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In this paper, we review the theoretical and experimental progress in understanding the controversial

phase behavior of binary liquids in dense porous media. Experimental observation of metastability and

hysteresis in the phase-separation behavior has led to two widely different theoretical interpretations:
the random-field Ising picture and the single-pore picture. We argue that the random-field model is

inapplicable to binary liquids in low-porosity media such as Vycor, and discuss the available experimen-

tal evidence on such systems. Next, we present Monte Carlo studies of phase-separation kinetics of an

Ising model in a pore. We find that the domain-growth kinetics slow down dramatically once the

domain size becomes comparable to the pore size, as predicted by the single-pore model. In addition, we

examine the inhuence of temperature and interfacial phase transitions on the kinetics, and show that the
domain-growth rate slows down as the temperature moves further into the two-phase region. Finally,
our results for small pores, only 20 spins across, suggest that macroscopic descriptions are surprisingly
successful, even at short length scales.

PACS number(s): 64.60.—i, 68.45.Gd, 47.55.Mh

I. INTRODUCTION

The phase-separation kinetics of binary liquid mixtures
are completely altered when they are imbibed in porous
media. Binary liquids display Ising-like phase behavior;
in bulk, they are observed to separate, below the critical
mixing point, into two domains, one of each phase. This
is known as macroscopic phase separation. By contrast,
in porous glasses such as Vycor, the two phases do not
separate completely. Instead, they form many small
domains, even well inside the coexistence region [1—6].
The reason for this lack of macroscopic phase separation
is controversial. One possibility is that randomness of
the pore structure gives rise to random-field Ising-like be-
havior near the critical point [7—12], which may lead to a
low-temperature phase with small domains [13]. We will

argue below that this picture is unlikely to apply to
porous media such as Vycor. Our view, on the other
hand, is based on a single-pore model with no random-
ness. According to this picture, confinement in a small

pore slows down domain growth in certain regions of the
wetting phase diagram. Therefore, macroscopic phase
separation is not observed because the kinetics are too
slow [14]. To date, there has been no explicit comparison
of the two models. Indeed, there is surprisingly little dis-
cussion in the 1iterature of why the random-field model
might be expected to apply to two-phase systems in
porous media. We attempt to fill the gap with a detailed
discussion of the assumptions underlying the random-
field interpretation. We also review the experimental re-

suits on binary liquids in Vycor.
In the second part of this paper, we describe Monte

Carlo simulation results on the phase-separation kinetics
of the Ising model in a pore. In a porous medium like
Vycor, the tortuous and interconnected nature of the
geometry will certainly create barriers to domain growth.
[These are not the same as the energy barriers incorporat-
ed in the random-field Ising model (RFIM) picture. ] The
single-pore model ignores these barriers and therefore
cannot provide a completely realistic description of the
phase-separation kinetics in porous glass. However, the
single-pore picture does yield insight into the phase-
separation process by allowing one to isolate the effects of
wetting. We study three main aspects of the kinetics:
early-stage domain growth from the disordered state, the
breakup kinetics of the tube configuration, and late-stage
domain growth. Our results show that domain growth
slows down dramatically once the domain size becomes
comparable to the pore size. Thus, even in a system with
no randomness, macroscopic phase separation is extreme-

ly slow, owing to confinement. In addition, we interpret
our simulation results in terms of macroscopic constructs
such as interface interaction potentials, wetting poten-
tials, and surface tension. Earlier simulations by Liu and
Grest [15] demonstrated the utility of macroscopic
descriptions of equilibrium phase behavior in pores
roughly equivalent to 60 A in diameter. The simulations
presented here indicate that macroscopic descriptions are
also surprisingly successful in describing the kinetics of
phase separation in extremely small pores.
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A. Organization of paper

The rest of this introductory section is devoted to a de-
tailed comparison between the RFIM picture and the
single-pore description of binary liquids in Vycor. Some
preliminary remarks on the applicability of the two mod-
els are made in Sec. I B. In Sec. I C, we summarize the
argument for why RFIM behavior might be observed on
approach to T, from the single-phase region. To our
knowledge, the most detailed argument was given by An-
delman and Joanny. We paraphrase their argument for
the case of fixed composition. We conclude this subsec-
tion with a list of reasons why we believe that the RFIM
picture is inapplicable to the experiments performed on
binary liquids in Vycor.

In Sec. I D, we summarize the single-pore model. The
thermodynamic phase behavior predicted by the phenom-
enological single-pore model of Liu and co-workers [14]
has been confirmed by Monte Carlo simulations by Liu
and Grest [15]. Section I E contains a review of experi-
mental results on binary liquids in Vycor. We show that
the single-pore model is more successful than the RFIM
picture in capturing observed features of the phase be-
havior.

In Sec. II through Sec. V, we turn to the main topic of
the paper, which is the kinetics of phase separation. We
first review the two main features of phase separation in
pores discussed in Ref. [14]. The first is the kinetics of
the breakup of the tube configuration and the second is
the kinetics of domain growth. The predictions of Ref.
[14] were based on phenomenological arguments and hy-
drodynamic calculations; the details of these are summa-
rized in Appendixes A —C.

The results in this paper are based on Monte Carlo
simulations of the phase-separation kinetics of an Ising
model in a single pore. The simulation model and
method are described in Sec. III. The results are present-
ed in Sec. IV. Section V contains a summary of results.
We find that the kinetic behavior is quite rich, showing
many features not included in the phenomenological
model.

B. Random-field model versus single-pore model:
Preliminary remarks

Before describing the two models in detail, we must
specify the geometries of the porous media under con-
sideration. It is useful to draw a distinction between ma-
terials like Vycor [16], which have fairly low porosities
(roughly 30%), and materials such as aerogels [17] or
other silica gels [18], which have high porosities (over
90%). Such gels resemble a dilute network of strands,
and probably cannot be described by a single-pore model.
Thus, the conclusions of this paper, which are based on
the single-pore picture, apply only to dense porous media.
We will argue below that it is unlikely that the random
geometry in low-porosity materials such as Vycor will
lead to random-field Ising behavior. It is possible, how-
ever, that low-density porous media may exhibit
random-field behavior [19,20].

We must also address the role of the constraint of con-
stant composition. This constraint, equivalent to the

canonical ensemble, applies to most experiments on
binary liquids in porous media [2,3,5,6,20,21]. It is also
applicable to vapor-liquid experiments at fixed density
[22]. In the experiments, the samples were typically
prepared in the single-phase region, by soaking the
porous glass in a bath rich in the nonwetting component,
so that the mixture inside would be critical. Almost al1 of
the supernatant liquid was then poured off. In principle,
the fluid inside the porous medium could change in com-
position by ejecting the unwanted component from the
sample; on the time scale of the experiment, however, the
composition inside was fixed [4]. Thus, the experimental
conditions correspond to the canonical ensemble.

Wetting phenomena inside confined geometries such as
pores have long been overlooked because previous
theoretical work has focused on the case where the sys-
tem is in contact with a reservoir at the same chemical
potential; this corresponds to the grand canonical ensem-
ble. In this case, capillary condensation occurs near the
critical point; the pore fills with a single phase rich in the
wetting component. The phenomenon of capillary con-
densation has been well studied both theoretically [23,24]
and experimentally [25,26].

In the single-pore model, we have chosen to work in
the canonical ensemble for direct comparison with the
experiments. However, we could equally have chosen to
use the grand canonical ensemble, with a chemical poten-
tial that varies with temperature in such a way that the
composition inside is always the same. Since both pic-
tures are equivalent, the wetting transitions that we pre-
dict should also occur in the grand canonical ensemble.
We suspect that these transitions were not discovered
previously because they occur far from the critical point,
when the chemical potential strongly favors the nonwet-
ting phase.

By the same token, our predicted behavior should be
seen in liquid-vapor systems confined in Vycor at low
pressures. Heat capacity and vapor-pressure isotherm
measurements of Wong [27] on liquid-vapor He in Vycor
indicate that there is no sharp phase transition. We sug-
gest that this is consistent with the finite-size rounded
and shifted transition expected in the single-pore model.

C. Random-field model

The interpretation of a binary liquid in a porous medi-
um as a random-field Ising model (RFIM) was introduced
by Brochard and de Gennes in 1983 [7,8]. We will not at-
tempt to review the substantial theoretical literature on
the RFIM or to discuss recent theoretical work on the
RFIM motivated by experiments in porous media [11,12].
Rather, we will focus on the question of why the RFIM
might be applicable to Ising-like systems in porous
media. The argument was most clearly stated by Andel-
man and Joanny [9]. Here, we adapt their argument to
the case of constant composition. Note that the RFIM
picture has also been applied to a different class of prob-
lems involving displacement of one fluid by another in a
porous medium [7]; an excellent critique of such ap-
proaches to imbibition problems was provided by Bruins-
ma [28].
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Label the two components of a binary liquid mixture 3
and B and let the pore surface prefer A. Assume that the
composition inside the porous medium is fixed, and let
the average pore radius be ro. Now divide the porous
medium into cells ro on a side, and denote the surface-
to-volume ratio in cell i' by A,-. Then A, is a random
variable. When A, is large, more of component A is
pulled to the surface, leaving more B in the bulk. This
comparison shift towards B can be considered a result of
a field acting on cell i. Thus there are random fields h; on
the scale of the pore size. Now, if the correlation length
for the binary liquid is larger than the cell size, then one
can coarse-grain the system so that each cell now
represents a site. The system should then be describable
by the random-field Ising model. Thus, this picture pre-
dicts random-field-like behavior in a region surrounding
the bulk critical point.

Note that the RFIM description assumes that the fluid
can be divided into two parts: an adsorption layer of A

which is "immobilized" in the sense that it does not par-
ticipate in critical fluctuations, and a "free fluid, "namely
the remaining fluid, which does participate in critical
fluctuations. The RFIM picture applies to the free fluid,
in that the random fields are applied to the free fluid only.
Frisken, Ferri, and Cannell [20] show that the concept of
a free fluid is valid for binary liquids in dilute silica gels.
We stress, however, that the gradient free energy between
the immobilized layer and the free fluid is not explicitly
included in the RFIM picture. Recent results of Frisken
and Cannell [21) suggest that the gradient free energy
may play a crucial role in the phase behavior of binary
liquids in dilute gels.

There are several reasons why it is unlikely that the
RFIM picture, as stated above, is applicable to binary
liquids in Vycor. The first has to do with the magnitude
of the average composition shift of the free fluid due to
the average value of the field (h;). Frisken, Ferri, and
Cannell [20] have measured the average composition shift
in dilute silica gels, and have shown that these can be
substantial near the critical point. It is reasonable to sup-
pose that Vycor, having a much lower porosity than the
gels, should give rise to much larger composition shifts.
Raman-scattering results by Dierker, Dennis, and
Wiltzius [4] on Lutidine and water in Vycor in contact
with a bath of the mixture suggest that the composition
shifts are indeed quite large. In fact, the composition
shift in the free fluid in Vycor should be roughly compa-
rable to the shift in the immobilized, adsorbed 3-rich
fluid at the wall. Thus, the free fluid may be shifted so
strongly towards B that is is equally immobilized. In this
case, the RFIM picture would no longer be useful. In ad-
dition, the correlation length in the free fluid would be
quite short, so that the limit (»ro required by the
RFIM picture would not be achievable.

Dierker and co-workers [29,3] have suggested a more
subtle scenario by which RFIM behavior might arise in
Vycor. As discussed above, the composition differences
between the adsorbed fluid and the free fluid increase as
the critical temperature is approached from the single-
phase region. This leads to large gradients in composi-
tion, since the composition must change from 3-rich

near the wall to 8-rich in the center of the pore. At a
certain point, the system may undergo a "pseudowetting"
transition to a "pseudoplug" configuration, where the
gradients now run along the pore length rather than
across the pore. Note that Wiltzius, Dierker, and Dennis
[3] refer to this as a "finite-size wetting transition. " This
is a misleading name, since they believe it occurs in the
single-phase region. Based on their static and dynamic
light-scattering results for Lutidine and water in Vycor,
Wiltzius, Dierker, and Dennis [3] suggest that this "pseu-
dowetting" transition occurs 8 from the bulk critical
point in what would ordinarily be the two-phase region in
the bulk mixture, but which they propose is sti11 the
single-phase region in Vycor. Once the system has un-
dergone this transition to "pseudopartial wetting, " the
correlation length might grow to encompass many pore
sizes. The system might therefore cross over to RFIM
behavior. This is an interesting possibility, which may
account for their static and dynamic light-scattering re-
sults, but appears inconsistent with recent neutron-
scattering results of Lin et al. [6]. (See Sec. I E below. )

The second difficulty in applying the RFIM picture to
binary liquids in porous media is that the average value
of the field (h, ) may exceed the root-mean-square devia-
tion in the field ((h, ) )'~. In fact, if the binary liquid
mixture inside the porous medium is at critical composi-
tion, all of the composition shifts will be towards
enhanced B, so all the random fields have the same sign.
In this case, there is no frustration, because both the
fields h; and the interaction energy
J—=E„~+E~~—2E~I, favor 8 in the free volume. This
point has also been stressed by Maritan and co-workers
[11]. In order to see metastability, therefore, the compo-
sition inside the medium must be sufficiently A rich so
that (h;) &((h, ))'~. Even if the composition is

sufficiently rich in A, however, the condition (h;) =0 is

only satisfied at one temperature, since the amount of
attracted to the surface varies with temperature. The
effect of temperature on (h;), or the average composition
shift, has been elegantly illustrated in experiments by
Frisken, Ferri, and Cannell on Lutidine-water [20] and by
Frisken and Cannell on isobutyric acid —water [21] mix-
tures in dilute silica gels. (As noted in the preceding
paragraph, (h, ) should be even larger in Vycor, where
the surface area to free volume ratio is higher. ) Most of
the Vycor experiments have been carried out at critical
composition [2,5,6], so one would not expect metastabili-
ty to arise from the random fields.

Finally, we note that in a dense porous medium like
Vycor, crossover to one-dimensional Ising behavior may
preempt crossover to RFIM behavior. In Vycor, the dis-
tance between junctions is comparable to the pore radius.
According to recent experiments by Levitz et al. [16],the
persistent length of the pores is about 1 =45 A, while the
average radius is rp =35 A. One would expect the system
to cross over to d =1 behavior when the correlation
length g becomes comparable to ro. On the other hand,
the system should cross over to the RFIM when g be-
comes comparable to the distance between pore junc-
tions, l. If rp « I, then crossover to d =1 behavior wi11

occur first, the correlation length will never exceed rp by
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more than a factor of order unity, and the system will
never cross over to RFIM behavior. Since ro and l are
comparable in Vycor, it is unlikely that a clean crossover
to RFIM behavior could be observable.

D. Single-pore model

The single-pore description for a binary liquid in Vycor
was introduced by Liu, Durian, Herbolzheimer, and
Safran [14]. The resulting equilibrium wetting-phase dia-
gram is shown in Fig. 1; the shape of the diagram has
been confirmed by recent Monte Carlo simulations by Liu
and Grest for a lattice-gas model [15]. In this model, the
binary liquid mixture is confined in a single cylindrical
pore. For simplicity, we assume that the mixture is of
critical composition. The system undergoes a transition
from a single mixed phase to two coexisting phases, a
and P, one rich in A molecules and the other rich in 8
molecules, as the temperature is varied through an Ising-
like critical point. This transition (not shown in Fig. 1) is
rounded and shifted from the bulk critical point due to
the finite radius of the pore. Near the critical point in the
two-phase region, the wetting phase a will coat the pore,
and the nonwetting phase forms a concentric inner
cylinder; this is the "tube" configuration (see Fig. 1).
Since the surface prefers a, there is a free-energy cost per
unit area, or wetting potential, V(r), on the aP interface,
pushing it towards the center of the pore. This is bal-
anced by the aP interfacial tension. Since the composi-
tion is held fixed, the amount of each phase is also fixed
for a given temperature. Under conditions of fixed
volume, the interfacial tension gives rise to an outward
pressure, pushing the interface away from the pore
center. Now consider what happens as a function of re-
duced temperature t =(T—T, )/T, . As ~t~ increases, the
interfacial tension o & increases as

~
t ~", where

p=2v=1. 26 for the d =3 Ising model [30). The wetting

be

FIG. 1. Wetting-phase diagram in a pore of radius ro, show-
ing the tube, capsule, and plug configurations. For the parame-
ters typically used in our simulations (J& /J =1, H/J =0, and
Hl/J=0. 7), the wetting transition between the plug and the
capsule or tube phases is second order, and the interfacial shape
transition between the capsule and tube phases is first order.
The dashed line represents the "spinodal line" of the tube
configuration; the tube is metastable between the spinodal line
and the interfacial shape transition, and unstable beyond the
spinodal line.

potential also increases, because the difference in compo-
sition between the phases increases. Thus, V(r) increases
as ~t~~, where P=0.33. Clearly, a & increases more rap-
idly than V(r) with ~t~, leading to a decrease in the
wetting-layer thickness. Since the total volume of each
phase is fixed at critical composition, the system may un-
dergo a first-order transition to a "capsule" configuration
as the wetting-layer thickness decreases. We call this an
interfacial shape transition. As ~t~ is increased still fur-
ther, the system ~ay eventually undergo a second transi-
tion to a "plug" state, where the interface stretches
across the pore to reduce the total interfacial area. This
is the analogue of the wetting transition at a planar sur-
face [31—33]. A recent exact calculation of the planar Is-
ing model in a finite-size strip by Abraham, Svrakic, and
Upton [34] supports the existence of the wetting transi-
tion in a confined geometry. They apply the Wulff con-
structure to bond-energy correlation functions to demon-
strate the possible domain-wall configurations, and obtain
the capsule and plug configurations. Note that the plugs
in their Fig. 1(d) are slightly misdrawn; the interface
should make the contact angle 8„with both walls, rather
than 8, at one wall and ~—8, at the other wall.

The phase behavior of Ising systems has also been stud-
ied in other regular confined geometries. For example,
the behavior of Ising systems confined between parallel
plates has been studied by Nakanishi and Fisher [35], and
more recently, by Parry and Evans [36] and Swift,
Owczarek, and Indekeu [37]. Nakanishi and Fisher [35]
examined the case most analogous to the pore, where the
two plates have equal surface fields. In contrast to the
pore results, however, they did not observe a wetting
transition between the plates. We believe that they did
not see the ~etting transition because they employed
different boundary conditions. They used a zero-slope
boundary condition at the plates, which is valid for
strong fields sufficiently close to the critical point. Liu
and co-workers [14], on the other hand, implicitly used
the wetting boundary condition, where the slope of the
concentration at the surface is related to the surface field.
This wetting boundary condition was used by Nakanishi
and Fisher to study wetting transitions against a single
planar surface [31].

Recently, Parry and Evans [36] and Swift, Owczarek,
and Indekeu [37] have considered the parallel-plate
geometry with opposing surface fields on the two plates.
Here, capillary condensation is suppressed by applying
opposite-surface fields, so the behavior in the two-phase
region can easily be studied. The results of Swift,
Owczarek, and Indekeu [37] are qualitatively similar to
ours; there is a tubelike configuration, where the interface
lies halfway between the plates; and there is a pluglike
configuration, where the two phases are separated by in-
terfaces stretching between the plates. There is no cap-
sule phase in their model because the complete-wetting
interface position is fixed in the center of the gap by sym-
metry. In addition, Swift, Owczarek, and Indekeu [37]
have shown that the wetting transition can be first order,
critical, or tricritical, and that the transition merges
smoothly into the planar wetting transition as the plate
spacing diverges. These results are consistent with the
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(a) Tube {b} Capsule (c) Plug

FIG. 2. Schematic drawing of a pore junction in a porous
medium like Vycor, showing the analogues of the (a) tube, (b)

capsule, and (c) plug configurations.

simulation results of Liu and Grest for cylindrical pores
at constant composition [15].

One of the insights provided by the single-pore model
is that it is dificult for the system to reach equilibrium
[14]. For example, if the system is quenched from the
single-phase region into the two-phase region, it will form
into many short capsules or plugs, instead of one long
capsule or plug. If these capsules or plugs are formed by
nucleation or spinodal decomposition, we would expect
the length of the resulting capsules and plugs to be on the
order of the pore radius. Once these short capsules or
plugs are formed, Liu et al. [14) argued that the kinetics
of domain growth slow down drastically, thus prohibiting
macroscopic phase separation. This process will be de-
scribed in more detail in Sec. II.

In a true porous medium like Vycor, there are pore
junctions and variations in the pore radius. Nevertheless,
we suggest that there are analogues to the three
configurations found in cylindrical pores. These analo-
gues are depicted in Fig. 2. The tube configuration corre-
sponds to a bicontinuous phase where both phases per-
colate through all of the pores. The capsule
configuration corresponds to a percolating layer of the a
phase coating all of the pore surface, interspersed with
droplets of the nonwetting phase at the junctions of
pores. Plugs correspond to alternating domains of the
two phases separated by interfaces stretching across the
pore cross section. The transitions between the three
configurations will be shifted and rounded owing to
geometrical irregularities, but should still be governed by
the competition between surface tension and wetting
forces.

Numerical simulations have recently been carried out
by two groups, Lee [38] and Chakrabarti [39], on more
realistic model porous media in two dimensions, to study
the kinetics of domain growth. Lee used Monte Carlo
simulation to study phase separation in a system with
roughly parallel walls with irregular gaps. He found that
the domain growth exhibits scaling behavior in certain
regimes, and obeys a t' growth law when the minimum
distance is used to measure the correlation function in-
stead of the usual Pythagorean distance [38]. Chakrabarti
first used a cell-dynamics scheme to simulate a two-
dimensional spinodal decomposition pattern as model
Vycor. He then numerically integrated the Cahn-Hilliard
equation with appropriate boundary conditions at the
pore walls. He found that domain growth slows down
dramatically when the average domain size grows to be

comparable to the average pore radius. These results for
model Vycor support the single-pore picture [39].

E. Experiments

There have been several experiments on binary liquid
mixtures in porous glasses. The first was static light
scattering at 90 performed by Goh, Goldburg, and Kno-
bler [1]on hexane and perfluorohexane in a glass with an
average pore size of 45 nm. Their results were consistent
with extremely slow phase separation in the pores, in a
temperature regime quite far from T„where the correla-
tion length should be much shorter than the pore size of
45 nm. Thus, the RFIM picture is not expected to apply,
and their conclusions are consistent with the single-pore
picture.

We now turn to a set of experiments on 2,6-Lutidine
and water in Vycor. This mixture has an inuerted coex-
istence curve with T, =33'C and P'I =0.3, where PL is
the volume fraction of Lutidine, and Lutidine wets the
Vycor. Dierker and Wiltzius [2] and Wiltzius, Dierker,
and Dennis [3] made static and dynamic light-scattering
measurements and found evidence for a "pseudowetting"
transition 8' above the bulk T, , in what they suggest is
still the single-phase region. As discussed in Sec. I C, the
system reduces its gradient free energy by developing gra-
dients along the pore length, rather than across the pore
width. Between 8'C and 30'C above T, , Dierker and
Wiltzius [2] propose that the system remains in the
single-phase region with a steadily increasing correlation
length. Finally, the system reaches a history-dependent
frozen-domain state at about 30'C above the bulk-critical
temperature. They interpreted this temperature as the
random-field transition temperature. Their interpreta-
tion will be discussed further below. We should note here
that we have not yet calculated the autocorrelation func-
tion within the single-pore model to interpret the dynam-
ic light-scattering results. It is possible that diffusive
motion of the capsules may give rise to the relaxation
times they observe.

The two most recent experiments by Dierker and
Wiltzius (DW) [5] and by Lin, Sinha, Drake, Wu, and
Thiyagarajan [6], both use small-angle neutron scattering
to study Lutidine and water in Vycor. The average com-
position inside the pore is adjusted to be both critical and
contrast-matched to the Vycor by using a mixture of
H20, DzO, and Lutidine. The data from the two experi-
ments appear at least qualitatively similar, but the data
analyses and interpretations differ in some respects. DW
conclude that their data are consistent with the RFIM
picture, but do not rule out the single-pore picture. Lin
et al. conclude that their data support the single-pore
picture. To understand the differences, we must examine
the two interpretations underlying the data analyses.

The DW interpretation is based on the same picture
they used to analyze the static and dynamic light scatter-
ing. Below T, , the system is in the single-phase region
and exhibits the expected three-dimensional Ising behav-
ior. Thus the scattering intensity S(q) can be fitted with

a Lorentzian form:
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Since the system is still in the single-phase region, the
only length scale present is still the correlation length, so
we should have g, =(2=). DW found that best fits were
obtained for g, and g2 comparable in value. At
T = T,f —60' C, DW suggest that the system goes
through the random-field transition to an ordered
random-field state, with no change in the expected form
S(q).

This picture describes the data well, with one crucial
caveat. There is a residual peak in the data at
significantly higher q than the Vycor structure peak at
q =0.02 A '. In the data of Lin et al. , the extra peak
occurs at q=0.03 A '. In the DW analysis, an ad hoe
Gaussian term of the form A~exp[ —(q q~) Ip ] is—in-
troduced to account for this peak. The amplitude of the
peak A is found to increase as T increases above T, [29).
The actual form used to fit S (q) is therefore [41]

Ai A2S(q)= Ao+ +
1 +q2(2(1 +q2)2)2

+ A~exp[ —(q —
q ) /p j (T, & T & Tr) . (1.3)

The main difference in the analyses of DW and Lin
et al. lies in the interpretation of this peak. According to
the picture of Lin et al. , this peak is due to the presence
of a wetting layer, which introduces structure on a scale
smaller than that of the pore size, and hence a peak at
higher q than the Vycor structure. Below T, , Lin et al.
interpret their data using Eq. (1.1), as did DW. Above
T, , however, they assume that the system is in the two-
phase region. The two phases form microdomains on the
scale $2. Debye, Anderson, and Brumberger [42] showed
in 1957 that the form of S(q) for a system with alternat-
ing domains of two phases is a Lorentzian-squared term,
where the amplitude A2 describes the contrast between
the two phases and the length scale g2 derives from the
domain size. In the high-q limit, the Lorentzian-squared
term reduces to Porod's law: S(q)-q . In principle,
there is also a Lorentzian, or Ornstein-Zernike term, aris-
ing from fluctuations in the usual manner. However, in
the temperature regime of the experiments, the correla-
tion length g, is short compared to the pore size, and the

Ai
S(q)= (T & T, ) .

1+q g
Above T„DWassume that the system does not phase
separate, but begins to cross over to RFIM behavior.
Thus, correlations in the fluid composition due to the
random fields begin to develop, and a Lorentzian-squared
term appears in S(q) [40]. (DW also noted that their
Lorentzian-squared term could arise from microdomains
rather than from random fields, as discussed in more de-
tail below. ) Finally, DW include a q-independent term
due to background incoherent scattering. So the expect-
ed form for S(q) is

A& A2
S(q)=AO+ + (T, &T&Tf) .

1+q g (1+q gz)

(1.2)

Lorentzian term is approximately a constant. Thus, Lin
et al. fit their data to the form

S(q)=AO+
2 ~ +A3S,q,„(q,h) (T) T, ),

(1+q g~)

(1.4)

where S,„;„(q,b, ) is the structure factor for Vycor coated
with a contrasting wetting layer of thickness h. Sinha
[43] has shown that S,k;„canbe related analytically to a
chord distribution which characterizes the structure of
empty Vycor. When this term is incorporated, it appears
to account for the peak also seen by DW at q -0.05 A
The increase in amplitude of this peak with T implies
that the contrast between the wetting layer and the Vycor
increases. This is consistent with phase separation on the
pore scale, where the wetting layer grows richer in Lu-
tidine as the temperature moves away from criticality.

Apart from the peak, the two analyses yield consistent
results. Both analyses show that there is clear evidence
of increased contrast between the wetting layer and the
Vycor as T increases above T, . This is consistent with
moving away from criticality, further into the two-phase
region. Finally, it is important to note that, according to
both data analyses, the correlation length g, never
exceeds the pore diameter. Thus, it is likely that the sys-
tern never crosses over to the RFIM limit, because criti-
cal fluctuations are suppressed by the finite pore size. We
believe that a reasonable explanation is that the crossover
to RFIM behavior is preempted by crossover to one-
dimensional Ising behavior, as discussed in Sec. I C.

To summarize the neutron-scattering results, the inter-
pretation of Lin et al. appears to explain all of the data,
including the peak not accounted for in the DW analysis.
In the analysis of Lin et al. , the peak arises naturally, ow-
ing to the presence of a wetting layer. It is difficult to un-
derstand why a wetting layer, or strong composition gra-
dient, should arise in the RFIM picture in this regime.
Indeed, according to the static and dynamic light-
scattering results of Wiltzius, Dierker, and Dennis [3],
the system should be a "pseudo-partial-wetting" regime
with no wetting layer. Thus the RFIM picture is incon-
sistent with the results of the analysis of Lin et al.

II. KINETICS OF PHASE SEPARATION IN PORES

According to the single-pore model, the kinetics of
phase separation lie at the core of the unusual behavior
observed in binary liquids in porous media. There are
two main features of the kinetics that we wish to explore
in detail in this paper. Both of these were discussed in
Ref. [14];the first is the breakup of the tube configuration
when quenched into the capsule or plug regimes, and the
second is the unusually slow domain-growth kinetics in
the capsule and plug regimes. This section contains a
summary of the behavior predicted in Ref. [14] on the
basis of hydrodynamic arguments. We end this section
with a list of factors not discussed in Ref. [14], which
might influence the kinetic behavior, and which can be
examined with simulations.
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A. Breakup kinetics of tube

Simulations by Liu and Grest [15] show that the inter-
facial shape transition between the tube configuration and
the capsule or plug configurations is a first-order transi-
tion. In this section, we discuss the kinetics associated
with quenches from temperatures above to below this
transition. In other words, we study how the tube breaks
up into capsules or plugs when it is quenched into the
capsule or plug regimes. In an earlier paper [14], we pre-
dicted that the tube can break up into capsules or plugs
via a Rayleigh-like instability. This instability occurs for
energetic reasons; the system can reduce its surface area
by allowing long-wavelength perturbations of the tube ra-
dius. A simple energetic argument, summarized in Ap-
pendix A, shows that there is a line in the phase diagram
as a function of temperature and pore size beyond which
the tube is unstable. This line, which is analogous to a
spinodal line, always lies at temperatures below the inter-
facial shape-transition line (see Fig. 1). Thus the phe-
nomenological theory predicts a nucleation regime, lying
between the transition line and the spinodal line, where
the tube can break up into a capsule by a nucleation, or
pinching-off event. The theory also predicts a spinodal
regime, lying below the spinodal line, where the tube
breaks up via a Rayleigh-like instability. In Appendix B,
we present a linear stability analysis for the breakup
based on the Navier-Stokes equation with a wetting force.
Since the instability is energetic in origin, however, it
should occur even if there are no hydrodynamics in the
system. Thus, it should occur in our Ising model simula-
tions with Kawasaki dynamics, which include diffusion
but not hydrodynamics. Our simulation results for the
breakup kinetics of the tube are presented in Sec. IV B.

B. Domain growth kinetics

The kinetics of domain growth have been studied ex-
tensively in bulk Ising-like systems [44]. When a binary
fluid mixture is rapidly quenched from above to below
the coexistence curve, the system relaxes either via nu-
cleation or spinodal decomposition. In the late stages of
both nucleation and spinodal decomposition, the domain
size grows with time as r-t' . In this regime, coarsen-
ing is driven by a pressure difference between larger and
smaller domains. Each domain is under a Laplace pres-
sure 0. /r, where cr is the interfacial tension and r is the
domain radius. Thus, smaller droplets are under larger
pressure, which drives difFusion from the smaller droplets
to larger ones.

Domain growth in a cylindrical pore follows a very
different course. In an earlier paper, we discussed why
coarsening in confined geometries is expected to be
unusually slow [14]. As mentioned above, in the early
stages, domains can form and grow via nucleation or spi-
nodal decomposition, as in the bulk. When the domain
size becomes comparable to the pore radius, however, the
coarsening process slows down dramatically. Once the
domains have formed into short plugs or capsules, the
mechanism of Ostwald ripening is severely inhibited be-
cause the curvatures of the end caps of the plugs or cap-
sules are nearly independent of their length. Thus, short

and long plugs are under the same Laplace pressure, and
there is no driving force for diffusion from short plugs to
long ones. Similarly, there is no Ostwald ripening of cap-
sules. However, an individual capsule can diffuse as a
whole and may coalesce with a neighboring capsule. In
order for the capsule to move, however, the wetting
phase must flow through the wetting layer, because the
liquids are incompressible. Thus, the capsule diffuses
more slowly if the wetting layer is thinner. By similar
reasoning, plugs do not diffuse at all. A simple hydro-
dynamic calculation of the capsule diffusion constant as a
function of wetting-layer thickness is summarized in Ap-
pendix C.

C. Need for simulations

In the next section, we present results of Monte Carlo
simulations of the Ising model at fixed composition.
With the simulations, we can study many factors that
could influence domain growth. First, the first-order in-
terfacial shape transition from the capsule to the tube
phase can influence the kinetics, because the system can
be trapped in metastable states. Second, attractive in-
teractions between interfaces can lead to domain growth.
In the Ising model, these interactions are short-ranged
and decay exponentially with the correlation length.
Third, we note that for binary liquids in pores, the kinet-
ics are governed by diffusion as well as hydrodynamics.
In the hydrodynamic calculations presented in Appen-
dixes B and C, diffusion is ignored. It is valuable to study
the transport-mechanism dependence by simulating the
Ising model with Kawasaki dynamics, where the kinetics
are governed by diffusion only. Finally, the phenomeno-
logical calculations are based on macroscopic considera-
tions, and it is not clear whether they apply in the 60-A
pores found in Vycor. Clearly, simulations in small pores
provide a stringent test of the validity of the macroscopic
picture.

III. SIMULATION MODEL

In the simulations, we employ the standard mapping of
a binary liquid mixture with molecular species A and B
onto a lattice-gas model with spin orientations 0.;=+1,
governed by the following Hamiltonian:

A=——J g oa, —J,
bulk(i j )

surfaces(i, j )
0;

surface(i, j )

0 i 0 j

(3.1)

where J is the coupling between bulk spins, J& is the cou-
pling between surface spins, and H& is the surface field.
In this model, we impose short-ranged wetting forces;
i.e., the surface field H& only acts on the first layer of
spins next to the pore wall, and the interactions between
spins are restricted to nearest neighbors only. Thus, the
effective interface potential, or wetting potential, decays
exponentially with the correlation length. The pore is a
parallelepiped of dimensions L~ XL~ XL„with L,
chosen such that L, ))L~. We impose periodic boundary
conditions in the longitudinal direction L, ~ The surface
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(e) 5OOO

(b) 25000

(c) 70000

(d) 310000

(e) 470000

TO

FIG. 3. Spinodal decomposition in a pore. We quench from the disordered phase (k&T/J=2k&T, /J) into the plug phase

(k~ T/J =3.2) at time t =0. The surface coupling is J& /J = 1.0, the bulk field is H/J =0, and the surface field is H& /J =0.1. Mag-
netization profiles are shown at the times indicated on the left. The surface field is extremely low so the contact angle in (e) is nearly
90'. Note that the domain growth slows down once the domain size becomes comparable to the pore radius. These profiles were ob-
tained by averaging over 20000 MCS.

(a) 25000

(b) 525000

(c) 65OOOO

(d) 750000

(e) 1650000

y0

FIG. 4. Tube breakup kinetics. We quench from the tube phase (kz T/J =4.25} into the plug phase (kz T/J =3.25). The param-
eters J& /J = 1.0, H/J =0, and H& /J =0.7 are used. Times are indicated on the left. Note that the tube pinches off first at one point,
so it breaks up via nucleation. However, it eventually pinches off at two more points, to form three nearly equal-sized plugs, which
one would expect if it had broken up via an instability ("spinodal decomposition"). Thus the evidence for the existence of a "spinod"'
line" is inconclusive. The profiles were obtained by averaging over 25000 MCS.
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0 otherwise . (3.2)

field and surface coupling act only along the other four
surfaces of the parallelepiped. All of our simulations
were performed at fixed surface field H&/J =0.7 and
fixed surface coupling J, /J =1.0, unless otherwise noted.

The three-dimensional Ising model on a simple cubic
lattice has a critical point [30] at kent T, /I =4.51. All of
the results presented here were obtained for the system
size L~ =20 and L, =280. For this size, the wetting and
interfacial shape-transition temperatures were calculated
in Ref. [15] to be k&T /J =3.4 and k&T, /J =4. 15, re-
spectively. According to the results of Liu and Grest
[15],the wetting transition is fairly insensitive to the pore
length L„while the interfacial shape transition tempera-
ture varies linearly with 1/L, . In the limit L,~ ~, Liu
and Grest found k~T,. /J=4. 28. Note that the typical
pore diameter in Vycor is roughly 60—70 A [16]; this is
identical to our pore size L~ if we take the lattice spacing

0

to be the molecular size of roughly 3 A.
In keeping with the constraint mentioned in Sec. IB,

the simulations are performed in the canonical ensemble.
Thus, the total magnetization is held constant; in the
studies presented here, the magnetization was actually
fixed at zero. For the dynamics, we chose a more efficient
variation of the Kawasaki algorithm, known as pair-Aip
dynamics. Nearest-neighbor spins 0.

, and o. are ex-
changed with the following probability:

1 1f cTf- — 0 .

The acceptance rate is given by

A([a]~[o'I)=min 1,
exp( —& cr' )

'
exp( —@&I tr I )

(3.3)

where o' represents the new spin configuration with
o'= —0. and 0' = —o. .f 1 J'

The simulation results are displayed as magnetization
profiles in Figs. 3 —7. These profiles are obtained by
averaging the magnetization over square rings, for each
square cross section along the pore length L, . For exam-
ple, the four spins lying in the innermost ring of the
square cross section are averaged to obtain m (r = l, z) for
each value of z along the pore length. Similarly, the
4(2n —1) spins lying in the nth ring are averaged to ob-
tain m(r =n, z), where the index n runs from n =1 to
n =L ~ /2. In cylindrical coordinates, this process is
equivalent to obtaining a radial profile m (r, z) by averag-
ing over the azimuthal angle. The resulting magnetiza-
tion profiles are then averaged over at least 10000 Monte
Carlo steps per spin (MCS) to obtain better statistics.
This time average increases the apparent thickness of the
aP interface in all our figures. The intrinsic interfacial
thickness should be the bulk-correlation length, which is
at most one lattice spacing in the temperature regime
shown in the figures. The interfaces appear much more
diffuse because of capillary waves. In a bulk three-
dimensional system, the capillary waves diverge, smear-
ing out the interface completely. In this case, however,
the interface position, or wetting-layer thickness, is deter-

(8.) 100000

(b) 160000

(c) 220000

,9

(d) 300000

To

FIG. 5. Domain-growth kinetics. We heat from the plug phase (k&T/J =3.2) into the capsule phase (kz T/J =3.55) just above

the wetting transition at time t =O. We use J, /J = 1, H/J =0, and H
~
/J =0.7. The wetting layer forms quickly after the burn [see

(a)j, but the capsules grow extremely slowly, apparently because the interaction between interfaces is short-ranged compared to the

spacing. See Figs. 6 and 7 for comparison of growth rates. Profiles were averaged over 10000 MCS.
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(a) 50000
ia

(b) 100000
P ~has. .

'v~

(c) 480000

(d) 500000

yO

FIG. 6. Domain-growth kinetics. We heat from the plug phase (kaT/J =3.2) to roughly the midpoint of the capsule phase
(k~T/J=3. 75) at t =0. The coupling constants and fields are the same as in Fig. 5. The wetting layer is thicker than in Fig. 5, and
the kinetics of capsule coalescence are noticeably faster. Profiles were averaged over 10000 MCS.

((i) 1080000

To

FIG. 7. Domain-growth kinetics. We heat from the plug phase (k&T/J =3.2) into the capsule phase (k T/J =3.85) just below
the interfacial shape transition. The coupling constants and fields are the same as in Fig. 5. The capsules coalesce rapidly [see (a)].
The influence of the nearby interfacial shape transition is apparent; the system is trapped in the metastable tube, and cannot reach the
equilibrium capsule configuration until a nucleation event occurs [see (c)]. Profiles were averaged over 30000 MCS.
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mined by a minimum in the free energy due to the com-
petition between wetting forces and interfacial tension.
Thus there is an energy cost for capillary waves and the
spectrum does not diverge. Averages over 10000 MCS
and over 30000 MCS yield similar apparent interfacial
thicknesses.

In Figs. 3 and 4, we have used the following color code
to represent the magnetization m: m = + 1 is red,
m = —1 is violet, and intermediate values are given by
the spectrum. In Figs. 5 —7, we have used a gray scale to
represent m: m =+1 is black and m = —1 is white. In
all of the magnetization profile plots, we reflect the radial
profiles around the z axis to obtain the depicted length-
wise pore cross sections.

Finally, in our discussion of the results, we refer to
temperature burns; a "burn" is the opposite of a quench.
In a quench, the temperature is lowered abruptly, and in
a burn, the temperature is raised abruptly.

IV. SIMULATION RESULTS

A. Quenehes from the disordered state

We first perform three quenches from the disordered
state (k~T/J =2k~ T, /J) into the tube (ks T/J =4.25),
the capsule (k~T/J =3.75), and the plug state
(kz T/J =3.2) (none of these is shown). We find that, in

all three cases, the system forms a tube, because the sur-
face field H, /J =0.7 is too strong. The time required for
the appearance of small domains, namely plugs or cap-
sules, is far longer than the time required to create a
metastable wetting layer and to squeeze the nonwetting
phase into a tube. This is a somewhat artificial result, be-
cause for a more realistic model with longer-ranged in-

teractions between spins, the time required for the forma-
tion of small domains is reduced [45]. In a real system,
the system may therefore form small domains rather than
a metastable tube for wetting forces of comparable
strength. In order to obtain small domains upon a deep
quench from the disordered phase within our model, we
reduced the strength of the surface field significantly.
Figure 3 shows stages in the spinodal decomposition from
the disordered state k~T/J=2k~T, /J into the plug
state at k~ T/J=3. 2, for a surface field H, =0.1J, at five

different times following the quench. As expected, the
domain growth slows down dramatically once the plugs
are formed. As shown in Figs. 3(d) and 3(e), there is no
perceptible domain growth between 310000 and 470000
MCS.

Recent cell-dynamical simulations performed by Mar-
ko on spinodal decomposition near a planar wall [46] are
consistent with the above observations of the formation
of the metastable wetting layer. The planar wall simula-
tions demonstrate that there are three main factors con-
trolling the time scale for the formation of the wetting
layer after a quench from the single-phase region. These
are the structure of the initial state, the thermal noise
driving spinodal decomposition in the final state, and the
strength of the surface field [46]. In the case of a pore, it
is more difficult to prevent the wetting layer from form-
ing first because the surface to volume ratio is higher. In

our case, the initial state is nearly homogeneous, and the
quench depth is fixed by the wetting and interfacial
shape-transition temperatures. Therefore, we can
prevent the formation of the wetting layer only by reduc-
ing the surface field.

B. Tube breakup kinetics

We first demonstrate the hysteresis at the interfacial
shape transition predicted in the phenomenological
theory. We begin with seven equally spaced and equally
sized plugs equilibrated at k&T/J=3. 2, whose lengths
are equal to the pore diameter. At time t =0 the temper-
ature of the plugs is raised to k~T/J=4. 4, well above
the interfacial shape transition. We find that the plugs
rapidly coalesce into a tube within t =25 000 MCS (not
shown here). Next, we perform the reverse quench: we

begin with a tube equilibrated at k&T/J=4. 25, and
quench into the plug state at kz T/J =3.25. The break-
up of the tube into plugs is shown in Fig. 4. The pictures
show that the tube first breaks up by pinching off at one
point after about 525000 MCS. Thus, it takes much
longer for the tube to break up into plugs than for the
plugs to coalesce into a tube. This is consistent with the
observations on quenching from T) T, into the plug
phase, where the system first formed a metastable tube in-
stead of plugs at this value of the surface field

(H, /J =0.7).
We now study the breakup of the tube as a function of

quench depth. We quench the tube at k~ T/J =4.25 into
the capsule regime, at kz T/J =3.75. The time sequence
is not shown here, but we find that the tube again pinches
off at one point after about 500000 MCS.

It is difficult to establish whether we see evidence of a
"spinodal line" for the tube. The pinching-off event that
we observe occurs at only one point along the tube, so it
should probably be described as a nucleation event. A
close examination of Fig. 4, however, shows that after
525000 MCS, the tube is definitely rippled in a roughly
periodic way. Although the ripples do not grow in am-

plitude to the point where the tube breaks up, they may
be evidence that the system is approaching the spinodal
line. At later times, two more pinching-off events occur,
leading to a series of three small plugs of roughly equal
size, rather than one large plug. Thus our observations
could be interpreted as evidence for an incipient instabili-

ty of the tube.

C. Domain-growth kinetics

Let us now examine the growth kinetics of capsules,
focusing on the dependence of the growth rate on tern-

perature. In the next series of runs, we begin with seven

equilibrated small plugs, whose lengths are equal to the
pore diameter. In each run, we begin at the same initial

temperature, at kz T/J =3.2, and perform a single burn.
The magnitude of the burn is varied in each run. First,
we perform a small burn; we raise the temperature of the

plugs at time t =0 to k~ T/J =3.55, just above the wet-

ting transition. Figure 5 displays the resulting magneti-
zation profiles at four times following the burn. In the
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second run, we heat the plugs at t =0 to k~ T/J =3.75,
midway between the wetting and interfacial shape transi-
tion. Figure 6 shows the profiles at four times following
the burn. At this higher temperature, the kinetics are no-
ticeably faster than those shown in Fig. 5. At
k~T/J =3.55 (Fig. 5), it takes 300000 MCS for the ini-
tial seven capsules to coalesce into four capsules. At
ks T/J =3.75 (Fig. 6), it takes only 100000 MCS for the
seven capsules to coalesce into a single capsule. Finally,
in the third run, we heat the plugs to k~T/J=3. 85,
closer to the interfacial shape transition. The results are
displayed in Fig. 7 for four times following the burn. At
this temperature, the seven capsules coalesce into a tube
in roughly 70000 MCS, much faster than in the two pre-
vious runs.

The sensitivity of the growth rate to temperature ap-
pears consistent with the predictions of the phenomeno-
logical theory. According to the theory, however, the
capsules coalesce by moving towards each other by
diffusion. In Figs. 5 —7, it is clear that none of the cap-
sules moves as a unit as a function of time. On the time
scale of the simulations, the diffusion of an entire capsule
is apparently irrelevant. Rather, the capsules appear to
coalesce owing to interactions between the endcap inter-
faces. As the temperature is increased, the interaction
range also increases, presumably leading to faster coales-
cence.

The runs in Figs. 6 and 7 also illustrate other effects.
In Fig. 6, the capsule formed after 100000 MCS eventu-
ally breaks into two smaller capsules, due to internal ten-
sile stresses. These stresses arise because the capsule is
stretched beyond its equilibrium length, which is deter-
mined by the equilibrium wetting-layer thickness and the
total volume of the capsule. Evidently, diffusion through
the wetting layer is still slow enough so that the capsule
breaks up before it has time to shrink to its equilibrium
length.

Figure 7 illustrates the effect of the nearby first-order
interfacial shape transition on the kinetics. As discussed
above, the initial seven capsules quickly coalesce into a
tube. The important feature here is that the tube is meta-
stable at this temperature. Thus the system is trapped in
a metastable configuration. The time required to reach
the true capsule equilibrium state is drastically increased,
because the system must now wait for a nucleation event.
Such an event is shown in Fig. 7, where the tube pinches
into two capsules after 1 080000 MCS.

The last point in this section concerns the effect of ini-
tial domain size on growth kinetics. As mentioned above,
an array of seven small plugs heated into the tube state
coalesces into a tube in a remarkably short time. We be-
lieve that the coalescence time is short because the range
of interactions between interfaces is roughly comparable
to the distance between them. We are, however, also in-
terested in the effect of diffusion through the wetting lay-
er on the coalescence time. In order to reduce the effect
of interfacial interactions, and to study the diffusion
specifically, we start with a single plug, and heat into the
tube state. In this case, somewhat surprisingly, the sys-
tem becomes trapped in a metastable capsule state. In
the first 250000 MCS, the plug grows into a longer cap-

sule. For the next 250000 MCS, the capsule oscillates in
length by stretching and shrinking. Finally, the capsule
grows to some "critical" length, beyond which it grows
monotonically into a tube, after roughly 2X10 MCS.
This final slow growth from the capsule to the tube is
probably due to the diffusion of the wetting layer along
the entire length of the capsule, which is about three-
quarters of the pore length. Thus, we do observe the
effect of diffusion through the wetting layer on the
growth rate.

V. SUMMARY OF SIMULATION RESULTS

In these simulations, we have studied two phenomena
associated with the kinetics of phase separation in small
pores. The first is the kinetics of the breakup of the tube
configuration, when quenched into the capsule or plug re-
gime. The second is the growth kinetics of capsules and
plugs. According to a phenomenological model [14], the
breakup kinetics of the tube should show two distinct be-
haviors, depending on the quench depth. For shallow
quenches, there should be an energy barrier between the
tube and capsule configurations, and the tube should
break up by nucleation, pinching off at a single point
along its length. For deep quenches, there should be no
energy barrier, and the tube should break up via an insta-
bility, pinching off at periodic intervals along its length.
In our simulations, the tube always pinches off at a single
point first, rather than at several points simultaneously.
Thus we always observe breakup by nucleation. Howev-
er, in the deeper quenches, the tube radius appears to
vary periodically along its length (see Fig. 4), perhaps in-
dicating an incipient instability. For very deep quenches,
the kinetics are extremely slow. We suspect that the in-
stability of the tube occurs at quench depths too large for
the kinetics to be observable, for this value of the surface
field.

The second phenomenon studied here is associated
with the growth kinetics of capsules and plugs. We ob-
serve that the growth kinetics of domains slows down
dramatically when the domain size becomes comparable
to the pore radius. This is in part due to the quasi-one-
dimensional nature of the geometry, which inhibits
Ostwald ripening. However, the simulations also show
an extremely strong dependence of the coarsening rate on
temperature. When the temperature is higher, the in-
teractions between interfaces are longer in range, presum-
ably leading to faster domain growth. We have also
shown that the growth rate depends strongly on the
domain size, as expected.

The growth rate is also influenced by the proximity of
the first-order interfacial shape transition at k&T;/J.
When we heat a set of several plugs to just below ks T, /J,
the system tends to get trapped in a metastable tube state
[47]. When we heat a single plug to just aboue k&T; /J,
the system is trapped in a metastable capsule state. On
the other hand, if we heat the set of plugs to just above
k~ T, /J, or a single plug to just below k~ T; /J, we ob-
serve no metastability. Thus, the behavior we observe de-
pends on the initial configuration, -as well as the final tem-
perature after the burn.
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In conclusion, the simulations exhibit many features
predicted by the phenomenological theory, but from very
different mechanisms. For example, in our simulations,
the strong dependence of domain growth on temperature
appears to arise from the range of interfacial interactions;
in our hydrodynamic calculations, on the other hand, it
arises from the sensitivity of flow to the wetting-layer
thickness. In a real system, hydrodynamic flow,
diffusion, and interfacial interactions all play a role. We
find that the effect of all of these factors is to slow down
the kinetics dramatically as the temperature is lowered
further into the two-phase region.

Finally, we address the usefulness of macroscopic
descriptions in describing behavior in small pores. The
simulations of Liu and Grest [15] showed that macro-
scopic ideas are extremely successful in predicting the
wetting-phase behavior in small pores. In these simula-
tions, we again do not see any behavior that cannot be ex-
plained qualitatively using macroscopic ideas; interac-
tions between interfaces can easily be incorporated in a
macroscopic description. Thus our results indicate that
macroscopic descriptions are surprisingly successful in
describing phase-separation kinetics in pores on the scale
of a few tens of angstroms.

potential for two concentric cylinders of radius r and rp.
In this expression, we have neglected the contribution of
the end caps of the capsule to the free energy; thus (Al) is
valid when the pore dimensions satisfy L ))rp. The cap-
sule radius r, is found by minimizing (Al) and solving

o. + 3 [V(r, )
—r, V'(r, )]=0 . (A2)

Thus, the free energy of the tube phase is

f,„b,=2mr, [o+ AV(r, )] . (A4)

Given the free energy of the tube configuration, we can
calculate the position of the spinodal line in the phase di-
agram. The free energy of an arbitrary axisymmetric sur-
face is

2 1/2

F =2mfdz . X(r (z) )r (z) 1+ dr
dz

where the "effective surface tension" X(r) is given by

The free energy of the tube phase is given by (Al) with r,
replaced by the tube radius

(A3)

X(r)=o+ AV(r) . (A6)
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The volume of the enclosed surface, which is held con-
stant owing to the composition constraint, is

V = rryproL =err, L =mfdz .[r (z) ] (A7)

If we set r(z)=r&+or, sinqz, where e« I, then we can
solve for r i in terms of r, and e using (A7). Assume that
L =2~n /q, where n is an integer. Then

(A8)

APPENDIX A: TUBE BREAKUP KINETICS:
SPINODAL LINE

and

r(z)=r, (1+esi qzn——,'e ) . (A9)

f„„=2vry&ro[o.+ 3 V(r, )]/r, , (Al)

where f„is the free energy of the capsule phase, y& is

the volume fraction occupied by the P phase (q»= —,
' cor-

responds to critical composition}, ro is the pore radius, r,
is the capsule radius, o is the aP interfacial tension, 3 is
the Hamaker constant, and V(r) is the effective interface

When the tube configuration is quenched into the cap-
sule or plug phases, the tube can either pinch off to form
a single capsule or plug, or it can undergo an instability
and pinch off to form a series of capsules or plugs. The
former process is similar to nucleation and the latter pro-
cess is analogous to spinodal decomposition. In a previ-
ous paper, Liu et al. [14] provided an incorrect expres-
sion for the position of the spinodal line in the phase dia-
gram. We stress that the error makes no qualitative
difference in the wetting-phase diagram, and does not
alter the physical picture presented in Ref. [14]. Here,
we show the correct derivation of the spinodal line. As in
Ref. [14], we begin by constructing the free energies per
unit length of the capsule and tube configurations. These
are given by

Now expand the expression for I' around r, to second or-
der in e to obtain

F/L =f,„b,+ ,' ne r, [r, A(r,—)+q r, X( r, ) ],
where

(A10)

t)(r)= 2V"(r)+ 2V'(r)/r —[o+ AV(r)]/r (All)

Finally, the expression (All) should be compared to the
incorrect form given in Eq. (5} in Ref. [14]:

b, = 3 V"(r) o./r— (A13)

and f,„b,is given by (A4).
From (A10), we see that the free energy F/L is always

higher than the unperturbed tube free energy f,„b, if
6 )0; thus, in this case, the tube is stable against pertur-
bations. If 6 (0 is satisfied, however, then the tube is un-

stable to long-wavelength perturbations, and will break
up. Thus the position of the spinodal line is given by

(A12)
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This error does not lead to any qualitative differences in
the phase diagram.

APPENDIX B: TUBE BREAKUP KINETICS:
LINEAR STABILITY ANALYSIS

From the linear stability analysis, we can determine the
wavelength of the fastest growing mode, to obtain an esti-
mate of the resulting capsule or plug size. One of the in-
gredients of the calculation is the Laplace pressure, or the
pressure drop across the aP interface. In the absence of a
wetting potential, the pressure difference is given by

surface

B (R =1)=0,
zero-slope conditions at the pore center

dQ P

dR ~ —0

matched velocities at the interface

u (R =p)=up(R =p),
and matched stresses at the interface

(89a)

(89b)

(89c)

pp p~ —a'(c i +cz ) (81)

where c& and c2 are the two principal radii of curvature
of the interface. In the presence of a wetting potential,
the expression for the Laplace pressure is modified [48]:

d&p
'9

dR g =p dR
(89d)

Finally, we have expression (82) recast in dimensionless
units:

p&
—p =X(r)(c, +cz)+X'(r), (82)

where X(r) is given by (A6). In Ref. [14], the following
expression for the Laplace pressure was used:

T

p~
—p =—X(p) ——,+X'(p)1 1 d p

p dx
(810)

pp
—p =o(c, +c,)+X'(r) . (83)

The remainder of the calculation is straightforward.
We solve (86) to find

1 dP&
u, = R +colnR +c', ,

4g, dx
(811)

where the four constants co and c', are determined in
terms of dp /dx and dp&/dx by matching to the bound-
ary conditions (89a). Since the difference of the pressures
is given by (810), the four constants can be written in
terms of dp&/dx alone. We substitute the solutions (811)
into the definition of the volumetric fluxes (84) and (85).
We can then use (87) to solve for dp&/dx. We find

dpp d(pp P } (1—p )

dx dx p4( 1 —ri ) —1
(812}

We put this expression into the equation for Q& and sub-
stitute into the continuity equation (BS). Finally, we use

This led to errors in Eqs. (5) and (6) in Ref. [14]. As not-
ed in Appendix A, this error makes no qualitative
difference in the phase diagram.

Before embarking on the linear stability analysis, we
define several dimensionless variables. We introduce a
time r=ripro/cr, where q& is the viscosity of the P phase.
Then we define the following dimensionless variables: the
radial distance R =r/ro, the axial distance x =z/ro,
time t =T/r, the fluid velocities in the two phases
u, =

U, r/ro, t.he fluid pressures in the two phases

p; =P;ro/o, and the viscosity ratio ri=ri /ri& We.
denote the interface position at position x by p(x), and
define the volumetric flux of each phase:

Q =2nfu R dR. (84)
P

and

Qp=2n f upR dR .
0

(85)

We then have a set of three equations to solve. The first
is the Navier-Stokes equation. We assume that the Rey-
nolds number is low and that the lubrication approxima-
tion holds, so all of the flow is in the axial direction:

eiqx+cut (813)

co= q [b(r, ) qX(r, )]-,
16r,g

(814)

and linearize (88) in pi «p, to obtain the dispersion rela-
tion. In real units, this is

dQ.

"RdR 'dR
dp;

dx
(86)

The second equation states that there is no net fiuid flow:

where b, is given by (Al 1) and ao is a function of p, :

(1—pt)'
ao =(1—3p, )(1—p, ) —4p, lnp, +

p, (1—g) —1
(815)

Q +Qp=0; (87}

and the third equation is the continuity equation for the
volumetric flux of P:

—(~p )= Q
a 2 a
at ax

(Bg)

We also need boundary conditions for the Navier-
Stokes equation. We use no-slip conditions at the pore

We find that ao is always positive. For the case of critical
composition, the tube radius is p, = I/v'2. If we assume
that the viscosities of the two components of the binary
liquid mixture are nearly the same, then the viscosity ra-
tio satisfies g=1 near the critical point, and a0=0.034.
Note that the quantity enclosed in square brackets in
(814) is identical to the result obtained in the energetic
calculation.

Given the dispersion relation (814), we can obtain the
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wavelength of the fastest growing mode:

A, =2srro(b, /2X)'~ (B16)
u„=2' f upR dR (mp). (C3b)

Not surprisingly, the length scale is set by the pore radius
rp.

The resulting expression for the drag is

(C4)

APPENDIX C: DOMAIN GROWTH KINETICS—
HYDRODYNAMIC CALCULATIONS

D =k~ T/A, (Cl)

The earlier paper, Ref. [14], quoted results for the
diffusion constant of capsules. The calculation is
sketched here. We begin with a capsule of dimensions
r =prp and 1, with r && l so that we can neglect the cap-
sule end caps. The diffusion constant of the capsule is
given by the Stokes-Einstein relation

where

H(p)= 2(p —1)—4p lnp

+[2—
p (2—g)](1—

p } /[1 —
p (1—g)] . (C5)

H(p)=10(1 —p) +O((1—p) } .

Thus the diffusion constant in that limit is

(C6)

In the limit p —+1, when the wetting layer grows very
thin, we find, for g = 1,

where A is the drag on the capsule. But A is given by

F„=Au,„, (C2)
5ktt T(1—p)D=

4m'~ 1
(C7)

F =rrr l~v
—fir

dx

and obtained a resulting average velocity

(C3a)

where F,
„

is an average force on the capsule and u,
„

is its
resulting average velocity. In Appendix B we applied an
average force given by

The capsule diffuses more slowly as the wetting layer
thins, owing to the factor of (1—p) . It also diffuses
more slowly as its length increases, owing to the factor of
1 in the denominator. Finally, note that the results quot-
ed in Ref. [14] for the diffusion constant and coalescence
times are correct; the errors in the expressions for F,

„

and u,„cancelin the calculation of the drag.
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