10000. The branches almost always flow away from
the central point. The dashed line is the two-parameter curve
that best fits all of the sequential time data set.
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competition appears, from these data, to be reasonable.
Note that many of the branch pairs which find them-
selves near the line y =x do not evolve away from their
initial state. These points represent branch pairs which
have been created in a place in which there is very little
subsequent growth, so that neither branch comes to dom-
inate the other. This behavior always occurs close to the
line x =y, and is well described by the model of Appen-
dix A.

We shall attempt to find a single trajectory that
represents an average over these results. We are thus
fitting dispersed trajectories into the Procrustean bed of a
single trajectory, in order to be able to apply the
hierarchical model. This picture ignores the effects of
correlations between different branch pairs, as well as in
the fact that many trajectories seem to originate not near
(x,y)=(1,1), but elsewhere on a fixed line x =y.

To determine this single trajectory, we perform a
least-squares fit to the branch pair data. To implement
the least-squares method, we must choose a functional
form for our trajectory. We choose to fit to

M .
1+ 2wi(x_%)l

i=1

[(2x)°° /2] , x<1

y= (5.1

1—y(1—x), x>1,

where the value of M for a curve indicates the number of
terms in the series used to fit the data. The two proper-
ties that recommend this form are that is passes through
the three fixed points at (0,0), (4,1), and (1,1) and that
dy /dx — « as (x,y)—(0,0) or (x,y)—(1,1). The slope
at x =1 is given by dy /dx/|, ,=w,+w, /2 for all values
of M.

The fitting procedure begins by choosing a set of {w;}.
We then calculate the minimum distance between each
point in the data set and the fitted curve. We choose the
{w;} which minimizes the sum of these distances
squared. We eliminate the worst outliers by first fitting to
the complete set of data, and then removing all data that
are beyond a fixed distance from this initial fitting curve.
The values quoted for the parameters {w;} are the best fit
to this reduced data set.

We find that taking M =1 yields the best results (for
M > 1 unphysical oscillations appear). The resulting best
fit parameters are

w,=0.22+0.01, w,=0.8%+0.1, (5.2)

where the error bars are subjective. From the slope of
this curve at x =%, we can obtain a value for the ex-
ponent v,

v=0.61+0.17 . (5.3)

With this functional form for the branch development
trajectory, we can calculate the multifractal spectrum in
the hierarchical model. For each curve, we integrate the
equation

4y

n =x(n)—y(n) (5.4)
dn

to determine the functional dependence of x and y on 7.
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Once the branch evolution trajectory is known as a func-
tion of 77, we numerically integrate

[I—=x()]?
[1=y(m]?

for fixed values of ¢ and 0. The function o,(q) is defined
as the value of o which causes this integral to vanish for
a fixed value of g. This function is the annealed mul-
tifractal spectrum for DLA.

We fix the exponent ¥ by requiring it to be equal to the
value of the slope of o,(q) at g =1 (both of these should
be equal to 1/D). Using this self-consistent method, we
find the value

v=0.6110.01 . (5.6)

xn) 4

o) (5.5)
n

I= fomd*q 7’

Note that this value of ¥ is within the (large) error bars
quoted for v. The annealed dimension predicted is
D =1.641+0.03. We can also compute the annealed mul-
tifractal spectrum, shown in Fig. 9.

We are also interested in the behavior of the evolution
trajectory near (x,y)=(0,0) or (1,1). The behavior of
the curve near this point determines the scaling of p_;,,
as discussed in Sec. IV. Figure 10 shows log(y) vs
log,o(x) for the sequential time trajectories. Although
the data is quite disperse, each trajectory has an approxi-
mate power-law behavior as x —0. It is this steep ap-
proach to the fixed point which is responsible for the suc-
cess of model Z. The trajectories also exhibit some non-
power law curvature, which may evince logarithmic
corrections corresponding to the Schwarzer et al. scaling
form (4.12) for p ;.-

B. Equal time results

In Fig. 11, we display values of (x,y) for 50 DLA clus-
ters of size n =3000. We have removed all of the branch

q

FIG. 9. Multifractal spectra for DLA. The solid line shows
the annealed spectrum measured by our numerical studies of the
branch growth trajectories for the sequential time picture. The
equal time picture gives almost identical results. The dashed
line shows the annealed spectrum predicted by model Z. The
stars are the numerical results for the quenched dimensions,
from Ref. [11].
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FIG. 10. Logarithmic plot of the small x behavior of the
branch pair evolution trajectories. The data shown are identical
to those shown in Fig. 8. Note that although each curve has al-
most linear behavior, the data show some curvature.

pairs with a total size n, <50, as well as branch pairs in
which either one of the branches contained less than four
particles.

Clearly these data do not define a single trajectory.
However, we can make the same assumption as above
and consider these data as scatter about a single trajecto-
ry. This is not completely unreasonable; for instance,
76% of the points fall into the relatively narrow range be-
tween the two dashed lines. We are again interested in
finding the best-fit curve through the data, and we again
fit to the functional form Eq. (5.1) with M =1. The re-
sults of the fitting procedure are shown graphically in

Fig. 11. The values for the best-fit parameters are
wy=0.28+£0.02, w,;=0.68+0.08 . (5.7

We use these numbers to calculate the slope at x =1, and

1.00
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0 0.25 0.50 0.75 1.00
X

FIG. 11. The branch pair data for the equal time picture.
These data were taken from 50 DLA clusters with n =3000.
The solid line is the best-fit curve using our two parameter fit.
76% of the data lie between the two dashed lines.
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thus predict the exponent

v=0.67£0.15 . (5.8)

Applying the same self-consistency condition that was
used in the sequential time picture, we determine the ex-
ponent v and the annealed multifractal spectrum from
this data. We find

v=0.62+0.02 , (5.9

so that we obtain D =1.61£0.05, in agreement with our
results from the sequential time picture. The annealed
multifractal spectrum that results from the constant time
data differs by only 3% from that computed with the
sequential time data.

Finally, we can calculate directly the function p(e) if
we assign a value of € to each point of the branch pair
data. We do this by first finding the point P on the evolu-
tion trajectory which is closest to the point P’ of the
branch data set. We then calculate the value of 1 for P
and assign that value of 7 to P’. Once 7 is known for a
given branch pair, we use the relation n=e€n, to find the
value of €. Following this procedure for every point in
the data set, we can determine the probability density
ple). The results of this calculation for DLA are shown
in Fig. 12. In the power-law regime, we obtain the ex-
ponent

v=0.5410.10, (5.10)
in agreement with the self-consistent computations of v.

V1. DISCUSSION

Although on a phenomenological level, the theory de-
scribed above is quite successful, there are a number of
difficulties with this approach on a more fundamental lev-
el. The numerical evidence is in reasonably good agree-
ment with the proposition that the function g (x,y) exists,
as shown by the infrequency with which trajectories cross
one another in the x-y plane. However, the integral for-
malism that we have introduced can be justified in the
way in which we have done so only if the unstable fixed
point is hyperbolic, so that there is a well-defined unsta-
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FIG. 12. Logarithmic plot of p(€) vs € for DLA. The pro-
cedure used is described in the text. The dashed line corre-
sponds to ¥=0.54. This power-law behavior of p(€) agrees with
our model for branched growth.
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ble manifold. Both the numerical evidence, and the
analysis of a physically motivated model (model A) in
Appendix A, suggest that there is a fixed line in the x-y
plane, the line x =y; this fixed line is unstable in the
direction orthogonal to itself. Thus the unstable mani-
fold theory of this study must be generalized to account
for trajectories leaving the unstable line along its entire
length, or else a reason must be given for why only one of
these trajectories dominates the partition function.

A further problem arises in considering the function
g(x,y). In principle, the competition of two branches de-
pends on the behavior of the rest of the cluster, as well as
on the internal structure of the two branches. Thus, in
principle, g depends not only on the parameters describ-
ing the relative masses and growth probabilities of the
branches being considered, but also on these parameters
for all other branch pairs in the system. In restricting
our attention to x and y for the competing branch pair
alone, we are making an assumption about the ir-
relevance of these other parameters, which we have not
quantitatively justified.

A related problem relates to the specific structure of
g(x,y). We have made a fortuitous choice for this func-
tion in model Z; the accuracy of the resultant dimensions
suggest that this choice may become exact, at least in the
neighborhood of the unstable manifold, in some limit. A
complete theory of DLA would include a computation of
g (x,y) from first principles. It would be interesting to see
if the real-space methods developed by Pietronero and
others can be used to compute g (x,y) [4-6].

Finally, a serious technical lacuna in our treatment of
model Z is our failure to compute quenched as well as an-
nealed dimensions for this model. The computation of
quenched dimensions in the general case for stochastic
multifractal systems is a difficult and as yet unsolved
problem; perhaps this work will stimulate more interest
in this area.

Note added in proof. In collaboration with K. Honda,
we have computed quenched dimensions for model Z
[37]. The results for D (d) are almost exactly the same as
those reported in Sec. III above. For large values of g,
the quenched dimensions for model Z are much closer to
numerical results for DLA than are the annealed dimen-
sions calculated in Sec. III.
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APPENDIX A: ALTERNATIVE MODELS
OF BRANCH COMPETITION

In this appendix we will derive a one-parameter family
of physical models (model A4) for the competition of two
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branches. These models are not especially realistic—
they yield trajectories in the x-y plane that are
significantly different from those found in Sec. V; further-
more, they give quantitatively inadequate values for the
dimensions of diffusion-limited aggregates. Nevertheless,
we believe that, as an exercise, the development of this
model is informative. Some features of this model, par-
ticularly the appearance of a fixed line, are reminiscent of
the numerical results discussed in Sec. V.

We commence by considering two DLA branches in
isolation. We presume that each branch can be viewed as
a circle as regards its ability to absorb probability flux;
we further choose the two circles corresponding to the
two branches to be in contact. Thus our first task is to
compute the relative probabilities that a random walker
arriving from oo will strike one of two circles in contact,
with radii r; and r,.

In general, two circles may be mapped onto two con-
centric circles by a Mobius transformation [32]. We
determine this transformation first for two circles not in
contact, and then we take the limit in which the circles
touch. We place the center of the first circle (circle C, of
radius ;) at (0,0) and the center of the second circle (cir-
cle C, of radius r,) at (1,0). First we must find the circle
C’ that intersects both of these circles at right angles—
the Mobius transformation that maps this circle onto the
imaginary axis maps C; and C, onto concentric circles.

The cross ratio of four complex numbers (z,,2,,25,2,)
is invariant under a Mobius transformation. Thus if the
transformation maps the complex u plane to the complex

v plane, then
(uy—uyuz—u) (v, —vy)v3—v)
,u2u3uzvluzv3v. Al
(v;—v3 vy, —v)

(uy~uz)u,—u)

Suppose that the center of C’ is at (y’,0), and that its
radius is A. A straightforward calculation using Eq. (A1)
yields

y'=31+ri—r3) (A2)
and

A=[L(1+ri—r3?—ri]'2. (A3)
Having determined y’ and A, we can now proceed to
find the appropriate transformation that takes our system
onto two concentric circles. We know that we want
(y'—A,0)—(0,0), (y'+A,0)—cc, and (r,0)—(1,0).
This is sufficient to determine the transformation. Take
v, =(0,0), v,=(1,0), and v;= . Then
(Y —A)—ully’"+A—r;)
- r ] Y v (A4)
[((y'+A)—ully'—A—r))
Let us define y=(y'+A)/r;, vy '=(y'—A)/r,, and
@ =u/r,. Then we may rewrite v as

(1—ya)l—y Y
(1—y '@)1—y)

(ya—1)
(y—u)

v= (AS)
Two quantities of particular interest are the radius of the
image of the point at «, v =v(u-— « ), and the radius
of the outer concentric circle, v, =v[u=(1—r,,0)],
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which are, respectively, given by

Ve =V (A6)
and

{rlA=ry/r =13}

Cou T (= ry) /r)]

(A7)

From elementary electrostatics and the properties of
conformal transformations we know that the probabilities
of a random walker striking the two circles are
p; < In(v,) and p, « In(v,, /v, ). Thus by taking the
limits of the expressions above as r; +r,—1 we can ob-
tain p; and p,.

More specifically, write r;+r,=1—e. Some simple
algebra yields

Vou =1+ ‘/_.zi +0(e) (A8)
rr
and
v, =y=1+V2eV'r,/r,+0(e) . (A9)

Now we can directly calculate the relevant logarithms,

In(v,y, /v, )=V 2e/rir,(1—r,)=V2eVr /r,  (A10)
and
In(v,)=V2eV'ry/r, . (A11)
Thus we obtain the final result,
— (A12)
P rytry
=0 (A13)
P2 rotry

so that the relative growth probabilities of the two circles
are determined by their relative radii.

Now suppose that dr, /dn;=(r,/Dn ), where D is the
cluster dimension. It follows directly that

i __ 2 _,
d lnn d Inn P12

, (A14)

ny n,

with k =D ~!. This equation, combined with Eq. (2.3) for
dn,/d Inn,, gives a complete description of trajectories
in the x-y plane. It is simple to rewrite this equation in
terms of the variables x,y of Sec. II,

dx X 1—x
= - == (A15)
d Inn, fx (1) y 1—y
and, of course,
___dy__:x -y . (A16)
d Inn,

Although we have derived Egs. (A15) and (A16) for a
specific two-dimensional model, we shall now regard
them as a description of branch competition in the x-y
plane on all length scales as functions of x and y.

These equations possess a marginal line x =y (a prop-
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0 | | |
0 p 1

FIG. 13. The trajectory of branch competition in model A4
for k =1.6. The trajectory is more curved than either model Z
or the numerical trajectories of Sec. V.

erty in agreement with the numerical results of Sec. V).
However, for k <1, this line is stable. This should not
surprise us unduly, as an instability of this “two-branch”
model would conflict with the direct stability analysis of
Ball for clusters with various numbers of macroscopic
branches [33]. However, if we generalize this model by
assuming that

ri

=—=1 (A17)
P rf-l-rg

—Pa>

then a simple computation yields Eq. (A1l5) with
k=¢&/D. A typical trajectory, for kK =1.6, is shown in
Fig. 13. If we now consider general spatial dimensionali-
ty, then by varying k, we obtain a one-parameter family
of models, whose corresponding D (d) can be computed
following the method of Sec. II. We assume in an ad hoc
manner that the dominant trajectories start at
(x,y)=(4,1). Results are shown in Table IV; although
D(d — »)—d —1, the numerical values of this dimen-
sion are not satisfactory by comparison to DLA. This is
not surprising, as the trajectory of Fig. 13 looks nothing
like the trajectories seen for branch competition in our
numerical studies reported in Sec. V.

TABLE IV. A comparison of simulation values of the dimen-
sion D with those computed from model A for various spatial
dimensionalities d. The model A4 values are not close to those
computed by simulation, although the model A results do have
lim,;_, ,D=d —1.

d DDLA DMode] A
2 1.71 1.50
3 2.49 2.28
4 3.40 3.18
5 4.33 4.06
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APPENDIX B: NONSTOCHASTIC MODELS

To study nonstochastic branched growth, we need only
generalize the theory developed in Sec. II to the case
where the {€} are a constant for all branches. We can fix
this constant to be e=1 by a redefinition of the trajectory
function (x(n),y(n)). If we write the partition function
of a branch of n particles as I'(n,g,0 ), we obtain

xUn)

y%(n)

4 [1—x(n)]?
[1—=y(n)]°

Now we wish to fix o(gq) by requiring I'(n,0,q9)=1.
The limiting function obtained as n — oo will then be the
asymptotic o(q). In general, we expect the right-hand
side of Eq. (B1) to be dominated by one or the other of its

two terms as n — oo. If the first term dominates, then we
expect

I(n,q,0)= C(y(n)n,q,0)

L([1—y(n)ln,q,0) . (B1)

In[x (n)]

=gq li , B2

ol9=q lim = (B2)
while if the second term dominates, then we expect

o(q)=gq lim SR1=x(n)] (B3)

n—ow In[1—yp(n)] °

Although we can use these results to compute maximum
and minimum growth probabilities, there is no general
multifractal (i.e., not piecewise linear) solution o(q). As
an example, consider the case x(n)=xyn" 7. A simple
computation yields y(x)=xon"?/(1—y), provided
¥ <1. If the second term in Eq. (B1) dominates, then
from Eq. (B3) we obtain

o=q(l—y), (B4)

so that the maximum probability scales with n as
Pmax <17~ . Since the Turkevich-Scher law should apply
to this system, this implies D =y ~!. If we suppose that

the first term dominates, then from Eq. (B2) we obtain

(B5)

o=q .
This result yields p;, <n !. Thus we do not expect
nonstochastic branched growth to contain any strongly
screened growth sites, except those arising from inter-
branch interactions not treated in the hierarchical model.

Suppose that we are considering nonstochastic
diffusive growth. If the growth measure is different from
the normal electric field at the surface by small quantities
only, then we expect that the electrostatic scaling law will
apply to this model. [Note that the same conclusion does
not necessarily apply to the Makarov law, as the informa-
tion dimension is inherently more sensitive to small
changes in the growth probabilities than is 7(3).] If we
can apply Eq. (B4) away from g — o, then using the scal-
ing law Eq. (1.7),

3: __—_’
o(3)=1+ D

combined with D=1/y, we obtain D =(d +1)/2. This
conclusion agrees with the well-established result that

(B6)
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D=1 in d =2 for noise-reduced diffusion-limited aggre-
gation [34]. For d >3, it violates the ‘“‘causality bound”
D >=d—1 [35]. This suggests that the noise-reduced

branched fixed point may not exist in high dimensions.

APPENDIX C: MODEL Z
AND THE MUTHUKUMAR FORMULA

In Sec. III, we observed that the dimensions computed
from model Z via Egs. (3.3) and (3.4) are quite close
(within a few tenths of a percent) to the Muthukumar for-
mula D =(d*+1)/(d+1). This approximate equality
has a rather peculiar mathematical origin, which we shall
explain in this appendix.

We start by reviewing our formula for the dimension

D =%""as an implicit function of d,
ﬁ =vG (V) . (C1)
The function G(¥) is given by
~2 ~
G =1—-v——1In |—>
2 2+v
- n
v
+2 —_— (C2)
,,2_'1 n—v | 2(1+9)
G(v) has simple poles at the positive integers
G(v=1,2,3,...) and a weak logarithmic singularity at
v=0. (The apparent logarithmic singularity at v=—2 is

actually cancelled by a contribution from the sum.)

Now lim,_ ,G(¥)=1, which implies that
lim,_, ,D=d —1. Because of the logarithmic singularity
at ¥=0, a power-series expansion about this result is not
possible. As ¥—1, G(¥) can be written as

GW)=a_,(1-v) "+ag+a,(1-v)+0((1—-%)?),
(C3)

witha _;=0.5,a,=0.4431,and a, = —0.1794.

Now to understand the accuracy of the Muthukumar
formula, we observe that it has the form of a Padé ap-
proximant. If we consider approximations to D by ratios
of quadratic to linear polynomials in (d — 1),

bo+b,(d—1)+by(d—1)

~ 4
b IFe,(d—1) ’ (c

then the only form consistent with lim, D=d —1,
D(d =1)=1,and a_,; =0.5 is the Muthukumar formula

d?+1

b="r

(Cs)

Instead of using information from both d — o« and 1 to
constrain the Padé approximant, we can directly compute
the (2,1) Padé approximant corresponding to the expan-
sion Eq. (C3) about d =1 [36]. After some tedious com-
putation, we obtain the result

eote(d—1)+ey(d —1)?

b= 1+/,(d—1) ‘ (co)
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TABLE V. Values of the Padé coefficients from Eq. (C6) for
model Z compared to the Muthukumar formula values of these
coefficients.

Model Z Muthukumar
eo 1 1
e 0.7593 1
e, 0.3512 1
fi 0.2593 %

In Table V, we compare these values of the Padé
coefficients, obtained by expansion about d =1, to the

Muthukumar values of these coefficients. Only at
O(d —1)* are there significant deviations between (C5)
and (C6).

APPENDIX D: COMPUTING
THE PARTITION FUNCTION

In this appendix, we will more carefully justify the in-
tegral criterion for o,(q) introduced in Sec. II. We start
by writing a general relation for the partition function as
an integral equation, which follows from the hierarchical
assumption,

x%en)

Z(g,o,n)= fowdep(e) 7(en)

Z[q,0,y(en)n]

XZ(q,0,[1—y(en)]n)

(D1

This can be written in more compact form if we
define x(—en)=1—x(en), y(—en)=1—y(en), and

p(—€)=p(e€), in which case Eq. (D1) can be written as
Z(g,o,n)= f dep e)—[un—-

y(en)]?

XZ(q,a,[l——y(en)]n) (D2)

If we assume that the integral is dominated by values of
[1—y(en)]n =n, then we can expand the integrand,

)]
Z(q,0, d Z(qg,o,n)
q,o,n) f [l—y(en)]” q,0,n
[1—x(en)]?
—n de (e)y(en)
f piey [1—y(en)]®
2
dZ(q,a n)+0 d*Z (D3)
dn n2
Let us write
© — q
—o [l—y(en)]® n”
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where the higher-order terms vanish more quickly with n
than n ~7. We also write

[1—x(en)]? _ ko
[1—y(en)]® n”® ’
since lim,_, ,y(en)=0. Again, the higher-order terms
vanish more quickly with n than n . Thus we obtain

dinZ 8o
dlnn  hy '’
so that we must have g,=0 in order that the partition

fjc deple)y(en) (DS)

(D6)
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function not diverge, or go to zero, as n — . This is the
same criterion as that we used in Sec. II, i.e., that the
part of the integral Eq. (D4) proportional to n ~” should
vanish. It is easy to see from Eq. (D3) that the terms
higher order in n~! in the integral do not prevent
lim,_, ,Z—1. Naively, one would expect that the
corrections to Eq. (D5) should go as n !, implying that
as ¥— 1, corrections to the integral result may become
troublesome. This is a conceivable explanation for the
numerical difficulties in two dimensions that are reflected
in the controversy between Ref. [23] and [24].
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