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Ferroelectric liquid-crystal and solid phases formed
by strongly interacting dipolar soft spheres
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Molecular-dynamics simulation results are reported for systems of strongly interacting dipolar
soft spheres. Calculations have been carried out along two isotherms and the structure of the
liquid-crystal and solid phases obtained is described in detail. It is found that in addition to the
ferroelectric nematic phase we previously reported [Phys. Rev. Lett. 68, 2043 (1992)], liquid crystals
with columnar order can also be obtained. The model freezes to form a ferroelectric solid which is
shown to have a tetragonal I crystal structure. The influence of diferent boundary conditions upon
the simulation results is also discussed.

PACS number(s): 64.70.Md, 77.80.—e, 82.20.Wt

I. INTRODUCTION where

In a recent Letter [1] we reported molecular-dynamics
(MD) calculations which demonstrated that a simple
dipolar soft-sphere fluid can form an orientationally or-
dered liquid-crystal phase if the dipolar interactions are
sufficiently strong. These simulations established that
dipolar forces alone are sufficient to create an orienta-
tionally ordered fluid confirming a suggestion first made
by Born [2] and answering a question which has persisted
for many years in liquid-crystal literature [3]. Further-
more, it was shown that at the temperature and densities
considered the liquid-crystal phase was a ferroelectric ne-
matic [4] liquid crystal showing no evidence of any long-
range spatial order. This was a demonstration that a
ferroelectric nematic liquid crystal could exist as a true
liquid-crystal phase for a completely Hamiltonian model.
This observation provided strong support for recent sug-
gestions [5—7] that it might be possible to construct fer-
roelectric nematic liquid crystals in the laboratory.

The purpose of the present paper is to give more de-
tailed results for the dipolar soft-sphere model. We have
carried out extensive molecular-dynamics calculations
along different isotherms; here we describe the phase be-
havior and the structure of the liquid-crystal and solid
states. Liquid crystals with columnar order are. found
at temperatures lower than that considered in [1]. The
influence of different boundary conditions upon the sim-
ulation results is also investigated and discussed.

The remainder of this paper is divided into three parts.
The model and simulation method are brieQy described
in Sec. II, the results are given in Sec. III, and our con-
clusions are summarized in Sec. IV.

II. MODEL AND SIMULATION METHOD

uss(r) = 4sss(o/r) (2.1b)

is the soR-sphere potential and

uoo(12) = —3(pq r)(pz r)/r + p~ p2/r (2.1c)

is the dipole-dipole interaction. The parameters s» and
o characterize the soft-sphere potential, p, is the dipole
moment of particie i, r = r2 rq, and r is th—e magnitude
of r. We emphasize that the only angle-dependent term
in Eq. (2.1a) is the dipole-dipole interaction and hence
orientational ordering can come only through the dipo-
lar forces. We also remark that our choice of dipolar soft
spheres rather than the more common Stockmayer model
(i.e. , dipolar Lennard-Jones particles) is not accidental.
In the present study we are primarily interested in sys-
tems where the dipolar interactions are strong enough to
produce orientationally ordered phases and for such sys-
tems the usual Stockmayer fluids tend not to be stable
giving negative pressures at liquid densities.

Kusalik [8] has carried out extensive molecular-
dynamics calculations for isotmpic dipolar soft-sphere
fluids and has given a very useful analysis of simulation
details. We have used similar methods and for the same
state parameters our results are in excellent quantitative
agreement with those of Kusalik.

In all calculations we employed the periodic bound-
ary conditions (PBC's) of de Leeuw, Perram, and Smith
[9] and the long-range dipolar interactions were taken
into account using the Ewald summation method. This
amounts to replacing the dipole-dipole potential with the
effective interaction [8, 9]

The model we consider consists of soft spheres with
point dipoles embedded at the center. The pair potential
for this model can be expressed in the form

u (12; e') = —(ts, V')(ts2 V)@(r)
4'

+(2. +1)L,s"'"' ' (2.2a)

u(12) = uss(r) + uDD(12), (2.1a) where
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(2.2b)

(lr, (t) —r, (0)l') = 6Dt, (2.3)

where D is the diffusion coefficient. We note that in
an orientationally ordered liquid-crystal phase the dif-
fusion may not be isotropic and D is then given by
(Dll + 2D~)/3, where Dll and D~ are the diffusion con-
stants parallel and perpendicular to the director. For
solids, the mean-square displacement becomes constant
rather than continually increasing with time.

The possible existence of orientationally ordered
phases was monitored by calculating the usual equilib-
rium first- and second-rank orientational order parame-
ters, (Pq) and (Pq), respectively. Of course, for isotropic
Huids both order parameters are zero. For ordinary non-
ferroelectric nematics (P2) g 0, (Pq) = 0. For ferroelec-
tric nematics both (P2) and (Pq) must be nonzero. The
instantaneous second-rank order parameter P2 was taken
to be the largest eigenvalue of the ordering matrix C} with
elements given by [11)

e' is the dielectric constant of the surrounding contin-
uum [9], L is the length of the cubic simulation cell, erfc
is the error-function complement, n is a parameter ad-
justed to facilitate convergence, and the sum on n is over
lattice vectors. The calculation of 4(r) depends upon
the truncation of the real and Fourier space sums [i.e. ,

the first and second terms in Eq. (2.2b), respectively]
and the value of the convergence parameter n. Further,
the short-range soft-sphere interactions can be truncated
at some cutoff radius A, . Kusalik has investigated the
convergence of the Ewald sum for different parameter
sets with different numbers of particles and we have fol-
lowed his suggestions. In the present calculations, we
used R, = L/2, n = 6.4, retained only the n = (0, 0, 0)
term in the real space sum, and included terms up to
n2 = 54 in the Fourier space sum. Calculations with
other parameter sets were also carried out to verify that
our results were not sensitive to details of the particular
set chosen.

The MD calculations were performed at constant tem-
perature employing Gaussian isokinetic equations of mo-
tion [10] as described by Kusalik [8]. The orientational
coordinates of the particles were expressed in terms of
quaternion parameters and the equations of motion were
integrated using a fourth-order Gear algorithm. The re-
duced time step At' = 6t/y mo2/s» ——0.0'025 (m is
the mass of a particle) was employed in all calculations.

In order to distinguish fluid and solid phases, we cal-
culated the mean-square displacement ( r, (t) —7,(0) ~~),

where r, (t) is the position vector of molecule i at time t.
For fluids the mean-square displacement continually in-
creases with time varying linearly at long times according
to the Einstein relationship [11]

N

@~0 = p ) .2 (31»app ~ap) ~ (2.4)

where N is the number of particles in the simulation cell
and p' is the a. component of the unit vector p, The
corresponding eigenvector is the instantaneous director
d and the instantaneous first-rank order parameter Pq is
defined by [7, 12]

N

Pq = —) j» d
,=1

(2.5)

The equilibrium order parameters are the ensemble av-
erages of Pq and P2.

For axially symmetric dipolar particles, the angle-
dependent pair distribution function g(12) can be ex-
panded in the form

g(12) = ) g "'(r)C "'(12),
m, n, l

(2.6)

where the C'~"'(12) are rotational invariants defined as
in earlier work [13]. The projection gooo(r,' is the usual
radial distribution function and tends to 1 as r ~ oo
in both isotropic and nematic phases. In orientationally
disordered isotropic fluids all other g~"'(r) projections
will decay to zero as r + oo. However, for a nematic
phase it is not diKcult to show that projections of the
form g~~s(r) must obey the asymptotic relationship

g (r) (2m+1)(P ), r —+ oo, (2 7)

where (P~) is the mth-rank order parameter. Thus, for
nonferroelectric nematic phases g™mo(r)will approach a
constant at large r for even m but decay if m is odd. For
ferroelectric systems the projections will approach con-
stants for both even and odd values of m. In the present
simulations we have calculated gooo(r), g'~0(r), g~~2(r),
and g 0(r) providing both structural information and
an alternative route to the order parameters for nematic
liquid crystals.

In order to better establish the structure of orienta-
tionally ordered phases, we have calculated the longitudi-
nal and transverse pair correlation functions, gll(rll) and

g~(r~), respectively. Here rll and r~ are components
of the interparticle vector r parallel and perpendicular
to the director. These functions measure positional cor-
relations in directions parallel and perpendicular to the
director and are very sensitive to any long-range spa-
tial correlations. Prom the properties of these correlation
functions one can readily determine if the liquid crystal
is a simple nematic one or if it has columnar or smectic
order [14, 15]. Very briefly, for a nematic phase both dis-
tribution functions will have at most weak short-range
structure. In a columnar phase there is no translational
order parallel to the director and hence gll("II) w

relatively weak liquidlike features. On the other hand,
g~(r~) can be expected to show solidlike structure result-
ing from two-dimensional order in planes perpendicular
to the columns. The layered structure of a smectic phase
leads to periodic oscillations in gll(rll) while g~(r~) re-
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mains liquidlike. In solids both functions will have long-

range order and for the present model we find that they
give a very useful indication of the crystal structure.

III. RESULTS
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Dipolar soft-sphere fluids can be characterized by spec-
ifying the reduced density p" = pens, the reduced tem-
perature T' = kT/s», and the reduced dipole moment

p,
" = (p~/s»o's) ~, where p = N/V, V is the volume, T

is the absolute temperature, and k is the Boltzmann con-
stant. In all calculations we have used the reduced dipole
moment p' = 3 which, if o = 3.0 A. and T = 298 K, cor-
responds to a molecular dipole moment of approximately
2.7 D.

Most simulations were performed with 256 particles
but some 108 and 864 particle calculations were done to
investigate any dependence upon the number of parti-
cles. Typically, runs were begun with randomly oriented
particles on a face centered cubic lattice and were equi-
librated for about 40000 time steps. However, some cal-
culations particularly at lower temperatures and/or near
phase transitions were run for much longer times (up to
200000 timesteps) in order to ensure that the equilib-
rium state was reached. Averages were then collected for
at least another 100000 time steps. The standard devi-
ations were estimated by dividing the final 100000 time
steps up into ten equal blocks and assuming for statistical
purposes that the block averages constitute independent
measurements of the physical properties of interest.

For the present model, the dielectric constants of the
dense isotropic liquids are large and increase very rapidly
in the vicinity of the isotropic to ferroelectric liquid-
crystal transition (see Fig. 4 below). Therefore, we would
expect the usual Ewald-Kornfeld boundary conditions
which correspond to c' = oo to give a good approxi-
mation to infinite-system behavior as the transition is
approached. As noted in [1] and below, if e' is large, the
exact value employed in the simulations is not critical.
In order to determine the maximum effect of varying e'

we have also carried out some calculations with ~' = 1.
It is most convenient to discuss both cases separately.

A. Simulations with e' = oo

Here we discuss the phase behavior and structure along
two isotherms T' = 1.35 and T' = 1.0. All results given
in this section were obtained with e' = oo. At T' = 1.35,
some simulations were carried out with e' = 225 and the
results obtained did not differ significantly from those
found with e' = oo.

It is convenient to begin our discussion with the T' =
1.35 results. The order parameters, reduced pressures,
(P)cr /s», and reduced potential energies (U)/Nc» ob-
tained at this temperature are shown in Figs. 1(a), 2(a),
and 3(a), respectively. At T' = 1.35 all three functions
indicate the presence of two phase transitions. From
Fig. 1(a) we see that both the first- and second-rank or-
der parameters increase rather sharply at two densities
(p' 0.65 and 0.87) and by considering the behavior
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FIG. 1. The orientational order parameters as a function
of the density for (a) T' = 1.35 and (b) T' = 1.0. The open
circles and squares are (Pq) and (Pq), respectively, obtained
with 256 particles. The solid circles and squares in (a) are

(Pq) and (Pz), respectively, obtained with 864 particles. The
error bars represent one estimated standard deviation and are
about the size of the symbols in the ordered phases.

e —1= ((M ) —(M) ), (3.1)

where M is the total dipole moment of the simulation
cell. In principle, in order to obtain reliable estimates
of the dielectric constants the simulations should be long
enough to yield (M) /(M ) —0. In practice, this is
difBcult particularly for the fluids of strongly interacting
particles we consider. Nevertheless, at T' = 1.35 we have
carried out several calculations of sufficient length (i.e. ,
300000 time steps) to ensure that (M)z/(M ) = 0.1.
The results obtained for e are shown in Fig. 4. We see
that as expected the dielectric constant increases very
rapidly as the ferroelectric transition is approached.

of the mean-square displacements [1] (typical results are
shown in [1] and in Fig. 8, below) we conclude that the
first phase transition is from an isotropic to a ferroelectric
liquid and the second is a ferroelectric liquid to ferroelec-
tric solid transition. In the pressure plot [Fig. 2(a)] the
solid and liquid branches are very clear since the solidi-
fication is strongly first order and the pressure change is
obvious at the freezing transition. The change in pres-
sure at the isotropic-to-liquid-crystal transition is much
smaller but with care and accurate calculations it is pos-
sible (see expanded scale) to distinguish isotropic and
liquid-crystal branches. The average potential energies
shown in Fig. 3(a) are also not monotonic in density and
the transitions are accompanied by energy decreases.

For the Ewald-Kornfeld boundary conditions employed
in the present calculations, the appropriate formula for
the dielectric constant e of an isotropic fiuid is [9, 16]
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FIG. 2. The reduced pressure as a function of the density
for (a) T' = 1.35 and (b) T' = 1.0. The open and solid circles
[in (a) only] represent liquid-state results obtained with 256
and 864 particles, respectively. The solid-state results are
shown as open squares. The estimated standard deviations
are much smaller than the symbols.
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FIG. 3. The reduced potential energy as a function of the
density for (a) T* = 1.35 and (b) T* = 1.0. The symbols are
as in Fig. 2. The error bars represent one estimated standard
deviation and are about the size of the symbols in the ordered
phases.

FIG. 4. The dielectric constant as a function of the den-
sity for T' = 1.35. The error bars represent one estimated
standard deviation.

The pair distribution function projections gooo(r),

g 0(r), g~~z(r), and gz (r) [cf. Eq. (2.6)] obtained at
T* = 1.35 are shown in Fig. 5. Curves for isotropic,
liquid crystal, and solid phases are included. The projec-
tion goes(r) is the usual radial distribution function, and
it is also useful to note that g~~z (r) is proportional to the
average interaction energy between a pair of dipoles at
separation r [13].

From Fig. 5 we see that both g~~o(r) and gzzo(r) decay
to zero as expected in the isotropic fiuid and approach
constants at large r in the liquid crystal phase. Using
Eq. (2.7), it is easy to verify that the constants ob-
tained are consistent with the values of (Pq) and (P2)
calculated directly. Furthermore, we see that all four
projections show no evidence of long-range spatial or-
der in the liquid-crystal phase. These observations also
hold for calculations with 864 particles [1] and strongly
suggest that at T' = 1.35 the liquid-crystal phase is a
ferroelectric nematic. This is confirmed by the distribu-
tion functions parallel and perpendicular to the director,

gII(rII) and g~(r&), respectively, shown in Fig. 6. For
the liquid-crystal phase these functions are completely
without structure and are not distinguishable from the
isotropic case. This indicates that the liquid-crystal
phase is simply nematic and does not have the long-range
spatial order associated with smectic or columnar phases
[14, 15]. We shall see below that a liquid crystal with
columnar order does exist at lower temperatures.

From Fig. 6, we see that in the solid both gII(rII) and

g~(r~) exhibit long-range order. Both functions are os-
cillatory and the period is 0.5o for gII(rII) and lo.
for g~(r~). The structural features of gII(rII) and g~(r~)
as well as those of the g "'(r) are completely consistent
with a ferroelectric tetragonal I crystal [17) defined by
the unit cell shown in Fig. 7. The cell dimensions 1.0o
and 1.5o. as shown in the figure give an essentially ex-
act fit to the structural features. The projection g~ (r)
(Fig. 5) is particularly useful since it shows where the av-

erage pair interactions are attractive or repulsive and it is
easy to identify the lattice separations giving rise to the
different structural features. For example, the first peak
obviously comes from the attractive interactions between
aligned near neigbors at 1.0o, and the first mimimum at

1.17o. comes from the repulsive interactions between
particles on the corners and those at the body center of
the unit cell. All other maxima and minima in g~~ (r)
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can be explained by considering the interaction between
particles at different lattice points.

With the solid structure in mind, it is useful to con-
sider again briefly the nature of the liquid crystal. From
Fig. 5 we see that at short range the projections of the
pair distribution obtained in the nematic phase qualita-
tively resemble those of the solid. Specifically, one notes
that the first peak in g o(r), g (r), and g22O(r) tends to
be rounded rather than sharp as in the isotropic phase.
Furthermore, the structure of gii2(r) indicates average
repulsive interactions at r —1.17o. which also occurs in
the solid but not in the isotropic system. These observa-
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FIG. 6. The pair distribution functions parallel and per-
pendicular to the director at T' = 1.35. The curves are as in

Fig. 5. The results in the isotropic (p' = 0.6) and nematic
(p' = 0.8) contain no structure and result in the flat line at
1.

tions indicate that there are short-range spatial correla-
tions in the ferroelectric nematic which are similar to the
arrangements found in the tetragonal I crystal.

The results obtained at T' = 1 are shown in Figs. 1(b),
2(b), 3(b), 8, 9, and 10. At this temperature the MD
calculations proved more difficult to converge than at
T' = 1.35 and even with very long runs it was difficult
to determine very precisely the densities at which phase
transitions occur. This was particularly true of the liquid
crystal to solid transition which occurs somewhere in the
vicinity of p' = 0.8. It can be seen from the pressure
plot [Fig. 2(b)j that the liquid and solid branches have a
considerable region of overlap where different simulations
at the same density can result in either liquid-crystal or
solid phases depending to some extent upon the start-
ing configuration. For example, starting from a lattice
or from another run at a higher temperature may give
different results in this region. Nevertheless, with persis-
tence, and making use of all information contained in the
figures a good qualitative picture of the phase behavior
can be deduced.

0

r/o

FIG. 5. Projections of the pair distribution functions at
T* = 1.35. All results were obtained with 256 particles
and the solid, dotted, and dashed curves are for p = 0.6
(isotropic), 0.8 (nematic), and 1.0 (solid), respectively.

1.5

FIG. 7. The tetragonal I unit cell. The numbers give the
cell dimensions in units of cr and the arrow indicates the di-
rection of the dipoles.
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FIG. 8. The mean-square displacement as a function of t*
for different phases at T* = 1.0. The solid, dotted, dashed,
and broken lines are for p' = 0.55 (isotropic), 0.65 (nematie),
0.70 (columnar), and 0.95 (solid), respectively. I
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T* = 1.0. All results were obtained with 256 particles. The
solid, dotted, dashed, and broken lines are for p = 0.55
(isotropic), 0.65 (nematic), 0.70 (columnar), and 0.95 (solid),
respectively.

The mean-square displacements (Fig. 8) indicate that
at densities less than p* = 0.8 the system exists only
as fluid states. From the order parameters plotted in

Fig. 1(b) it is evident that an isotropic to ferroelectric
liquid-crystal transition occurs at p* = 0.6. For densities
between p* = 0.6 and 0.68, the gII(rII) and g~(r~) (Fig.
10) exhibit no structure whatsoever indicating that in
this density range the liquid crystal phase is a ferroelec-
tric nematic with no spatial order. For liquid crystals at
densities higher than p' —0.7, gII (rII) remains essentially
structureless but g~(r~) exhibits an oscillatory behavior.
These features are characteristic of columnar order [14j.
The existence of columnar order for the dipolar model
is not surprising because we would expect the dipoles to
have a tendency to form energetically favoured columns
at low temperatures.

The projections plotted in Fig. 9 indicate that the
short-range structure of the nematic phase differs from
the T* = 1.35 case. From Fig. 9 we see that the first
maximum in g o(r), g (r), and g o(r) is now split into
a very sharp peak at r = lo. and a much broader peak
at r = 1.3o.. The sharpness of the erst peak strongly
suggests that some level of "dimerization" not present at
T* = 1.35 occurs at T* = 1. This is consistent with the
formation of columnar order at higher densities as dis-
cussed above. The broad peak at r = 1.3o which occurs
weakly in the isotropic system and strongly in the liquid
crystals must reflect "dimer-dimer" or "column-column"

(at the higher densities) correlations. In the solid phase
the initial peaks collapse into a single maximum and all
structural features are similar to those observed in the
solid at T* = 1.35, p* = 1.0. This is also true of gII(rII)
and g~(r~), and the solid can be identified as a ferro-
electric tetragonal I crystal as described above. In fact,
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at T' = 1, p' = 0.95, the cell dimensions 1.0cr and 1.5o
again give a good fit to the structural properties.

Several other features of the results at T* = 1 should
be mentioned. From Fig. 1(b) we note that, unlike the
T' = 1.35 case [Fig. 1(a)], at the lower temperature the
liquid crystal to solid transition is not marked by a sig-
nificant jump in the order parameters. Further, from
Fig. 3(b) we see that the freezing transition (at p' —0.8)
is not accompanied by a sharp drop in the average energy
as is observed for T' = 1.35 [Fig. 3(a)]. These differences
can be explained by the fact that the columnar liquids
found for p' ) 0.7 are already highly ordered and hence
the order parameters and energy do not differ much from
those of the solid at the same density. Finally, we note
that on the scale used in Fig. 2(b), the average pres-
sure appears to turn up rather abruptly at the onset of
columnar order (i.e., p' 0.7). However, at this tem-
perature we have not attempted to identify branches as-
sociated with different fluid phases. Presumably, for the
isotropic-nematic transition more detailed results would
behave much as those obtained at T' = 1.35 [Fig. 2(a)].

B. Simulations with e' = 1

In order to demonstrate the maximum effect of chang-
ing the parameter e' in the effective PBC interaction
given by Eq. (2.2a), we have carried out some simulations
with e' = 1. This amounts to surrounding the "infinitely"
periodic sample with a vacuum [9] and is extreme since,
as shown above, for the present model the dielectric con-
stants are very large in the dense fluid regime. Before
discussing the results obtained, it is useful to consider
the second term in Eq. (2.2a). This term obviously van-
ishes when e' = oo and makes its maximum contribution
when e' = 1. Furthermore, it does not decay with separa-
tion and it is clear from the pi p2 dependence that this
term will favor antiparallel rather than parallel dipolar
orientations. Thus, at the very least, we might anticipate
a significant effect upon the ferroelectric behavior of the
nematic phase when e' is varied from oo to 1.

Calculations with 256 particles and e' = 1 did not give
a clearly defined liquid-crystal phase at T' = 1.35. How-
ever, a liquid crystal was obtained at T' = l.l and there-
fore this is the isotherm which we will discuss in detail
here. At this temperature simulations were carried out
with 108, 256, and 864 particles and the results are shown
in Figs. 11—15.

The order parameters, reduced pressures, and re-
duced potential energies obtained are plotted in Fig. 11.
From the second-rank order parameter, we see that an
isotropic-to-liquid-crystal transition occurs at p = 0.67,
and the behavior of the reduced pressure indicates that
solidification occurs somewhere in the vicinity of p* =
0.88. However, the results differ from those obtained with
large values of e' in one very striking manner. Here the
first-rank order parameter is within statistical error zero
at all densities. Thus the liquid-crystal and solid phases
are orientationally ordered but are not ferroelectric. As
discussed above, this result is to some degree anticipated
from the form of the effective pair potential with e' = 1.
However, we shall see below that the liquid crystals ob-

tained with e' = 1 and oo are not really as different as
they appear to be at first. Although with e' = 1 the sys-
tern is not globally ferroelectric, there are regions of local
dipole order which grow as the system size is increased.

The projections of the pair distribution function found
at different densities with 256 particles are given in
Fig. 12. We see that at short range the projections qual-
itatively resemble the results found with e' = oo and
T' = 1 (Fig. 9). For example, the first maximum in
gooo(r), giio(r), and gzzo(r) is split into two peaks in the
liquid crystal suggesting that at least some dimerization
is occurring and, by examining g~(r~) (Fig. 15), we see
that there is also indication of columnar order.

Some insight into the structure of the liquid crystal
found with e' = 1 can be obtained by examining Fig. 13
where we have plotted 108, 256, and 864 particle results
for g (r) and g (r) at p' = 0.7. For comparison re-
sults obtained at the same temperature and density with
e' = oo and results for the isotropic liquid at p' = 0.6
are also included. The projection gii (r) is very instruc-
tive. Although this function decays to zero in both the
liquid-crystal and isotropic systems (consistent with the
fact that (Pq) = 0 at all densities), it is obvious that the
dipolar ordering in these phases is difFerent. In the liq-
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FIG. 11. The orientational order parameters, reduced
pressure, and reduced potential energy obtained with ~' = 1
and T = 1.1. The symbols are as in Figs. 1—3.
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uid crystal g o(r) is large and positive at intermediate
separations and decays to zero much more slowly than in
the isotropic phase. This indicates a strong tendency to-
wards local dipolar alignment. Furthermore, we see that
g o(r) is significantly number dependent and that both
the strength and range of the tendency towards dipolar
alignment increases with the size of the sample. This
behavior is consistent with the formation of ferroelectric
domains in a sample which globally has no net dipole
moment. Indeed, from the number dependence of the
curves shown in Fig. 13 it is not unreasonable to conjec-
ture that simulations with very large samples would yield
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at the same temperature and density with 256 particles and
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tained with e' = 1 and T = 1.1. All results were obtained
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respectively.

FIG. 14. A snapshot of the domain structure found in the
liquid crystal with 864 particles, e' = 1, T' = l.l, and p' =
0.7. The particles are projected onto a plane perpendicular to
the director and the open and solid circles distinguish dipole
which are "up" from those which are "down. " The distances
indicated on the axis are in units of o' and L/2 = 5.36o.
Also note, that under periodic boundary conditions the open
circles at the bottom are actually part of the upper domain.
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results for g~~s(r) comparable with those obtained with
e' = oo over a wide range of separations. In other words,
for suKciently large samples we would expect ferroelec-
tric domains in which the local order is similar to that
obtained with small samples and e' = oo.

Further, from Fig. 13 we see that the g~~o(r) curve ob-
tained with e' = 1 is qualitatively similar to the e' = oo
result, although, as we might expect, the globally ferro-
electric system is a little more ordered (note that for 256
particles (P2) = 0.84 and 0.80 for e' = oo and 1, respec-
tively). It is also evident that compared with g~'0(r) the
number dependence of g22o(r) is relatively weak. How-
ever, the results do move slowly in the direction of the
e' = oo curve as the system size is increased. Again these
observations are completely consistent with the forma-
tion of ferroelectric domains.

The domain structure can in fact be clearly seen by
examining instantaneous configurations. In Fig. 14 we
show a "snapshot" obtained by projecting all particles
onto a plane perpendicular to the director but distin-
guishing dipoles which are "up" from those which are
"down. " In Fig. 14 this is done with open and solid cir-
cles and it is obvious from the pattern obtained that the
system has split into two distinct domains and that the
domain wall is sharp. The system illustrated in Fig. 14
contained 864 particles in the simulation cell but a simi-
lar picture emerges from calculations with 256 particles.

It is interesting to note that the existence of domain
structure in ferroelectric crystals surrounded by vacuum
is a well-known phenomenon [18] and that our results are
entirely consistent with the solid-state picture. A ratio-
nalization based upon macroscopic energetic considera-
tions is given in [18] and it is useful to briefly summarize
the qualitative arguments here. One begins by consider-
ing a perfect (i.e., single domain) spherical ferroelectric

crystal in vacuum. Charges induced on the external sur-
face create a "depolarizing" electric field with energy pro-
portional to the sample volume and to the square of the
polarization. This field acts to destroy the uniform polar-
ization of the perfect ferroelectric sample and the result
is that the crystal becomes divided into domains having
antiparallel directions of spontaneous polarization. Such
states are favored over the perfect ferroelectric crystal
because they reduce the energy of the depolarizing field.
However, there is an energy increase associated with the
formation of domain walls and hence domains will form
only until the two effects are balanced.

This is clearly a very qualitative argument but it does
give another perspective on our simulation results. The
second term in the effective interaction given by Eq.
(2.2a) can be regarded as a depolarizing field contribu-
tion. It has its maximum value when e' = 1 and the
ferroelectric liquid crystals form antiparallel domains. It
is also not difBcult to understand why the particles in
the simulation cell organize themselves into two equal
domains with the domain wall running across the cell
parallel to an axis orthogonal to the director as shown in
Fig. 14. For a periodic system with a cubic central cell,
this particular structural option completely destroys the
polarization while creating only the minimum necessary
interfacial area. For e' = oo (i.e. , sample surrounded by
a conductor) the depolarizing field is entirely "switched
off" and single domain or perfect liquid crystals are ob-
tained.

The functions
g~~ (r~~) and g~(r~) are given in Fig. 15.

Prom the structure of these curves and of the projections
shown in Fig. 12, the solid obtained with e' = 1 appears
to be a somewhat distorted version of the tetragonal I
crystal described above. However, in this case the crystal
is not ferroelectric and snapshots of instantaneous config-
urations again revealed antiparallel ferroelectric domains
similar to the situation in the liquid crystal. Evidence of
the local ferroelectric order is also present in the struc-
ture of g~~o(r) and g~~z(r) which resemble the e' = oo
results at short range.

IV. SUMMARY AND CONCLUSIONS

In this paper we have used molecular-dynamics simula-
tions in order to explore the phase behavior of strongly in-
teracting dipolar spheres. Periodic boundary conditions
were employed and in most calculations the parameter e'

occurring in the effective PBC potential was taken to be
infinity. This corresponds to the usual Ewald-Kornfeld
boundary conditions and would seem to be the most ap-
propriate choice for the present model which (at least in
the isotropic phase) is characterized by very large dielec-
tric constants. Purthermore, it was verified that if e' is
relatively large then the results obtained have little de-
pendence upon the exact value used. Also, in order to
determine the maximum efFect of varying e', some cal-
culations were carried out using the lowest permissible
value e' = 1.

With e' = oo, calculations with 256 and 864 particles
revealed no significant number dependence and simula-
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tions were carried out along two isotherms, T* = 1.35 and
1. As we previously reported [1], at T' = 1.35 one ob-
tains a ferroelectric nematic phase which freezes to form
a ferroelectric solid as the density is increased. Here we
have shown that this solid is a tetragonal I crystal with
all dipoles aligned. The pair distribution function indi-
cates that the short-range spatial correlations in the fer-
roelectric nematic phase resemble in some respects the
structure of the tetragonal I crystal. We speculate that
it is to some extent the development of these specific spa-
tial correlations which stabilizes the ferroelectric nematic
phase.

At T" = 1, one also obtains a ferroelectric nematic
phase. However, at this temperature there is evidence of
particle "dimerization" and the liquid rapidly develops
columnar order as the density is increased. Again, the
system freezes into a ferroelectric tetragonal I crystal.

At first sight, the results obtained with e' = 1 appear
to differ markedly from the e' = oo case. A liquid crystal
characterized by large second-rank order parameters and
some columnar structure was found at T' = l.l, but the
system did not become ferroelectric and the first-rank
order parameter was zero at all densities. However, the
behavior of the system with e' = 1 does not difFer as
drastically from the e' = oo case as first appears. In the
liquid crystal, the pair distribution function and snap-
shots of instantaneous configurations show the formation
of two antiparallel ferroelectric domains which grow in
size as the number of particles in the simulation cell is
increased. Our results strongly suggest that for suffi-

ciently large samples the local dipolar order within these
domains would be very similar to that in the ferroelectric
systems obtained with small samples and e' = oo.

The solid formed with t' = 1 provides further support
for this interpretation. Basically, a tetragonal I crys-

tal is obtained, although now there are likely distortions
since the dipoles are not all aligned. Again we find that
groups of dipoles are locally aligned to form ferroelec-
tric domains as in the liquid crystal. This is consistent
with the macroscopic behavior of ferroelectric crystals in
vacuum [18].

In summary, with PBC and e' = oo (or large) we find
globally ferroelectric liquids and the physical properties
of interest depend very little on sample size. With t' = 1,
we obtain liquid crystals with no net polarization but
with ferroelectric domains. We emphasize that both sets
of calculations lead to essentially the same qualitative
conclusions. In both cases strongly interacting dipolar
soft spheres form orientationally ordered liquids and in
both cases there is ferroelectric order. Whether or not
the system is perfectly ferroelectric or is broken down
into domains will depend upon how the long-range dipo-
lar forces are treated or, in the present context, upon
the value of e'. However, we do not believe that this e'

dependence presents any serious questions for the phys-
ical interpretation of simulation results. The underlying
reasons for the existence of domains in real ferroelectric
materials are well understood and the same physical prin-
ciples apply to the simulation studies.
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