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Simulation and theory of two-phase How in porous media
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A three-dimensional network model of a porous medium is used to compute relative permeabilities
and capillary pressures in drainage and imbibition. In contrast, the invasion-percolation model of
drainage with trapping does not make a sensible prediction for the relative permeability of either the dis-

placed or injected phases since it fails to represent the fluid connectivity correctly. We describe two real-
istic trapping mechanisms which overcome this difficulty by representing the flow of the wetting phase
along irregularities in the pore-gain surface. In imbibition, we simulate the rate-dependent competition
between bulk filling of pores and film flow and show how different displacement mechanisms affect rela-
tive permeability. We verify percolation-theory results for the effects of buoyancy forces on trapped sat-
uration by simulation and derive an expression for the correlation length in displacements perturbed by
viscous forces. We can then demonstrate how relative permeabilities measured in quasistatic systems at
capillary equilibrium are still meaningful in larger-scale displacements where viscous forces predom-
inate.

PACS number(s): 47.55.Mh, 64.60.Ak, 47.55.Kf

I. INTRODUCTION

There has been much study of two-phase flow using
numerical networks to represent the pore structure
[1—21]. These simulations have been complimented by
experiments in idealized two-dimensional porous media
[4,8,17,18,22 —26] where different pore-scale displacement
mechanisms could be seen. There have also been several
theoretical and numerical studies relating capillary-
dominated flow to percolation theory [27—34].

Whilst the displacement mechanisms in model two-
dimensional (2D) experimental porous media are well es-
tablished [22,35,36], there is still considerable confusion
in the literature as to the appropriate flow behavior
necessary to describe flow through three-dimensional
rock. By using a numerical network to represent the pore
structure, we can clearly demonstrate that simple site or
bond percolation models are inadequate representations
of either drainage (invasion by a nonwetting fluid) or im-
bibition (injection of a wetting fiuid).

The invasion-percolation model of drainage with trap-
ping accurately reproduces the configuration of filled

pores seen in two-dimensional experiments, but does not
make a sensible prediction for the overall hydraulic con-
ductivity (relative permeability) of either the displaced or
injected phases in three dimensions as it fails to represent
the Quid connectivity correctly. We show how to modify
the model to account for the flow of the wetting phase
along small crevices in the pore-grain surface and de-
scribe two realistic trapping mechanisms.

As shown by the experiments of Lenormand and Zar-
cone [22], a percolation model of imbibition is typically
never appropriate and the displacement is rate depen-
dent, even when viscous forces are neglected, as there is a

competition between an advancing and swelling wetting
film, and the bulk filling of tubes and pores. We simulate
these processes in a three-dimensional network and show
their affects on relative permeability.

Percolation theory is thus restricted to a limited set of
circumstances, namely drainage and the trapping of both
wetting and nonwetting phases. We apply scaling argu-
ments to valid models of fluid flow and demonstrate their
validity by simulation.

Relative permeability and capillary pressure are mesos-
copic parameters in empirical differential equations
which describe the average transport behavior of multi-
phase flow. They are well-defined properties for steady-
state capillary-dominated displacements, but it is not ob-
vious how the concept can be applied to flow influenced

by viscous and buoyancy forces. Wilkinson postulated
[33,34] that these forces introduce a finite correlation
length into a percolation description of trapping. We
verify this picture for buoyancy by simulation. We then
derive the viscous correlation length. The relative per-
meability is well defined if measured in a region where
the saturation distribution is locally homogeneous, that is
over a scale greater than the correlation length and small-
er than the macroscopic size of the displacement pattern
in which the averaged saturation changes appreciably.
This means that relative permeability is still a valid con-
cept in displacements which are dominated by viscous
forces on the large scale, as long as the fluid configuration
is controlled mainly by capillary forces at the pore scale,
which is almost always the case in experimental and
reservoir flows in porous media.

Fluid displacements in aquifers and oil reservoirs typi-
cally occur over lengths of several kilometers. The
large-scale behavior is controlled by a flow field governed

by viscous and buoyancy forces and the geological
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heterogeneity of the system. The macroscopic flow may
be predicted from a numerical computation of the flow
with estimates for the spatially varying fluid and rock
properties. However, at the pore scale it is capillary
forces which control the fluid configuration and the hy-
draulic conductivity of each phase. The use of relative
permeabilities in a multiphase Darcy law bridges the gap
between pore-scale displacement phenomena and the
macroscopic flow by incorporating the relevant micro-
scopic dynamics in a differential equation which may be
solved on a larger system. It is for this reason that a clear
understanding of relative permeability and how it
changes in different circumstances is important.

II. REPRESENTING THE PORE SPACE

L E

The pore space of a rock consists of large void spaces
between grains, connected by thinner pathways. The sur-
face between the rock and pore space is rough and con-
tinuous. The large voids can contain much fluid, and so a
phase which fills these regions will have a high satura-
tion. The thinner connections present the major barriers
to flow, which affects the permeability. The rough pore-
grain surface controls film transport of the wetting phase.
Our numerical network model will attempt to reproduce
these features, but is not constructed as a correct and ac-
curate representation of a particular physical system.

We use a tubes and chambers model of a porous medi-
um [37]. The void spaces are represented as spherical
nodes or pores of a radius r„which can vary. The
volume of each node is —', m.r„.The nodes are connected
by tubes or throats with a minimum radius r„wherer„)r, . The value of r, for each throat may be different.
We define a distribution function f(r, ) such that the
fraction of tubes in the network with a radius between r,
and r, +dr, is f (r, )dr, . The throats are modeled as cylin-
drical tubes of radius r, and volume mr, I, where I is the
tube length. The nodes or pores are placed in a simple
cubic lattice with tubes joining nearest neighbors.

The surface roughness is not modeled explicitly. How-
ever, we do allow a completely wetting phases to per-
meate the whole system as a thin film as wide as the scale
of the roughness (which is usually less than l pm). When
we discuss imbibition we will quantify the rate of film
flow and its dependence on the degree of roughness.

Figure 1 shows a 2D section through our numerical
network. The tubes are simply represented as cylinders
whose radii are chosen uniformly from 0 to r,o, where r,o
is some referenced radius. The node radii are chosen at
random uniformly from r,o to 4r,o.

III. TWO-PHASE FLOW

A. Capillary equilibrium

Consider two immiscible fluids at rest in a porous
medium. If one phase is completely wetting, a thin film
will coat all the solid surfaces and thus caver the small
( ( l pm) irregularities on the grains. However, there will
also be curved surfaces between the two fluids. There is a
pressure drop hP across the interface because of the sur-
face tension between the fluids:

FIG. 1. A two-dimensional cross section through a numeri-
cal network model of a porous medium. The pore spaces are ar-
ranged on a cubic grid.

1 1hP =y — +—
1 r2

(3 l)

where y is the surface tension and r, and r2 are the prin-
cipal radii of curvature of the interface. For a cylindrical
throat of radius r

2ycos8
(3.2)

B. Relative permeability

We wish to know how the pore-scale fluid dynamics
affects macroscopic transport properties in two-phase
flow. The most important property is the relative per-
meability, introduced by Muskat and Meres [38] and
Wyckoff and Botset [39]. We start from Darcy's law for
single-phase flow [40]:

K
Q = — VP, —

p
(3.3)

where Q is the flow rate per unit cross section of material
and VP is the pressure gradient. Q and P are macroscop-
ic averages, measured over several pore lengths or mare.
If this average is taken over a length larger that any
correlation length in the pore structure of the medium

0 is called the contact angle and is the angle at which the
fluid interface approaches the solid surface. If 8&90'
there is a decrease in pressure across the boundary —the
pressure is higher in the nonwetting fluid.

AP is very large for any interface in or across tiny cre-
vices in the porous medium, since a radius of curvature
will be small. Thus, if there are small channels or corru-
gations along the pore-grain surface, the wetting phase
will preferentially fill them. The wetting phase is thus
likely to be hydraulically connected throughout the rock
along a network of subpore scale roughness. We show
later that consideration of flow through this roughness is
vital to be able to make sensible predictions of relative
permeability.
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(i.e., we measure Q in a statistically homogeneous sam-
ple), then the permeability K is a well-defined, intensive
property of the rock, which characterizes its flow resis-
tance.

For two-phase immiscible flow, the two fluids reside in
different subsections of the pore space. For steady-state
flow at an infinitesimal rate, with no interface displace-
ment, then the fluids flow through these separate subsec-
tions with no interaction between the phases. In this case
there is a hydraulic conductance associated with each
phase, which is some fraction of the single phase value K.
This fraction is called the relative permeability k„.k„de-
pends purely on the fluid configuration at a given satura-
tion. For a given type of displacement k, may be written
as a function of one of the phase saturations only (nor-
mally the wetting phase saturation S):

Kk,„(S)VP„, (3.4)

Kk„„„(S)Q„„=— VP„„,
Pnw

(3.5)

where the subscripts w and nw refer to the wetting and
nonwetting phases, respectively. The phase pressures P„
and P„„differby the capillary pressure [41]:

P„(S)=P„„P„.— (3.6)

If the phases are distributed uniformly, then the relative
permeabilities and capillary pressure defined above are
intensive transport properties describing the system and
the displacement processes through it.

The discussion above makes a number of assumptions.
First, in two-phase flow, there are interfaces between
solid and liquid and liquid and liquid. The boundary con-
ditions are not the same in these two cases. There is no
flow at a solid-liquid interface, whereas there will be
tangential flow at a liquid-liquid boundary. For instance,
if the solid is coated by a wetting film, the nonwetting
fluid may be able to move faster through a throat than if
the film were absent. This leads to a lubricating effect,
which depends on the viscosity ratio of the fluids and
may given relative permeabilities greater than 1 [42,43].
For displacements at a finite flow rate, the configuration
of fluid is affected by both viscous and capillary forces,
and the relative permeabilities will change from their
quasistatic values [19,20,44 —46]. The significance of
viscous effects not only increases with flow rate, but also
with the length scale over which the flow Q is measured.
Experimentally, dynamic (non-steady-state) displace-
ments are often performed, and the measured relative
permeabilities are those consistent with conservation of
mass and the observed, nonuniform, saturation profile.
These relative permeabilities are then used in reservoir
simulators to represent flow in inhomogeneous grid
blocks, which are much larger than the size of the experi-
mental system.

It is generally not the case, however, that steady-state
relative permeabilities are very different from the quanti-
ties actually measured in experiments. For experiments
performed at low flow rates on homogeneous samples, the

relative permeability in the vast majority of systems is in-
sensitive to the applied pressure gradient or the size of
the sample [46—53]. The effect on relative permeability is
only clearly apparent for displacements with a very low
surface tension [45] or flow rates about ten tiines higher
than those in typical core floods, and at least 100 times
faster than usual reservoir flows [19,20]. We will show
why this is the case by demonstrating that viscous forces
may be considered as a perturbative influence on capil-
lary equilibrium, and explain how relative permeability
may be treated consistently even if viscous forces dom-
inate over large distances.

IV. SIMULATIONS OF DRAINAGE

A. Invasion percolation

Invasion percolation is a model of capillary controlled
flow of a fluid into a porous medium first proposed by
Chandler et al. [28] and Wilkinson and Willemsen [29].
It is similar to the process which is thought to occur in
low-rate drainage experiments. Drainage occurs during
the formation of a petroleum reservoir when oil, the
nonwetting phase, migrates from the source rock into a
trap formation, displacing a wetting phase (brine). The
injected nonwetting fluid occupies the pore spaces in se-
quence, at each stage passing through the available throat
or pore with the largest radius (lowest capillary pressure).
However, retraction from pores is neglected. In this sec-
tion we will consider the medium originally completely
saturated with wetting fluid (for instance, water).
Nonwetting fiuid (say, oil) is then injected through one
face of the system and the fluids escape through the op-
posite face. The dynamics of invasion percolation has
been studied, but an analysis investigating the macro-
scopic transport properties and their sensitivity to flow in
microscopic roughness and trapping has not been provid-
ed before.

Trapping rules

When the invading phase enters a pore or throat, the
displaced fluid needs to escape. If the wetting fluid is
continuous throughout the system, then at very low injec-
tion rates the wetting phase can escape from any pore or
throat by flow in surface roughness to the outlet of the
system. This means that no wetting phase is trapped.
This mechanism, which results in a virtually zero irre-
ducible water saturation (only thin layers of wetting
phase are left in the system), is also equivalent to the dis-
placement of an infinitely compressible fluid, or injection
into a vacuum, as in mercury injection experiments. In
many experiments the irreducible saturation of wetting
phase is typically 10%%uo [46,52,53], which cannot be ac-
counted for solely by surface roughness: some of the wet-
ting phase is trapped in the bulk of the throats and pores.
This is certain to happen if the displaced phase is not
completely wetting and there is no flow along small irre-
gularities.

We present two simple models of trapping, which we
will ca11 trapping in pores and trapping in pores and
throats. If a pore or throat is completely surrounded by
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pores filled with nonwetting fluid, then wetting fiuid can
only be displaced from these regions by fiow along corru-
gations in the pore-grain interface. If we neglect Qow in
roughness entirely, then the invading fluid can only fill a
throat or pore if it lies on a continuous pathway of
throats and pores full of wetting fluid to the outlet of the
system, along which the displaced phase can escape. This
is trapping in pores and throats, and is illustrated
schematically in Fig. 2. The nonwetting fluid is unable to
form loops, since there is always a final link of trapped
defending phase in the way. Topologically, the invading
fluid has a tree (or, more appropriately, a forest) struc-
ture. The fluid pathways can branch, but they cannot
merge. The original descriptions of invasion percolation
was a modified form of bond percolation which did not
carefully describe the process in terms of pores and
throats, but this description appears to be consistent with
the trapping mechanisms proposed by Chandler et al.
[28] and Wilkinson and Willemsen [29]. As we will
demonstrate later, as well as resulting in a somewhat high
irreducible wetting phase saturation, this model predicts
vanishing relative permeabilities (even in three dimen-
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FIG. 2. Trapping mechanisms in drainage. (a) If there is
trapping in pores and tubes, no further displacement is possible
on the grid illustrated. Loops of the nonwetting fluid cannot be
formed. (b) If there is trapping in pores, but not in tubes, tubes
connected to a pore filled with wetting fluid may be filled. (c)
With no trapping all parts of the network may be filled.

The numerical network is a cubic array of cylindrical
tubes and spherical pores, as described in Sec. II. Origi-
nally the network is full of wetting fluid. Nonwetting
Quid is injected into one face of the system. The tubes
and pores are filled one at a time. A tube is considered
available if it contains no injected fluid, but is connected
to a pore which does. At each stage the available tube
with the largest radius is filled, together with any empty
pore attached to it. However, if the displaced fluid in the
pore or tube is trapped, as described above, then it cannot
be filled. The injection pressure associated with the filling
at an infinitesimal flow rate is simply given by capillary
equilibrium, Eq. (3.2).

Fluid is injected into one side of the network and es-
capes through the opposite end. There are periodic
boundary conditions on the other sides. Breakthrough is
defined when the injected Quid first reaches the outlet.
Using percolation theory [54,55], the saturation at break-
through in a system of size L scales as

S-LD-", (4.l)

where d is the space dimension and D, the fractal dimen-
sion, is approximately 1.89 for d =2 and 2.5 for d =3
[28,29]. For very large L the saturation at breakthrough
becomes infinitesimal.

The terminal point is defined as the moment when the
displacement stops. Without trapping, the entire net-
work is flooded, whereas with trapping, immobile blobs
or ganglia of surrounded wetting fluid are left, as illus-
trated in Fig. 3. Breakthrough represents the percolation
threshold of the nonwetting phase, when the fluid first
forms a connected pathway across the system. The ter-
minal point, in a process with trapping, represents the
percolation threshold of the defending, wetting phase, as
it marks the point when the wetting fiuid is just unable to
escape along a continuous path to the outlet. In two di-
mensions it is topologically impossible to have two nonin-
tersecting phases which both span the system. This
means that in very large networks the terminal point
occurs at an infinitesimal saturation beyond break-
through. Hence, there is no genuine two-phase flow re-
gime, where both fluids have a nonzero relative permea-
bility. In three dimensions, in contrast, we can have two

sions). Clearly, in real situations a less severe trapping
mechanism must be appropriate to overcome this Zeno
paradox.

A new, simple and realistic model of trapping in
drainage is to assume that the wetting phase cannot drain
from (large) pores surrounded by the invading fluid, but
can escape by flow in roughness from (narrower) throats.
This mechanism, trapping in pores, is the same as the
more restrictive trapping described above, except that
throats connected to a pore full of nonwetting fluid may
be accessed. The fluid distribution in the pores is just the
same as with strict trapping, but drainage out of tubes
along small surface irregularities allows loops of invading
fluid to form, as illustrated in Fig. 2. This means that
more realistic values of relative permeability are ob-
tained.

B. Simulation



7684 MARTIN BLUNT, MICHAEL J. KiNG, AND HARVEY SCHER 46

P
~ - — I I-.

Ijg ~m. I 8

ae
L

~p i&~~a j I~I ~

~ ql
l%' E.

: ~ . ar a a IJ~

e-
~a g~- ~ t- ~ /PL, - g I

la

'. 5

]j g ~l I
— . . ~~ '. ~a ~ I I ~

~I .'', ll I ]~ [jgI t ~ ~ ~ ~
I ~~IL ''F

I ~alii ~ - -ai i~a. QP% I ~ JI!IE. I ri II
=

I eI4'~ — —,„~PI II, -I! ~ „

: P

~e I a il 1Ka
.

Ilail

', L I ~ Iu'I 4$ /~I IIr
Il~ I g J I E K I

'j%1' 4 (1~ P1
I I

IFI! I I

O'I . Il I ~ I

Illa' l~=".11 '-
I II

~ rk &F'-'-—
~r. , 4-;-= =, ;)~&il Pl' ~ '$~

IZ I. F. Ia '
ll, I, Jy . . -. lib ~~~ill/ I.a','

l4l ~lie ' W~ 4, ~ ~m- JI Se ~ 4laL e.a

FIG. 3. Invasion percolation with trapping in pores on a
300X300 square network at the terminal point. Only filled

pores are shown. Flow is from left to right.

continuous phases. For this reason all the relative per-
meabilities are computed on three-dimensional networks.

C. Can we use percolation theory?

An analysis using percolation theory relies on being
able to use normal percolation exponents in the modified
site-bond models with trapping which we have used here

to describe fluid flow. We will make two new direct tests
of percolation theory using a drainage mode1 with a
correct trapping mechanism.

1. Percolation probability and saturation

Define a percolating probability p as follows: if the
thinnest tube filled with nonwetting fluid has a radius r„
then p is the fraction of all the tubes in the network with
a radius larger than r, If.f (r) is the tube radius distribu-
tion, then

p= rdr
r,

(4.2)

F„-(p—p, )~ . (4.3)

This relation is tested in Fig. 4, for invasion percolation
without trapping on a 32X32X64 network. The quality
of the data is poor, but is consistent with the predicted
power law. This means that we can identify pore occu-
pancy with an effective percolation probability, even
when the fluid dynamics is controlled by the tubes.

The tubes are filled in order of radius, while the pores
are filled irrespective of size, if the pores are larger than
the tubes, and there is no correlation in the pore and tube
size distributions. Define f (r) and g(r) as the tube- and
pore-radius distribution functions, respectively; then the
saturation S is

For a percolation process, the fraction of filled tubes,
F, (p) - (p —p, )~ I54], where p, is the value of p at break-
through and the exponent P=0.45 in three dimensions.

p, depends on the topology of the network, but is in-

dependent of f (r). It has the same value, about 0.25, for
any cubic network. We hypothesize that the same power
law is observed of the pore occupancy: i.e.,

ztrlF, f r f(r)dr/2f f(r)dr+ 4trF f r g(r)dr
S= t

—ml f r f (r)dr + ', tr f r—g (r)dr
2 0 0

(4.4)

where z is the coordination number of the lattice and we

assume spherical pores and cylindrica1 tubes of the same

length I. If the total volume of the pores is much greater
than that of the tubes, then S=F, i.e., the pore occupan-

cy and the saturation are approximately equal.

O. O

2. Number of trapped blobs

The quantity which is most likely to be affected by
trapping is the distribution of wetting fluid at the termi-
nal point. We investigate the number of isolated clusters
(i.e., regions completely surrounded by the invading
phase) of wetting fiuid containing s pores at the terminal
point if we allow trapping. In a pure percolation process,
this distribution is the same as the distribution of cluster
sizes at the percolation threshold, N(s)-s ', where
v=2. 21 in three dimensions. However, it is possible that
trapping enhances the probability of large clusters being

—3.0—9.0 —7 0 —5.0 —3.0
l~(p —p )

—1 . 0 1.0

FIG. 4. Pore occupancy against effective percolation proba-

bility on a 32 X 32 X 64 network for invasion percolation without

trapping. The straight line is the prediction from percolation
theory.
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The degree of trapping in pores and throats depends on
the wettability of the rock, the geometry of the pore
space, and the rate at which a drainage experiment is per-
formed. These three effects control the time it takes for
the wetting phase to escape from a region completely sur-
rounded by the nonwetting fluid. In an experiment which
is done rapidly, and where one phase is only weakly wet-
ting, one expects a low end-point relative permeability
and a high value of S„;,whereas for a more strongly wet
displaced phase, or if the sample is left for a long time,
S„;will decrease to near zero and k,„dwill approach 1.

l. Estimate of the rate offiow in roughness

Imagine that there is wetting fluid in the surface
roughness of a throat or tube of radius r, . Following the
approach of Lenormand and Zarcone [22], we model the
roughness as an array of small grooves in the pore-grain
interface. We assume that these grooves are tiny cylin-
drical tubes of radius d, spaced a distance 4d apart.
There are mr, /2d grooves around a tube of radius r, . The
fiow through each groove (of length l) is

qs
= (md Igl p)AP and for mr, l2d grooves

7T d rfq= hP. (4.8)
16lp

The ratio R of flow in roughness to that through the
whole tube is ~d /2r, . Typically d =1 pm in throats of
radius 10—100 pm, and so R —10 —10 . This small
estimate of R allows us to neglect flow in roughness in the
calculation of relative permeability. This assertion is
confirmed by measurements of the nonwetting phase rela-
tive permeability k,„„atthe irreducible wetting phase
saturation S„;.If flow in roughness is unimportant,
k,„„(S„;)=1 [59—62].

The time t taken to drain a spherical pore of radius r„
through a single throat containing a wetting film is

64plr„

3~r, d AP
(4.9)

Using representative values, l =200 pm, r„=100pm,
r, =20 pm, d =1 pm, AP =0.1 —1 Nm and p=10
kgm ' s ' (the viscosity of water), we find t —10—100 s.
This is the time to drain one pore through a single throat
by transport in surface corrugations. The result indicates
that in strongly wet systems, flow along surface rough-
ness is sufficiently rapid to remove the wetting phase
from many parts of the system during the time that a
drainage experiment is performed (1 000—100000 s).
However, as we have demonstrated, the wetting phase
may be trapped in blobs containing tens of thousands of
pores for a typical core sample (say 1.=100—1000),
which would take many hours or days to drain. Thus a
relative permeability close to the trapping in pores curve
may be seen in an experiment, but if the system is allowed
to stand for several days, a higher permeability near the
no trapping curve will be seen. This results in a value of
S; close to zero, which is observed in careful experi-
ments on Berea cores [63—65]. The drainage from single
throats will be faster than the result in Eq. (4.9) and so is

F. Capillary pressures

In a low rate drainage experiment, the capillary pres-
sure represents the pressure jurnp cross the fluid inter-
faces in the system. In a displacement, this will be deter-
mined by the radius of the throat through which the in-
vading fiuid front is advancing, Eq. (3.2).

Figures 10 and 11 show the capillary pressure curves
for the two networks whose relative permeabilities are
shown in Figs. 6 and 8, respectively. Notice that a very
broad radius distribution gives a capillary pressure span-
ning many orders of magnitude, Fig. 11.

The point of inflexion in the capillary pressure curve
occurs at breakthrough when the invading phase satura-
tion is very low and given by Eq. (4.1). Breakthrough
occurs at the percolation threshold, when p =p„r,=r,
in Eq. (4.2). Beyond breakthrough, the capillary pressure
may again be described parametrically in terms of an
equivalent percolation probability [33]:

1/P
cap break nw (4.10)

when S„„&&1.This expression is only valid in a macros-
copically homogeneous system, where the saturation in-
creases uniformly everywhere. Notwithstanding finite-
size effects, the qualitative agreement between Eq. (4.10)
and the simulation results, Fig. 10, is poor.

V. IMBIBITION

We start by describing the microscopic flow mecha-
nisms in imbibition identified in two-dimensional rnicro-
models [3,4,9,14,15,22,27,66—74]. Imbibition cannot be
described by a percolation model, since the pore filling is
controlled by a cooperative cluster growth mechanism.
The process is also intrinsically rate dependent, even
when viscous forces are neglected. While these pore scale
mechanisms were identified experimentally by Lenor-
mand and Zarcone [22], this study has implemented thetn
in a three-dimensional network model to discuss the im-
plication for relative permeability and capillary pressure.

0

2.5-

tt)

C
3

2.0—
I
l-
3I
tt)I
'L

L
0

Q.
0

1.00.0 I ~ I . I . I I . I . I I ~ I

0. 1 0.2 0.3 0.4 0.5 0.6 0.7' 0.8 0.9 1.0
Wetting phase pore occupancy

FIG. 10. Capillary pressure curves for drainage with and
without trapping in pores.

unlikely to restrict access of the invading fluid, except if
the displaced phase is only partially wetting, or the exper-
iment is very rapid.
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A. Percolation model for bond filling

A wetting fluid is injected into a material originally full
of nonwetting fluid. If the injected fluid is strongly wet-
ting, it will rapidly coat all the pore-grain interfaces with
a thin film. As the injection proceeds, this film will swell
slowly. Eventually the film will be able to fill the centers
of some tubes, starting with the thinnest and progressive-
ly filling wider and wider tubes. This "snap-off" or
"choke-off" displacement mechanism was originally pro-
posed by Roof [6] and later by Mohanty et al. [72,75]
and is illustrated schematically in Fig. 12. A displace-
ment involving only "snap-off" is equivalent to a simple
bond percolation model. The nonwetting fluid must be
able to escape and so a tube cannot become completely
full of wetting fluid unless there is a continuous path of
nonwetting fluid from that tube to the outlet.

The capillary pressure necessary to fill the tube is [22]

k, -(F, F„)'— (5.2)

if F, —F„((1,where t = 1.9 and F„is the tube occupan-
cy at breakthrough. The pore occupancy is always zero.
Also,

break cap Ft Ftc (5.3)

for 6)=180 (completely wetting). In imbibition, where
the saturation of the wetting phase is increased, processes
with the highest capillary pressure are favored. Notice
that Eq. (5.1) is a lower pressure than that required to fill

a tube of the same radius by a pistonlike displacement, as
described in the previous section [P„=2ylrI for
0=180', Eq. (3.2)]. Thus "snap-off" only occurs when a
piston displacement is topologically impossible, because
there are no pores filled with wetting fluid.

This displacement mechanism is observed experimen-
tally in displacements at very low rate and where the
pores are much larger than the tubes connecting them to-
gether [22]. Figure 13 shows a two-dimensional pattern
at the terminal point. Notice that only tubes are filled-
if all the pores are wider than any of the tubes, the pores
are filled last, by which time the nonwetting fluid is
trapped and no further displacement is possible.

General results from percolation theory can be used to
predict the behavior near breakthrough, now that we
know trapping does not affect the percolation exponents
(see Sec. IV). The results come from ordinary percolation
theory once the change in tube occupancy AF, is
identified with changes in the effective percolation proba-
bility Ap [33,54]:

(a)

(b)

~cap =
7f
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FIG. 13. Imbibition by "snap-off" computed on a 100X100

square grid at the terminal point.
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B. Pore filling

Lenormand and Zarcone have observed and investigat-
ed a variety of pore- and tube-filling mechanisms in imbi-
bition [22] and have calculated capillary pressures in a
square grid of tubes and pores. Figure 14 illustrates how
a pore may be filled when one or more of its surrounding
tubes are full of wetting fluid. Since there is likely to be a
thick film of wetting fluid in the pore in these cir-
cumstances, the radius of the fluid interface will be con-
siderably less than r„,the pore radius, which allows even
large spaces to fill with wetting fluid. For a lattice of
coordination number z, there are z —1 such imbibition
mechanisms (called I, to I, , ), which represent filling of
a pore when 1 to z —1 connecting tubes contain nonwet-
ting fluid. The capillary pressures are ranked
I'„z(I, i) « ' ' ' P„(12)&P„(I,). The I, mecha-
nism is topologically impossible because at least one of
the attached throats must be occupied by wetting fluid.

We can reproduce the extremes of the experimental be-
havior. Lenormand and Zarcone [22] found that in a net-
work with pores which were only slightly larger than the
tubes, the I, and I2 mechanisms had the highest capillary
pressures and the displacement was a type of random
cluster growth process. In real materials, this type of dis-
placement is unlikely to be seen, since large pores would
prevent such clusters growing appreciably. If the pores
were much larger than the tubes, then none of the pores
filled and we saw the bond percolation picture described
earlier. For medium-sized pores, the imbibition was con-
trolled by tube filling ("snap-off") and I, . Thus pores
only filled when all but one of the surrounding tubes were
full.

This mixed pore-tube fiHing process may be simulated
numerically. We generate a network as before, with ran-

domly assigned tube radii, and pores all of the same size.
The tubes are filled one at a time, starting with the thin-
nest and then the next thinnest and so on. At any stage
in the simulation, if an empty pore has z —1 (3 in two di-
mensions and 5 in three dimensions for square and cubic
grids, respectively) tubes connected to it which are filled
with wetting fluid, the pore and the last empty tube are
filled. However, we only fill a tube or pore if the dis-
placed nonwetting fluid can escape to the outlet. Figure
15 shows a two-dimensional displacement at the terminal
point. At breakthrough in three dimensions, very few of
the pores are filled, but many more are filled eventually,
and often form large connected clusters.

Q. Np Alm Apw or high rates

In the models above we have assumed that slow flow
along thin films is suScient to supply wetting fluid to all
parts of the network. If we inject at a high rate, or if
there is no wetting film, this will not be possible and the
displacement may only proceed by a pistonlike mecha-
nism, with a connected advance of fluid through the
centers of the tubes, as in drainage, which has been de-
scribed by Lenormand and Zarone [22] and is illustrated
in Fig. 16. On a square lattice the displacement is a suc-
cession of I3 and I2 events. Topological constraints re-
quire an I3 even before I2 is possible, although I2 is
favored since it has the higher capillary pressure.

1. Estimate of the extent offilm flow

Figure 17 is a schematic illustration of the advance of a
wetting fluid at intermediate flow rates. Near the inlet
the nonwetting fluid is displaced by pistonlike movement
from tubes and by the I, mechanism from pores. In ad-
vance of this, film flow along microscopic roughness alKK
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(a)
v'

rrrrrrpgrrrrrrggrrrrrK u'a'rr

where

lo=
4pqo

(5.5)

and l2 =0 when t =0.
The width of the thin film in advance of the connected

front is I2 —l, :

(b) 12
—I, =lo(1 —e ) .

—
12 /Io

(5.6)

r////v u////ir rv////re rv///r

rr /r'/V i rv///r.

At long times, when l2&)lo, l2 —l, =lo. lo may be
rewritten in terms of a capillary number C~, which is the
ratio of the viscous pressure drop to the capillary pres-
sure drop in a typical tube in the network:

Y1SC

~~cap
(5.7)

where AP„„is given by Eq. (3.2} and, for Poiseuille liow,
Eq. (3.1), bP„;„=8plqolmr, Thu. s

12/' 2

4plqo

ayr,

for 0=180', and so

(5.8)

lows some tubes to be filled by "snap-off. " Beyond this
region is a wide, advancing edge of the wetting film.

We assume that the capillary pressure rises linearly
from a value P„(I,) at a distance I& from the inlet (the
limit of the "frontal advance") to 2y/d at lz. (For sim-

plicity we take 8=180' in this treatment. ) Furthermore,
we consider the pore space to be a bundle of parallel and
nonintersecting capillary tubes with radius r, and ignore
tube filling in the region l, to lz. Following the argument
of Lenormand and Zarcone [22] we find, for constant
flow rate,

qot
I~ =ID(1 —e ' ')+ (5.4}

INLET

L 1

FRONTAL ADVANCE SOME PORE
WITH TRAPPING FILLING

LIMIT OF FLOW ~
IN ROUGHNESS

FIG. 17. The advance of a wetting Quid at intermediate Aow

rates.

FIG. 16. Frontal advance in imbibition. (a) The first layer of
thin tubes is fi11ed with wetting Quid. (b) By I3, one pore and the
adjoining tubes are filled. (c) By I, the remaining pores in the
first layer are filled and the displacement proceeds as from (a),
but one layer up.

dllo=
C~r,

(5.9)

In the micromodel experiments of Lenormand et al. ,
the capillary number C~ varied from 10,which gave a
flat frontal advance to 10 for which a bond percolation
displacement controlled by "snap-oF' was observed.
These capillary numbers are also typical of the range in
oil reservoirs. For smail scale roughness, one would ex-
pect the ratio d/r, to be approximately 10 —10
which means that lo is in the range 1 —10 pore-throat
lengths. When lo is only of the order of l, there is essen-
tially no ~etting film and the displacement proceeds
along a connected front, whereas for the lower rates, the
film quickly permeates the whole system and a discon-
nected displacement front is seen. It is more usual exper-
imentally for the wetting phase to be hydraulically con-
nected by thin films or in microscale crevices
[64,66,76,77].

We have not explicitly considered the width of the re-
gion where a connected pathway of tubes filled by "snap-
oF' exists just in advance of the connected front. In this
region, the exact configuration of the filled tubes a6'ects
the local pressure gradients, which in turn influences how
the displacement progresses. In Sec. VI we will consider
this problem and show that the width of this layer, l„
scales as a fractional power of C~: 1, -1C~f, where

f =0.49. This means that for very low C„,I, is much
smaller than lo, and even for extremely slow flow is only
about 100—1000 pore-throat lengths.

It is possible to simulate imbibition at an intermediate
flow rate in a network with a distribution of both pore
and throat radii. A simple but crude procedure is to im-

pose a capillary pressure gradient across the network.
The capillary pressure increases linearly from inlet to
outlet. We start with a very high capillary pressure at
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D. Results

Figure 19 shows computed relative permeability curves
as a function of tube occupancy on a 16X16X32 net-
work with the tube radii distributed uniformly from 0 to
r,o for the bond percolation model, and for the mixed
bond-pore mechanism. We have assigned an infinite con-
ductance to the wetting fluid in all the pores.

The percolation theory relation, Eq. (5.2), is tested in
Fig. 20, where k„is plotted as a function F, —F„ondou-
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FIG. 18. Imbibition at intermediate capillary number on a
100X 100 square network. Pores and tubes completely filled by
injected fluid are shown. The width of the advancing wetting
film (which is not shown) is approximately 100 tube lengths.
We see a ragged frontal advance near the inlet, preceded by
some pore and tube filling, where the fluid is supplied by film
flow.

the inlet and lower this pressure as the displacement
proceeds. Pore- and throat-filling processes which have

the highest capillary pressures are favored and will occur,
if topologically possible, when the imposed pressure
drops below the capillary pressure for the process. Only
tube filling is allowed at large distances from the outlet,
but I„I2, and I3 may be possible near the inlet. We can

specify a pore-radius distribution which assigns different

capillary pressures for pore filling. Figure 18 shows an
imbibition on a 100X100 network and represents a dis-

placement at a capillary number of approximately
0.01d Ir, such that 10 is about 100 tube lengths. A linear
pressure gradient is imposed across the system and the
pore radii are chosen such that in Fig. 18, 5% of the
nodes can fill by I3 and 20% by I2 near the inlet. Where
the wetting film has penetrated there is some tube and
pore filling in advance of a ragged connection interface.
The regions which the wetting fluid has swept resemble
Fig. 15, which simulated a much lower rate advance.
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ted against log, o(F, —F„).Crosses, "snap-off" only. Triangles,
"snap-off" and I, . The sold line is the prediction from percola-
tion theory.

bly logarithmic axes for the bond percolation model and
for imbibition by "snap-oF' and I, . The agreement be-
tween the theory and the numerical results is poor be-
cause the networks we use are fairly small, but the data
are consistent with an approximately power-law regime
at very small relative permeability.

Figure 21 plots capillary pressure curves. P„„is
defined by Eq. (5.1), where r is the largest tube to be filled
in the network.

Film flow, or flow along microscopic roughness, makes
a negligible contribution to the overall wetting phase sat-
uration, or directly to the relative permeability. Howev-
er, it does influence the nature of the pore scale displace-
ment and hence the fluid configuration. This in turn does
affect the relative permeability.

We have not computed relative permeabilities for an
intermediate rate imbibition, illustrated in Fig. 18. The
mean saturation varies across the network. In order to
compute k„(S)we need to find the flow conductivity in a



7692 MARTIN BLUNT, MICHAEL J. KING, AND HARVEY SCHER

0
L

1 .5

tt)

C 1.0
CL

O

Ql
0

0.5

'S.o 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Wetting p&ose tube occupancy

p, n
—p, — (6.1)

of nonwetting fluid at virtually a zero saturation. This is
the reason why we did not test the theoretical relations
(4.6) and (4.7) numerically —our finite-size effects are too
large for any reliable determination of exponents to be
made.

We will carefully consider the finite-size effects on satu-
ration for two important reasons: (1) we are only able to
perform simulations on networks which represent much
smaller systems than experimental core samples, (2)
finite-size percolation will be advanced as the model to
determine the effects of buoyancy on residual saturation.

In the finite-sized system the apparent percolation
threshold p, is decreased. The apparent percolation
probability for a system of length g is [54]

FIG. 21. Capillary pressures as a function of tube occupancy.

Lower curve, "snap-off. " Higher curve, "snap-off" and I, ,

region where the saturation is locally homogeneous,
which we cannot do reliably in our relatively small
three-dimensional simulations. This point will be dis-
cussed further in the next section and explains why later
we will not attempt to find the relative permeability in in-
homogeneous displacements with gravity.

VI. GRAVITATIONAL AND VISCOUS FORCES

Our treatment has so far only considered displace-
ments at very low flow rates and has ignored the effects of
gravity and viscous forces. We will use a combination of
percolation theory and network modeling to predict how
the overall displacement pattern is affected by these
forces. The arguments using percolation theory will fol-
low the approach of Wilkinson [33,34,78]. The effect of
gravity on drainage has been explored numerically and
experimentally by J&ssang [79] and Birovljev et al. [80],
while the influence of high flow rates on drainage relative
permeabilities has been investigated by Blunt and King
[19,20]. The aim of this section is to quantify the pertur-
bative influence of viscous and buoyancy forces on rela-
tive permeability and to show why relative permeability
is still a robust concept even when the large-scale behav-
ior of the flow is no longer solely controlled by capillary
forces.

A. Correlation lengths and Anite-size e6'ects

The results from percolation theory have assumed that
the displacements occur in an infinitely large system,
whereas our numerical results were computed on finite-
sized networks (16 pores across or larger); experiments on
core samples a few inches long are typically 1000 pores
across. This affects the saturations at which break-
through and the terminal point occur. In drainage, using
an invasion percolation model, we showed that for a sys-
tem of size L =g, the saturation at breakthrough

Sb„,„-g [Eq. (4.1)]. The exponent is approximately
—0.5, which indicates that for /=16 —32 (our simula-
tions) Sb„,k may be of the order 10—25'1/o. Even for an
experimental core sample ((=1000) breakthrough may
only occur at a saturation of around 5%, while in an
effectively infinite reservoir, there is a connected pathway

The exponent I/v is approximately 1.2. In our simula-
tions of a bond percolation model of imbibition the shift
in p, was typically only 1 —2 %. This means that our esti-
mate of the saturation (bond occupancy) at breakthrough
was more accurate than for drainage.

A finite-sized system affects the distribution of
(trapped) cluster sizes at p„where p, now represents the
percolation threshold of the defending fiuid. N(s)-s
is modified by a scaling function which introduces a
cutoff' at s )s,„,where s

N(s, g)-s 'G(s/s, „). (6.2)

If we naively assume G(x) is a step function

[G (x)=G (0), x ( 1, G (x)=0, x & 1], then the change in

saturation b,S, is due to finite size, is (defining "satura-
tion" for this argument to be the pore occupancy of the
defending phase)

sN(s)-s, „'J x " "dx -g
S =S

max

(6.3)

ES=S(~)—S(g)= g s[N(s) —N(s, g)] .
s=1

(6.4)

However, by the construction of N(s, g) this sum over the
cluster sizes must be zero (the "mass" has simply been
redistributed) [31].

In general N{s,g;p) [=s 'G{s/s,„;p)]is a function
of p and the trapped saturation for a finite system is

determined at p,z. Thus

AS,~= g s [N(s) (Ngs;p, )]tr-
.s =1

-s~,„'f x' '[(G(0)—G(x;p, tr)]dx .
0

(6.5)

using the scaling relation D(2 —~)= —P/v (cf. Appendix
in Ref. [31]). However, we will illustrate that the change
AS is more subtle.

One can determine N(s, g) by considering an infinite

system at p =p, and dividing it into cubes of side g. The
average number of the truncated parts of the largest clus-
ters as well as the distribution of smaller clusters in the
cubes is N(s, g). The change in the trapped saturation at

pc 1s
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If we expand G(x;p,s)=G(x)+(p,~
—p, )G'(x) and use

Eq. (6.1) and the scaling relation in Eq. (6.3}we obtain
the system is, for instance, 10 cm across, then N, will be
of the order of 1000 and so N, 8=0.1.

g- —(P+ 1 )/v
eff (6.6} 1. Percolation theory

This scaling relation was first derived by Wilkinson [33]
using a different expression for AS. Here we have
stressed that the change in saturation is due to the shift in
the cluster size distribution for a finite system from its
form at p, to that at p,ff.

B. Buoyancy forces

P,„„„=— —5pgh,2y cos8
(6.7)

where h is the height of the throat (defining h =0 as the
top of the sample) and 5p is the difference between the
density of the wetting phase and the density of the
nonwetting phase. The relative importance of capillary
to buoyancy forces is defined by a bond number B, where

Buoyancy and viscous forces introduce a finite correla-
tion length even in an infinite system. We will assume
that the effects on hS of this correlation length is the
same as introduced by a finite-size system. We now need
to determine a correlation length due to the buoyancy
force, insert this relation for g in Eq. (6.6), and compare
with our simulation results to check this assumption a
posteriori.

Consider a drainage experiment where light, nonwet-
ting oil is injected at the top of a piece of rock containing
heavier, wetting water. The density difference between
the fluids means that the oil preferentially resides at the
top of the sample and the water at the bottom. Thus it
requires a greater pressure to force the oil through a
throat near the bottom of the sample than near the top.
Although the interfacial tension between the fluids is usu-
ally large, which means that capillary forces are
significant, the density difference may also be high and so
gravitational effects may be apparent in tall samples.

There is now an entry pressure P,
„„„

for each throat
which is a sum of the capillary and gravitational pres-
sures:

Capillary flows with gravity have been studied theoreti-
cally by Wilkinson [33,34] and experimentally by Jossang
[79] and Birovljev et al. [80]. The displacements resem-
ble those predicted by the invasion percolation model,
but there is a maximum correlation length in the system,
which represents the linear extent of the largest regions
which are ever enclosed by injected fiuid. Equation (6.7)
indicates that the proportion of tubes which can be ac-
cessed at a given injection pressure increases with height
h. It is as though the effective percolation probability
varies linearly with h. The buoyancy force will affect the
most extended clusters and truncate N (s) in a way analo-
gous to percolation in a finite-sized system. The key
consequence for b,S of introducing g, as discussed above,
is to cause a shift in N(s;gp) over the interval 5p,s be-
tween p, and p,~. To be able to resolve this shift, the
variation in the percolation probability 5p over the larg-
est cluster, 5p=(sB, must not be larger than 5pcff..
(sB (5p,s

—gs
' ', or the maximum gs scales as [33]

B—v/(1+ v)
bB (6.9)

S„;(B=0) S„;(B)-B"—+~' "+"', (6.10)

where the exponent (1+P)/(1+ v) is approximately 0.77.
Equation (6.10} predicts a decrease in S„;of between
about 0.1% to 1% in most oil reservoirs, compared with
displacements with fluids of matched density.

The value of v in three dimensions is 0.88 and for the
bond number calculated above gs = 100 nodes (measured
in units of bond length I) instead of the result 10 nodes
based on the naive dependence (s —1/B. Viewed on
length scales less than gsl, the displacement resembles
one modeled by invasion percolation without gravity,
while the effects of gravity are noticed for samples taller
than goal, which in this example represents a height of ap-
proximately 1 cm.

The decrease in residual saturation is [33]

&pgr~0~

2y cosj9
(6.8) 2. Network simulations

B represents the ratio of the buoyancy pressure in a single
tube of height 1 (5pgl) to a typical capillary pressure in a
throat —2y cos0/r, o. The surface tension y of water in
contact with air is 0.07 N m [81]. In contact with most
oils, y is typically around half this value, say 0.04 N m
The density difference 6p may vary from a maximum of
1000 kgm (water and gas) to as low as 100 kg m
let us take a value of 500 kgm for an estimate of B.
Then for 0=180, l =100 pm and r, =20 pm, B—10
which is very small and indicates that at the microscopic
level the effect of buoyancy forces is negligible. However,
in a large sample the total gravitational pressure may be
comparable to the capillary pressure. Consider a sample
N, pores high, then a global bond number which
represents a ratio of the gravitational pressure across the
whole sample to a typical capillary pressure is X,B. If

We can demonstrate the effect of buoyancy forces us-
ing the network model. The simulation is identical to
that presented in Sec. IV, except that instead of filling
available tubes in order of radii, we fill in order of an en-
try pressure P given by Eq. (6.7). The height h is con-
sidered to be the height of the middle of the tube.

Figures 22 and 23 illustrate two-dimensional displace-
ments at the terminal pint for drainage and the "snap-
off' and I& model of imbibition, respectively. The bond
number is 0.001 in Fig. 22, giving a correlation length gs
of approximately 30 pore-throat lengths, or one-tenth of
the system size. This can be verified by noting that the
largest trapped blobs of displaced phase are approximate-
ly 30 pore sizes across. Figure 24 shows the cumulant of
the distribution of trapped blobs in a three-dimensional
network for drainage at the terminal point, M(s) [see



7694 MARTIN BLUNT, MICHAEL J. KING, AND HARVEY SCHER 46

~M/L I ~WeslsS~ ~lES~Ji ~ I M~ggggg+ '- ll

"'- ='&'==: 'g ~-'I: (r wali,
i'('4' &Ic"' '—-:—

!

~ ~ I ~ ~ ~ c ll JL ilI. s. -

'-' t~

I [ I ~ I & 1. ~a, ~

~I
f I, .. ... ~ eaisigs I+ . '!s ia ~ i!: ~ . i Il; ~ ~ I

j r' '=~/ 4r, 7~ 1~4&'
~

~)~' ~j~ ~' '"- - I r
' & ~I~'I i ~,Tr g~~~ I I g4s Ji ' H OUI

~aH I Jg /
I iI 4~ ~ s E Sr ' .: . I~&~ ~ 3 ~l'. ".

~ I~s rI ]I, II li llr! s IL~I='

i i, , JI IC..=%!', I!I I I —
i ! IIJ i ~. ai ll li&bra. . r' 'Is-l m a Cril

~ 1 !~~ um IL ~ +a

iisi~ ss ggg I ls I ~ i~ s ~ ~

II I IC.'R' '. '

e m~l Ig Ig I i~) I lsl t.j~ ' )s g

3 Q
Tt|

0

0

Z. G
Q Q 1 .0 2.0

I og (s)

I

3.0

FIG. 24. The cumulant of the trapped-blob-size distribution
function M(s) against blob size s on 32X32X64 lattices for
various values of the bond number B. From left to right the
curves have a buoyancy correlation length fir from Eq. (6.9) of
1.5, 2, 3, 4, 6, 8, 12, 16, 32, and 00.

FIG. 22. Drainage under gravity with trapping at a bond
number B=0.001 simulated on a 300 X 300 square lattice,
shown at the terminal point.

with L =32. We postulate an effective correlation length,
which is a combination of contributions from both the
lattice size and 8:

Sec. IV and Eq. (4.5)] for various values of B. Figure 5

showed M(s) for lattices of different size. Notice that
M(s) on a large lattice with gravity resembles that for
B =0 on a smaller lattice. However, a comparison of
Figs. 5 and 26 indicates that using Eq. (6.9) systematically
overestimates the apparent correlation length, and that
this effect is most marked for the larger values of gtr.

The simulations are performed on a finite-sized lattice
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where gtr is the buoyancy correlation length, Eq. (6.9).
Figure 25 shows the trapped pore occupancy ("satura-

tion S") as a function of 1/g from Eq. (6.11) for both
drainage with trapping in pores and the "snap-off" and I,
model of imbibition. This graph is used to estimate the
saturation when g = TTc so that we can compute
t7IS=S(~)—S(g), which is shown in Fig. 26. The
straight line in the figure has the theoretical slope—(P+ 1)Iv, Eq. (6.6) for both draina—ge and imbibition
the change in residual saturation is consistent with Pnite
size percolation theory. The concept of a finite correlation
length can now be extended to viscous forces, where we

FIG. 23. Imbibition by "snap-off" and Il under gravity with

a bond number B=0.02 simulated on a 100X 100 square lattice,
shown at the terminal point.

FIG. 25. Trapped saturation S (pore occupancy) as a func-

tion of effective correlation length g for drainage with trapping
(crosses) and the "snap-off" and I, model of imbibition (trian-

gles).
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Notice that E in Eq. (6.14) scales with a negative power
of x. Then the pressure drops across the two phases are

—0.5—

(I)

0 —1 0
0

Ql
0

and

Qw IPw
W

~nw I nw

nw

(6.15)

(6.16)

—1.5—

—2.00.0 0.5 1.0
log (g)

1.5 2.0

The pressure drops give an estimate for the change in
P„acrossa cluster, which is equivalent to a change in
allowed fraction p. If we assume that the pressure drop
in the nonwetting phase is greater than, or of the same
order as, the pressure drop in the wetting phase, we may
write

FIG. 26. Fractional decrease in trapped phase pore occupan-

cy LS/S on a 32X32X64 network for drainage (crosses) and
imbibition (triangles) for different correlation lengths g. The
straight line is the prediction from percolation theory with a
slope given by Eq. (6.9).

t/v+ 1

with capillary number C„„givenby

PnwQnwC„„=—
my cosOrt

(6.17)

(6.18)

The key idea of the previous section is to consider a
box of length equal to the correlation length g, which is
determined self-consistently by comparing the shift in p,
induced by the box with the variation in P„acrossthe
largest cluster caused by a perturbative force. We apply
this approach directly to viscous forces by imagining the
initial entry of nonwetting fluid through a unit area of
material across a distance x (measured in units of a typi-
cal tube length l.) We will consider the nonwetting phase
to be at breakthrough and choose x to be the correlation
length. We impose a flux Q„„through the nonwetting
phase and a flux Q„through the other, which is not at
threshold and consequently is well connected. The per-
meability of each phase is defined by

and

E„hP„
p„xl

E„AP„
JM„„xl

(6.12)

(6.13)

The permeability of the wetting phase will be of the same
magnitude as the permeability with just a single phase
present, K, which for an array of tubes of radius r, is
~rt /8/ . However, in a percolation model, the permea-
bility of the portion of the medium occupied by a phase
at breakthrough (or at the terminal point) is much lower,
because it only occupies a very wispy path through the
network. We shall assume that we may use percolation
theory to calculate the permeability (which is equivalent
to the conductance) at the percolation threshold:

are unable to perform reliable simulations to verify our
predictions.

C. Rate-dependent effects

We now set x =g V, the viscous correlation length and as-
sert that the shift in allowed fraction, Eq. (6.17), must be
less than the shift in p„5p-gv'~", to be able to have a
finite-size percolation cluster distribution of the invader
phase, i.e., C„„g'v~"'&5p-gz'~" or the maximum gv
scales as [82]

C
—v/(t+v+1)

bV nw (6.19)

6p, ——C„x,
where

41@„Q„
C

7TQ cosOrt

(6.20)

(6.21)

The effective percolation probability p now varies linearly
with x, as it did for buoyancy forces, and so we find

where the exponent is approximately —0.23. Viewed on
scales less than gz, the displacement resembles at an
infinitesimal flow rate, while the effects of viscous forces
are evident for x )gv.

We may also consider the trapping of the nonwetting
phase in imbibition. In this case the nonwetting phase is
at its terminal point. The analysis above follows, since
the wetting phase is still well connected and the permea-
bility of the nonwetting phase still resembles a percola-
tion cluster. For drainage it is natural to write the corre-
lation length in terms of the flux of nonwetting fluid.
However, for trapping in imbibition, the displacernent is
controlled by the flow of wetting fluid and it is more nat-
ural to write gv in terms of Q„,assuming that the pres-
sure drop in the wetting phase is of the same order of
magnitude or greater than the pressure drop in the
nonwetting phase. Then we may follow the analysis
above to find

K„=Ex (6.14) ( —v/(1+ v)
&v w (6.22)

where t lv is approximately 2.2 in three dimensions [33]. as derived by Wilkinson [33]. The exponent v/1+v is
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approximately 0.49. Equation (6.6) may be used to calcu-
lated the shift in residual saturation which scales with C„
with the same exponent, (1+P)/(1+v)=0. 77 as it does
for bond number B, Eq. (6.10).

We may consider a steady-state experiment where both
phases are injected through a system to achieve a homo-
geneous saturation distribution and the pressure drops
sustained by both fluids are the same. Fluctuations in the
local pressure give capillary pressure differences that are
of the same order of magnitude as either of the pressure
drops Eqs. (6.15) or (6.16). Thus the viscous correlation
length may be written as a function of either capillary
number. The different exponents in Eqs. (6.19) and (6.22)
are explained by the very different fluxes, which are in the
ratio of the permeabilities of each phase:
Q„/Q„„=C„/C„„=K„/K„„=g'v '. If we define the
correlation length as a function of the flux of the more
mobile phase, the effect of viscous forces is similar to that
of buoyancy, and we see a typical gv in the range
100—1000 tube lengths. The important point is that with
either choice of pressure drop, Eq. (6.15) or (6.16), the re-
sulting correlation length must be approximately the
same in this case.

D. Meaning of a correlation length

In our discussion on the meaning of relative permeabil-
ity, Sec. III, we mentioned that k„was only a well-

defined, intensive property of the flow when the length
over which it was measured was much larger than any
physical correlation length in the system. For very low
rate drainage or imbibition, the viscous correlation length
is effectively finite. This means that the saturation at
breakthrough and the relative permeability near the end
points is a systematic function of the size of the system L
in which the measurement is taken. However, away from
the end points, the fluid distribution is homogeneous
when averaged over lengths larger than the percolation
correlation length. Then assuming capillary equilibrium,
the relative permeability could be defined and measured.
In a system where viscous and gravity effects are impor-
tant, the effective percolation probability will change by
—1 over a distance L, =1/C„or1/B, respectively. This
distance is in the range 10 —10 pore lengths or 1 —100 m.
It is over this scale that we expect the saturation profile
to change appreciably. The eff'ective correlation length g,
which we define as

1 1 1 1—=—+ +
L 4 kv

(6.23)

in extension to Eq. (6.11), is much smaller than L, . Thus
if we measure k, over a length L, where L, »L »(, the
saturation is approximately constant and the relative per-
meability will be close to the steady state or 8 =0 value,
except for the shift in end points discussed earlier. Thus,
even in displacements dominated macroscopically by
viscous forces, the relative permeability concept is still
valid, since relative permeability may be measured over a
range of lengths where the saturation distribution is
homogeneous and the local fluid configuration is deter-
mined by capillary equilibrium. However, relative per-

meabilities are used in reservoir simulators and are
defined in computational grid blocks often 100 m across,
which may be larger than L, . Over these lengths, gravi-
tational and viscous instabilities may develop, leaving
large unswept regions. k, in these circumstances must be
a "renormalized" function, which accounts for both the
small-scale physics and the effects of viscous fingering
and reservoir heterogeneity over larger distances. This
approach has been pursued for miscible flow [83] and re-
cently for immiscible displacement [84].

VII. SECONDARY DRAINAGE AND IMBIBITION

So far we have only discussed primary drainage and
imbibition, where the rock originally contains just one
fluid. More normally, samples from reservoirs contain
both wetting and nonwetting phases, whose distribution
represents the terminal point of a primary drainage.

An exhaustive and excellent discussion of secondary
displacements, using network modeling to predict the rel-
ative permeabilities and capillary pressures, which are
then compared with experimental results on representa-
tive samples, is given by Jerauld and Salter [13]. In this
section we will briefly present some results from the
simulation of secondary displacernents in a network rnod-
el.

A. Simulations of secondary displacement

We will simulate the sequence of floods that a sample
undergoes during standard laboratory analysis:

(i) Primary drainage nonw—etting fluid is injected into
a sample containing only wetting fluid, to initialize the
core at an initial oil saturation.

(ii) Secondary imbibition wetting —fluid is injected into
a sample after primary drainage to rnirnic water flooding
in a reservoir.

(iii) Secondary drainage nonwettin—g fluid is injected
after a secondary imbibition to determine the trapping of
oil which may encroach from another portion of the
reservoir.

We perform simulations of primary displacements as
described in Secs. IV and V. The final fluid distributions
in each case are stored. Then the injection of a wetting
or nonwetting fluid is simulated using the displacement
mechanisms described in the previous sections.

As an example, Fig. 27 shows the relative permeability
curves for primary drainage with trapping in pores, fol-
lowed by secondary imbibition by "snap-off" and I& and
then secondary drainage on a 16X16X16network. The
displacement mechanisms in drainage and imbibition are
very different, which means that the secondary relative
permeability curves do not follow the primary curves
back to 100% wetting phase. The filling of pores by I,
resembles a cluster growth mechanism, rather than a per-
colation model. Thus the relative permeability at a given
pore occupancy in imbibition is very different from
drainage, which we can model by a percolation process.
The feature is called hysteresis and is also seen in the
capillary pressure curves, Fig. 28. In strongly wetting
systems the hysteresis is influenced by the ratio of pore to



46 SIMULATION AND THEORY OF TWO-PHASE FLOW IN. . . 7697

1.0 3.0

0.8—
0
(0

E

0.6—6

(0

0.4—0
l0
K

0.2-

0
2.5

P 2.0
M

C
3

1 . 5
Q

0
Ql
P 1.0

0.00.0 0.2 0.4 0.6 0.8 1.0

0.5—

Wetting phase tube occupancy
0.00.0

I I I I

0.2 0.4 0.6 0.8
Wetting phase tube occupancy

1.0

FIG. 27. Relative permeability hysteresis computed on a

16X 16X 16 network as a function of tube occupancy. Primary

drainage with trapping (solid line) is followed by imbibition by
"snap-off" and I, (dashes), followed by secondary drainage

(dots).

FIG. 28. Capillary pressure hysteresis for the computation
described in Fig. 27 as a function of tube occupancy. The wet-

ting phase is assumed to be at zero pressure.

throat size and local pore- and throat-size correlations

[13] and has been observed experimentally by many in-

vestigators [48,60,85 —92].

VIII. CONCLUSIONS

We have reached several conclusions, as follows:
(i) In drainage, film flow or flow along microscale

roughness of the wetting phase is essential to allow the
nonwet ting phase to form well-connected pathways
through the system. With no film flow at all, the relative
permeability of the invading phase is essentially zero, re-
gardless of saturation. We identify two types of realistic
displacement: flow with trapping pores, where the wet-
ting phase cannot drain from large volumes surrounded
by nonwetting fluid, and no trapping, where all the wet-
ting phase may escape along microscopic channels and
the irreducible saturation is close to zero. We have com-
puted example relative permeabilities in both cases and
discussed the circumstances in which each mechanism is
likely to be seen.

(ii) We verified the percolation theory results of Wilk-
inson [33] for a model with the correct pore-scale dis-
placement processes in drainage, and for trapping in
drainage and imbibition. The percolation exponents are
unaffected by trapping, or the detail of the pore structure.

(iii) We postulated an effective correlation length for

finite-sized systems reduced by gravity and viscous forces,
and verified by simulation Wilkinson's percolation theory
predictions for the effect of buoyancy on trapped satura-
tion. For both drainage and imbibition, the change in re-
sidual saturation is consistent with finite-size percolation
theory.

(iv) The saturation profile changes by —1 over a mac-
roscopic length L„which is the scale at which buoyancy
and/or viscous forces become larger than the capillary
pressure. There is also a smaller correlation length (
below which the fluid configuration may be percolation-
like and above which the saturation distribution is ap-
proximately homogeneous, while slowly varying over L, .
We define and measure mesoscopic parameters such as
relative permeability and capillary pressure over a scale
L. If L, ))L ))g, then the relative permeability is only
perturbed from its value in a steady-state flow at capillary
equilibrium and is a well-defined intensive property of the
system. This gives the description of multiphase dis-
placements in macroscopic, spatially heterogeneous
porous media a firm theoretical basis.
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