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%'e have studied the spreading of liquid drops on a solid surface by molecular-dynamics simulations of
coexisting three-phase Lennard-Jones systems of liquid, vapor, and solid. We consider both spherically

symmetric atoms and diatomic molecules, and a range of interaction strengths. As the attraction be-

tween liquid and solid increases we observe a smooth transition in spreading regimes, from partial to
complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with

different velocities, the layers are ordered but not solid, with substantial molecular diffusion both within

and between layers. The qualitative behavior resembles recent experimental findings, but the detailed

dynamics differ. In particular, the layers exhibit an unusual spreading law, where their radii vary in time

as R -log&ot, which disagrees with experiments on polymeric liquids as well as recent calculations.

PACS number(s): 68.10.Gw, 68.45.Gd, 61.20.Ja

I. INTRODUCTION

There are several possibilities for the behavior of a
liquid drop placed on a solid surface, depending on the
nature of the materials involved and the interactions be-
tween them. The traditional classification [1,2] is in
terms of nonwetting, partially wetting, and completely
wetting cases, and the distinction between them can be
nicely conceptualized using Young's equation. Suppose
that a liquid (L ) drop makes a fixed contact angle 8 with
a solid (S) surface, with vapor ( V) outside the drop. A
force balance or the condition of thermodynamic equilib-
rium yields

ysv ysL y L v cosO=-O,

where y, is the free energy per unit area of an interface
separating phases i and j. The surface tensions y, are
measurable or calculable properties of the two phases in-
volved, and the meaning of (1) is that if the equation is
satisfied with

~
cos8~ ~ 1, then 8 is the contact angle, and

otherwise there is no such equilibrium state. If
cosO( —1 then it is energetically unfavorable to have
liquid and solid in contact, and the drop forms a bead
with O=m. or, in the absence of gravity, simply Aoats
away. If instead cosO) 1, then it is costly to have the
solid exposed to vapor, and the liquid spreads indefinitely
to shield the solid. In the latter case of "complete wet-
ting, " extensive recent experimental and theoretical work
[3—5] has explored the dynamics of spreading, the growth
laws for the drop radius and apparent angle, and the be-
havior of "precursor films" of micrometer thickness
which advance ahead of the main drop. Roughly speak-
ing, then, as the liquid-solid attraction increases, one ex-
pects stronger coverage of the solid substrate by the
liquid and transitions from nonwetting to partial wetting

to complete wetting states.
A fascinating very recent development has been the ob-

servation of a "terraced wetting" regime for certain non-
volatile polymeric liquids on certain solids with molecu-
larly smooth surfaces [6]. Here, the liquid again spreads
completely, but in the form of distinct monomolecular
layers of nanometer thickness. The various layers are in
the form of disks moving outwards, with radii varying
with time as t' . The bottom layer moves outwards
fastest, followed by the second from the bottom, etc. , and
the upper layers are consumed by the lower ones until

eventually only a single monolayer remains. The experi-
mental observations are based on optical interferometric
techniques, which have a resolution that is very fine nor-
mal to the surface (0.1 A) but rather coarse parallel to it
(200 p,m). Little information is known besides the time
dependence of the drop shape, and in particular the ex-
periments do not provide any information on the struc-
ture of the liquid inside the spreading layers. Likewise,
even an empirical classification of those substances exhib-
iting terraced spreading is not available.

While the existence of terraced wetting is experimen-
tally unambiguous, there is no clear theoretical under-
standing at present, and in particular it is not known pre-
cisely what distinguishes terraced from ordinary com-
plete wetting. Although obviously a collective many-

body effect, a continuum description of the spreading
process is cjifticult, since the 1ayers are not thick enough
to permit a conventional hydrodynamic description. (A
liquid layer thinner than ten or so molecular diameters
does not behave as a Newtonian fiuid [7].) The only
theoretical discussion directly aimed at the phenomenon

[8] involves two-dimensional rubberlike sheets which

grow by the accretion of molecules at their edges from
the layers above and below. The layer profiles satisfy
diffusion equations, and in consequence the layer radii
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have the t' growth seen in the experiments. On the
other hand, the absence of diffusion in the interior of the
layers must be assumed ad hoc and, as we shall see,
disagrees with the results presented here. An alternative
description is based on a Langevin equation, involving an
interfacial profile evolving under the action of attraction
to the substrate and thermal fluctuations, and stabilized
by surface tension [9]. This model is not specifically
aimed at terraced wetting, and does not agree with the
experiments, but we mention it because no other theoreti-
cal work is available.

In this paper we describe molecular-dynamics (MD)
simulations of liquids spreading on solids. The general
theme of this work is to construct on a computer an ar-
rangement of atoms and a choice of interactions between
them so as to mimic a laboratory experiment on a three-
phase system. Although this technique is intrinsically
limited to tiny idealized systems observed over miniscule
time intervals, it has the advantage of providing detailed
microscopic information about the time-dependent atom-
ic configurations. Furthermore, an extensive body of
work has shown that MD systems provide a faithful rep-
resentation of macroscopic phenomena for both equilibri-
um [10] and nonequilibrium [11] situations, fluid flow
problems [12], static drops in isolation [13] and on sub-
strates [14], moving contact lines [15,16], and even inter-
facial instabilities [17]. As we shall see, all of the wetting
regimes can be made to appear in MD simulations by ap-
propriate (and reasonable) choices of parameters, but we
focus on the terraced wetting case where additional infor-
mation is most desirable.

The organization of the paper is as follows. Section II
describes the details of the MD simulations used here,
and in particular the choice of lattice structures, interac-
tion parameters, and equilibration procedures. We con-
sider two types of liquid —one made of simple spherically
symmetric Lennard-Jones (LJ) atoms, while a second in-
volves a more realistic molecular liquid comprised of
pairs of LJ atoms nonrigidly tied together with an r at-
tractive interaction. The results of our spreading simula-
tions for one case are discussed in detail in Sec. III, while
the changes which occur in variant cases are discussed in
Sec. IV. Conclusions, comparison with other ap-
proaches, and suggestions for further work appear in Sec.
V. Some of our initial results have appeared previously
[18).

II. SIMULATION METHOD

To simulate the spreading of a drop, we require a
fluid —a /quid plus its vapor —in contact with a solid
lattice. The various particles are confined to a rectangu-
lar box of size L XL X (H+ H, ), with periodic boundary
conditions imposed on all sides. Initially, the fluid is in
the upper region of the box, 0 &z & H, while the lower re-
gion —H, ~ z ~ 0 is a solid wall made of five layers of fcc
solid with the (100) surface exposed to the fluid. The
solid is thick enough to prevent a direct interaction be-
tween the fluid particles on either side. We have worked
with several systems: a 4000-atom LJ fluid, with
L =H=60 and 9000 solid atoms, a 9000 atom LJ fluid

with L =90 and H=40 and 22500 solid atoms, and a
2000 molecule diatomic fluid, with L =60 and H=30
and 9000 solid atoms, and finally the same diatomic fluid
but a denser substrate with half the lattice spacing.

Turning to the choice of interaction, consider first the
atomic fluid systems. The interaction between two atoms
of types i and j separated by a distance r is given by a
Lennard-Jones potential

V; (r)= ——a;IJ

V 6 6 V (2)

where the coefficients are related to the conventional [10]
LJ energy and distance parameters c and o. via n=o.
and P=4eo'', respectively. The fluid subsystem is used
as a reference, with all distances expressed in terms of
o —off masses in terms of the fluid atomic mass mf,
and energies in terms of E~f. The resulting natural time
unit is r=(mfcrjfleff)' . The parameter a=af„ the
strength of the attraction between fluid and solid mole-
cules, is O(1) and varied in value to produce different
wetting regimes. For the solid-solid interactions we
choose s„=50 and a„=2 ' d, where d =&2 is the lat-
tice constant, so that the equilibrium position of the solid
particles is also the minimum of the potential. The mass
of the solid particles is 5mf. The potentials of fluid-fluid
interactions and fluid-solid interactions are cut off at
2.5off and 2.5of„respectively, and the potential of
solid-solid interactions is cut off at 1.8o „.

Given the potential, Newton's equations of motion are
integrated numerically using the Beeman algorithm [19],
with a time step ht =0.005~. The fluid and solid subsys-
tems are first equilibrated independently for a time inter-
val 20', by setting a=0 and Pf, =1 and using constant
kinetic-energy rescaling. In Fig. 1, the resulting "initial
configuration at time t =0" for the 4000 fluid-atom sys-
tem is shown, at temperature T=0.7 (in units of e divid-
ed by Boltzmann's constant). At later times, the middle
layer of the solid is kept at constant temperature by re-
scaling of the velocities of the particles in that layer only,
in analogy to a laboratory experiment where the solid
substrate is kept at a constant temperature. This serves
to stabilize the temperature of the entire system, provid-
ing a constant-volume quasi-canonical ensemble. After
equilibration, for a short period of time a constant gravi-
ty force is applied to the fluid particles to bring the drop
close to the solid surface. When the drop is brought
within the interaction range of the solid surface, the grav-
ity force is removed and the velocity of the center of mass
of the drop is reset to zero. The drop then is attracted
onto the substrate and begins to spread. (In fact, the at-
traction between the fluid and solid would attract the
drop to the surface even without gravity, and this device
merely saves time. )

As is evident in the figure, a LJ liquid is fairly volatile,
even at this low temperature barely above the freezing
point. Furthermore, since the interactions between vapor
particles and the liquid particles are the same, the
definition of the boundary of the drop is not very clear.
The radius of the drop could be determined systematical-
ly through the density profile [13], but this method is
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III. SPREADING DYNAMICS

FIG. 1. Initial configuration before spreading-liquid drop
plus vapor in a periodic box with a solid substrate. Liquid
atoms are shown as dots and solid atoms as plus signs. The
solid at the top of the figure represents the periodic image of
atoms in the bottom solid layer which have thermally fluctuated
below the periodic edge.

problematic after the drop spreads. In this work, we
define a drop as a cluster of fluid particles with interparti-
cle distance less than 1.40.. The radius of the drop deter-
mined by both methods is about the same, and equal to
10o for the 4000 Quid particle system and 13.50. for the
9000 fluid particle system, respectively.

For the diatomic cases, the liquid atoms are grouped
into pairs, and a confining potential

—12 +6
r

V, (r)=
7"

p

r+
Tp

(3)

with r p
=0./2, is applied between the two atoms in a pair.

This functional form is arbitrary, but serves to maintain
the integrity of the molecules. For the reasons discussed
in the next section, it is important to consider the spread-
ing of a nonvolatile liquid and, as we shall indicate below,
this device is sufficient. One might have chosen a har-
monic potential instead; we prefer (3) because the r
core prevents the overlap of the two atoms, and when
combined with the rapidly increasing r tail it produces a
fairly narrow potential well for which large excursions
are unlikely. The minimum of the potential V& gives a
nominal intramolecular spacing of rp X2' ' =0.5196o.,
and we have found that, for example at temperature
T=1.0, the actual average spacing of a molecule in a
drop is 0.52+0.04o.. In addition to V& acting within a
molecule, the usual LJ potentials described above are ap-
plied between each fluid atom and the atoms in all other
molecules, and between all fluid and solid atoms.
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FIG. 2. Snapshots of the 4000-atom LJ-fluid system for
a= 1.1. After time 600 the edge of the drop fluctuates but does
not spread further: partial wetting. The points represent the
centers of molecules in three dimensions, projected onto the x-z
plane. Only molecules with 0&z &20 are shown.

In this section we discuss in detail the spreading of the
4000-particle atomic fluid system A at a temperature
T=0.7. These results appear to be generic, and the
changes of detail observed in the other cases are dis-
cussed in the next section. The key control parameter is
the solid-liquid interaction strength a, and independent
simulations have been conducted for a range of values
0 a 2.0. If a 0, there is no attraction at all between
Quid and vapor atoms, and the drop does not wet the
solid. For values 0&+ ~ 1.1, we observed partial wetting,
in which the drop reached a stable spherical cap, while
for n ~ 1.2 the drop continues to spread up to the boun-
daries of the simulation box. The transitions between
different wetting regimes are apparently smooth.

Typical time sequences for the three classes of spread-
ing process are shown in Figs. 2 —4 for a=1.1, 1.2, and
1.4, respectively. The points in the figures are the centers
of the fluid molecules, where the three-dimensional sys-
tem has been projected onto the two-dimensional surface
of the box. In Fig. 2 a true steady state is reached, with a
well-defined contact angle of about 35' (for a=1.0 the
angle is 50'). In contrast, in Fig. 3 the spreading is slow
but does not terminate. Even at t =800 the height of the
drop is still decreasing while the particle reservoir in the
bulk of the drop is nearly depleted. The spreading drop
is disordered on the molecular scale, i.e., there is no evi-
dent layering, and this case corresponds to "convention-
al" complete wetting. In Fig. 4, the spreading is com-
plete, and the drop evolves into two distinct molecular
layers. Notice that the two layers spread faster than the
bulk of the drop, and that the first layer spreads faster
than the second. The simulation is terminated when the
spreading drop reaches the edge of the periodic box.
Note that there appear to be fewer molecules as e in-
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FIG. 5. Height of the drop vs time for a=1.2.
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FIG. 3. Snapshots of the 4000-atom LJ-fluid system for
a=1.2. At later times the liquid in the center continues to
spread until uniform coverage is reached: "ordinary" complete
wetting.

creases, but this optical illusion is caused by the enhanced
ordering in the fluid near the solid surface.

The time variation of the height of the drop, defined as
the z coordinate of its center of mass, is shown in Fig. 5
for the a=1.2 case. Initially, the drop is driven down by
the applied gravity force, and its height decreases quick-
ly. When the drop begins to interact with the substrate,
and gravity is removed, the decrease in h slows, and the
eventual decay is associated with the transition to uni-

time = 200

form coverage. For our subsequent discussion, we re-
quire an estimate of the radius of the layers, and this is
obtained from the density profile. For example, Fig. 6
shows the density distribution F(r) of the first layer for
a=1.4 at t =340, as a function of in-plane radius r. The
"first layer" is defined as those fluid atoms with
0.8(z (1.5 which are within the drop, according to the
definition in the previous section. (The choice of the z
limits is motivated by Fig. 8 below. ) The particle density
in the first layer is roughly a constant, po, for small r and
drops to zero at larger values. We define the radius of the
layer R via the relation F(R ) =pa/2.

In comparing the three cases, we see that the vapor
density decreases as a increases due to the condensation
of vapor molecules onto the solid wall. Figure 7 displays
this condensed layer of regularly spaced molecules for the
a=1.4 case. In the figure, the lines show the nominal
solid lattice and the + signs the instantaneous fluid
atomic positions, fully commensurate with the solid
structure. The preceding Figs. 2-4 display only those
fluid atoms with z & 0, and therefore omit much of this
condensate. The condensation can occur because the lat-
tice spacing is large enough to allow fluid atoms to fill the
interstices. The mobility of the particles in the condensed
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FIG. 4. Snapshots of the 4000-atom LJ-fluid system for
u= 1.4: terraced wetting case.

FIG. 6. Density profile of the first layer of a spreading drop
for a=1.4 at time t =340~.
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FIG. 7. Molecular positions in the adsorbed
fluid layer (+ signs) shown with respect to the
lattice axes of the solid substrate (solid grid).

layer is very low, and indeed it forms before the drop
spreads to that part of the surface. The existence of the
condensed layer should not affect the spreading process-
es, except insofar as it partially screens the drop from the
solid and slightly modifies the solid surface structure.

We proceed to discuss the complete spreading cases in
detail. In Fig. 4 one can readily observe the liquid layers
near the solid surface. These layers form once the drop is
in contact with the solid surface, but layering in liquids
near solid surfaces is not in itself novel [20j. The layered
structures in drops are shown more clearly by the histo-
gram along the z direction in Fig. 8. In this figure, the
first peak indicates the condensed vapor, and the second

200
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0 1 2 3 4

FIG. 8. Density profile in the vertical direction for a spread-
ing drop with a= 1.4 (solid line) at t =340~ and a=1.2 (dashed
line) at time t =450~.

and third peaks reflect the first and second layers, respec-
tively. In contrast, for a=1.2 the location of the first
peak (the condensed layer) is higher than that in a=1.4
because of the weaker solid-liquid interaction. Also, the
third peak (the second layer) in a = 1.2 is less distinguish-
able than that in +=1.4.

The atomic positions of the first and second layers in
terraced spreading are quite strongly ordered. Figures
9(a) and 9(b) show typical x-y projections of the first and
second layers for +=1.4. The particles form a defective
hexagonal lattice, with stronger ordering in the first layer
than the second, and within each layer the inner part is
more ordered than the outer part. Unlike the condensed
layer, Fig. 10 indicates that the nearly ordered first layer
is not commensurate with the solid surface. This may
contribute to the mobility of the particles in the layers,
which we discuss further below. The ordering within lay-
ers may be further quantified by considering the radial
probability distribution functions. Figure 11(a) shows the
two-dimensional radial functions for a slab through the
center of the liquid drop before contact with the solid.
Such a curve is typical of a liquid, with a prominent
nearest-neighbor first peak and a rather broad second
peak exemplifying short-range ordering. In contrast,
Figs. 11(b) and 11(c) show the in-plane two-dimensional
radial distribution functions for the first and second lay-
ers, respectively. For each layer, we distinguish an inner
region r ~ R —5 (solid curve) and an outer region
R —5 & r ~ R (dashed curve), where R is the radius of the
layer as calculated by the procedure described above. We
see that the liquid structure in the layers displays consid-
erably more ordering than in the free drop, the peaks be-
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FIG. 9. x-y positions of (a) the first layer and (b) the second
layer at t =340' for a=1.4.

ing higher and narrower, consistent with the visual evi-
dence in Fig. 9.

As the boundaries of the layers move outward, vacan-
cies are created both in the interior and at the edge. By
examining the atomic positions as a function of time, one
sees that the vacancies in the first layer provide the likely
sites for the particles to move in from above. As an illus-
tration, Fig. 12 shows the x-y projection of the first layer
at t =340 and 341. The dots represent the particles in
the first layer at t =340, which in this case have stayed in
place, and the circles represent particles that were not in
the first layer at t =340, but moved into the first layer by
time 341. The circles are more or less in the defect loca-
tions.

Since the Quid layers have a solidlike structure, we may
ask if the particles in the layers are really in a liquid, or
simply solidified. For this purpose, we calculate the
probability distribution function of displacements. Since
the spreading is relatively slow, we considered a sliding
time window of interval 50~, averaging over
configurations between t =336 and 435 for a=1.4. We
have obtained the vertical probability distribution func-
tion P(b,z ) for displacements normal to the solid surface,
as well as the radial probability distribution P(b, r) for
motion parallel to the surface, separately for the first and
second layers of the spreading drop and for various initial
radial intervals. To be precise, we define the first layer as
0.8 &z & 1.5 and the second as 1.5 &z & 2.5, and in each
layer we have three regions: I, 0 & r & 10; II, 10 & r & 20;
and III, 20 & r & 30, where r =0 corresponds to the center
of mass of the layer. Note that the vapor which con-

FIG. 10. Molecular positions in the first

spreading layer, as in Fig. 7.
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FIG. 13. Vertical probability distribution function P(hz) for
(a) the first layer and (b) the second layer. The squares, circles,
and triangles represent radial regions I, II, and III, respectively,
as specified in the text.
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FIG. 11. (a) Two-dimensional radial distribution function for

a slab of liquid drop before interacting with the solid. (b) In-
plane radial distribution function for the first spreading layer;
inner region (solid line) and outer region (dashed line) shown
separately. (c) Same as (b) for the second spreading layer.
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(dots) plus new atoms which migrate into this layer within the
next ~ (circles).

FIG. 14. Radial probability distribution function P(hr), in
the same format as Fig. 13.
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tween lattice sites over the course of these simulations.
The next aspect of spreading we consider is the time

dependence of the layer radii. Figure 15 shows the evolu-
tion of the average radii of the first and second layers as a
function of time for a = 1.4. Evidently, a reasonable fit is

Q 300

200

R (t)=C log, ot+D . (4)

100
8~8

1.5
I

2.0

~Og10(t)
2.5 3.0

FIG. 15. Dependence of drop radius on time for a=1.4 and
T=0.7 for the first (squares) and second (circles) layers.
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FIG. 16. Coefficient of log l pt in the spreading law (4) for vari-
ous a: boxes, first layer; circles, second layer.

densed on the solid surface before the drop spread is rath-
er static and has not been included in this analysis.

The distribution of vertical displacements for the first
layer is given in Fig. 13(a); we see that for both inner re-
gions I and II the principal peak at hz =0 indicates that
these molecules tend to stay in the first layer, while the
secondary peak at hz=1 indicates some probability to
jump up to the second layer. In contrast, molecules in
outer region III are quite likely to move closer to the
solid. In Fig. 13(b) for the second layer, the peak at
Az = —1 indicates that the principal tendency is to move
downwards to the first layer. This tendency decreases as
one moves inwards from the outer edge of the layer, so
that the inner core is somewhat persistent. Figures 14(a)
and 14(b) give the corresponding radial probability distri-
butions for the first and second layers, respectively. The
inner ring of the first layer has a peak of unit width favor-
ing small radial displacements, whereas the molecules in
region II and III, as well as those in the second layer,
have rather broad distributions skewed towards positive
b, r. The general conclusion here is that, except for
perhaps the inner ring of the first layer, the spreading
liquid is not at all rigid or impenetrable. In contrast, the
solid substrate itself shows essentially no diffusion be-

The first layer's squared radius is consistently of this
form, although is a bit ragged towards the end of the
simulation where finite sample size effects become more
important. The second layer's growth levels off eventual-
ly, when the layer runs out of molecules. As usual, a log-
arithmic variation over a modest time interval is con-
sistent with a weak power law, and a reasonable fit of the
form R —&t is possible. Similar behavior is found for
the other values of a where complete wetting occurs.
The constant C has been determined for 1.2 a ~ 2.0 and
the result is shown in Fig. 16. It seems that C increases
with cz at first, and then saturates.

IV. SPREADING IN MODIFIED SYSTEMS

Although our simulations with LJ atomic liquids show
the expected qualitative spreading regimes, the observed
R —log, ot relation disagrees with the (diffusive) R t-
behavior found in laboratory experiments. In order to
explore possible explanations for the discrepancy, we
have repeated the spreading simulations on several
modified systems.

One possible source of difference is the comparatively
small number of molecules in the simulation. A laborato-
ry drop has an enormous reservoir of molecules in its
center available for continued spreading, whereas here
once two distinct layers are visible we have nearly ex-
hausted the supply. Although a 4000-atom Quid is cer-
tainly a small system, the results in Fig. 15 are quite con-
sistent with standard finite-size effects, and suggest that a
larger drop would continue to spread at the same rate.
To verify this statement, we conducted a single run on a
larger system, with 9000 Quid molecules and a maximum
layer radius of 30. The resulting time series of molecular
positions, shown in Fig. 17, are consistent with those of
the smaller system. Furthermore, Fig. 18 shows that the
growth rate of the layers is well described by the same
R =Clog&ot+D relation, where now C=571 and 300
for the first and second layers, respectively. (To be pre-
cise, this form applies after an early transient regime
where a layer is entirely below the bulk of the drop. ) The
9000-atom computation takes us to the limit of our avail-
able computer power, requiring about 3 min of CPU time
per ~ on a Cray-YMP supercomputer. We attempted to
extend the calculation to still larger systems by simulat-
ing the spreading of a liquid cylinder of radius 19o. in a
slab geometry, but in this case the spreading was so slow
that the computation proved prohibitive.

Another possible source of concern is the fact that the
simulations are conducted at thermodynamic conditions
not far from the freezing temperature. We chose a low
temperature in the simulations for two reasons: first, to
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minimize the amount of vapor in coexistence, and
second, to minimize thermal fluctuations in velocity, to
attempt to extract a velocity field for comparison with
hydrodynamic-based models. (Regrettably, the measured
velocity turned out to be indistinguishable from thermal
noise. ) One might also argue that the formation of the
layers is a solidification process which reduces the
diffusivity. We performed a simulation with 4000 parti-
cles at slightly higher temperature T=0.8 with a = 1.4.
The variation of layer radius with time for this case is
shown in Fig. 19, and again the R =C log&ot+D relation
holds. The C values are now 467 for the first layer and
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FIG. 18. Growth law corresponding to Fig. 17.

FIG. 17. Time evolution of the spreading of a 9000-atom LJ
drop, a=1.4.

FIG. 19. Growth law for a 4000-atom LJ drop at T=O. 8.

343 for the second layer. As expected, a higher tempera-
ture enhances the mobility of the liquid atoms, and these
values are higher than those for T=0.7.

Another difference between the present simulations
and laboratory experiments is that here the solid-liquid
interaction cuts off at a fixed distance (for computational
efficiency), whereas a realistic long-range van der Waals
potential, arising from a superposition of many layers of
r interaction, behaves approximately as r [20]. In
order to check that the partial wetting is not due to this
cutoff, we ran a simulation with an extended fluid-solid
interaction. This extra potential had the form
k/(z —zo) for z (the coordinate normal to the solid sur-
face) greater than the cutoff, with the constants k and z~
determined by the continuity of the potential. We com-
pared the final states with and without this extended po-
tential for a = 1.0 and did not see any qualitative
changes. In the higher-a cases an additional attraction
could only enhance the layering and spreading, so this
check was omitted there.

The last remaining obvious difference between the
simulations here and the original observations is in the
characteristics of the liquid. The experiments [6] were
conducted with nonvolatile liquids of appreciable molec-
ular weight (545 —2400). It is not feasible at present to
perform MD simulations of the dynamics of large ensem-
bles of large molecules, but we can deal with the issue of
volatility and begin to address the molecular size problem
using the dumbbell molecules (DBM's) introduced in Sec.
II. Figure 20 shows a time sequence of the terraced
spreading of DBM's, where the rnolecules are shown as
lines whose length is the intramolecular spacing. In this
case we have chosen a =3.0 and temperature T= 1.0. At
lower values of a or T we observe partial wetting; not
surprisingly, the parameter values which separate the
different regimes are material dependent. Note first the
near absence of vapor outside the drop, in comparison
with Figs. 2 —4. There is an obvious intuitive explanation
for the distinction between the two liquids. Roughly
speaking, the simple LJ liquid is volatile because if a sin-
gle spherically symmetric atom is near the edge of the
liquid it is easy to thermally fluctuate into the weak tail
region of the LJ potential and escape. On the other hand,
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FIG. 22. Orientational order in the spreading of DBM: a
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in the DBM case an edge molecule vaporizes only if both
atoms are in the potential tail, and this configuration is
much less likely.

We see that in the DBM system as well, with an ap-
propriate choice of interaction the spreading is in the
form of well-defined layers. The growth law of the layers
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FIG. 23. Snapshots of DBM spreading at a= 3.0 and T= 1.0
with the lattice spacing reduced by half.

400

300

200

0
1.5

0

I I

2.0

log~ p(t)
2.5

o&~
pp~ ooo

pp
pd oooo

p88 o
go

3.0

0

1.5

ooo

2.0

1OgI P( t)

2.5 3.0

FIG. 21. Growth law corresponding to Fig. 20. FIG. 24. Growth law corresponding to Fig. 23.



7748 JU-XING YANG, JOEL KOPLIK, AND JAYANTH R. BANAVAR 46

'4'~ kCQyjf
.b -~

t ~~a ~lM ~i~, )aii Le~i~

since the effects of the corrigations in the potential on the
atoms in the spreading molecules are lost, allowing the
molecules to slide freely along the solid.

V. CONCLUSIONS
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FIG. 25. Close-up view in the reduced lattice spacing case.

is given in Fig. 21, and takes the same R (t) lo-gt form
as previously. In this case we find C=205 for the first
layer, and C=129 for the second. One interesting new
feature of this system is the spatial orientation of the mol-
ecules. In the presence of the strong interaction between
liquid and solid atoms, there is an adsorbed layer of
liquid, as shown in Fig. 22, where the DBM's prefer to
line up vertically. In the first spreading layer, in contrast,
the preferred orientation is closer to horizontal, while in
the second layer the orientation is more random. To be
precise, in the final state, the average orientations relative
to the vertical of the condensed, first and second layers
are 66+27', 70+18', and 62+22', respectively. The
specific molecular configurations are, we believe, deter-
mined by the details of the lattice spacing and the choice
of interactions, and are therefore rather material depen-
dent. To reconfirm the assertion that the solidification of
the spreading liquid is not a factor, we repeated the cal-
culation at T= 1.2 and found similar results.

One last important check concerns the size of the mol-
ecules relative to the lattice spacing. One might question
whether the results depend on the fact that the molecules
are small enough to fit within the gaps of the lattice and
whether the resulting condensate plays a role. To this
end, we considered the same DBM fluid spreading on a
solid surface with half the lattice spacing. The time se-
quence appears in Fig. 23, the growth law in Fig. 24, and
a close-up view of the orientational ordering in Fig. 25.
We see that the tightness of the lattice prevents the con-
densation found in previous cases, and now there is no
condensed layer at all. The first spreading layer now
finds it energetically advantageous to strongly align
parallel to the surface. The average orientations with
respect to the vertical are now 85+5 and 62+22' for the
first and second layers, respectively. Most significantly,
the logarithmic growth law still holds for the time depen-
dence of layer radii.

The other extreme in regard to molecule size versus
lattice spacing is considered in two recent papers: a MD
study of drop spreading with LJ atoms and a smooth,
continuum substrate introduced through a z-dependent
potential [21], and a Monte Carlo simulation of an Ising-
like model for spreading with a similar substrate [22].
These authors find a diffusive spreading law in the ap-
propriate time interval (after initial transients and before
the finite volume effects set in, respectively, in the two pa-
pers). In our opinion, however, the lack of realism of the
solid casts some question on the relevance of the results,

In summary, we have carried out systematic
molecular-dynamics studies of the spreading of simple
atomic and molecular liquids on a solid surface. We ob-
serve that fairly modest variations in the strength of the
solid-liquid attraction potential lead to qualitatively
different wetting regimes, each with a laboratory counter-
part. We have focused on the recently discovered ter-
raced spreading case, where MD is in the best position to
provide new information. Although we have clear evi-
dence for spreading in the form of distinct layers, in a
variety of systems, the dynamics of the drop size differs in
important details from laboratory observation.

The main surprise is in the growth law for the layer ra-
dii. The experiments give a difFusive behavior R (t)-t,
which is also the obvious theoretical expectation, on the
grounds that phenomena at scales below the hydro-
dynamic continuum are dominated by molecular
diffusion. We observe a significantly slower growth,
R (t)- log, ot, in a variety of systems. In fact, the vari-
ants were selected precisely to address possible explana-
tions of the difference in growth laws. We are left
without a convincing explanation, other than the possi-
bility that there are diferent types of spreading, perhaps
depending on the details of the interparticle interactions,
or molecular structure, or perhaps involving a crossover
to a diffusive regime at yet larger scales.

A possible explanation for the discrepancy in growth
law originates from the size of the molecules studied here
compared with those used experimentally. In the simula-
tion, "small" molecules attempt to diffuse outwards un-
der the pressure of the liquid reservoir, while being re-
strained by the attraction to the solid substrate. Indeed,
the solid lattice provides preferred sites for the fluid
atoms, and the growth is associated with hopping be-
tween these trapping sites. Many examples of
subdiffusive behavior in the presence of traps are known
[23], so a slower growth law is not unreasonable. For po-
lymer molecules, however, it is unlikely that many of the
atoms in the molecule are in register with the substrate
and the trapping might be expected to be less effective.
An analogous situation [24] occurs for the flow of liquids
in a channel. Polymeric liquids are often non-Newtonian,
and have a slip velocity profile, while Newtonian liquids
(usually comprised of simpler molecules) exhibit no slip,
which corresponds to reduced mobility in the fluid near a
solid wall.

Our results for the spreading law also differ from
theoretical treatments of the subject. There is at the mo-
ment one specific theoretical model relevant to terraced
spreading [8], which considers the layer to be rubberlike
sheets with diffusive mass transfer at the edges of a layer.
We instead observe substantial molecular diffusion every-
where within and on the edges of the spreading drops, so
at least for our systems another explanation must be
sought. Other theoretical approaches in this general field
involve thicker "hydrodynamic" films [4], or generic
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solid-on-solid-like models with substrate interactions add-
ed [9]. The former approach involves specific assump-
tions which do not appear to be applicable on the few-
molecule scale, while the latter could conceivably be
relevant in the sense of being in the correct universality
class, but do not in fact seem to have the observed behav-
ior. In general, terraced spreading seems to be a new and
only partially understood phenomenon.
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