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Integral-equation theory of polydisperse Yukawa systems
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A discretization method is presented in order to describe structural properties of Yukawa-type fluids
consisting of particles with a continuous size and charge distribution. The accuracy of the method is
tested by comparing the results from the Rogers-Young closure scheme of the Ornstein-Zernike equa-
tion for the correlation functions with the corresponding Monte Carlo data. The relevance of this
method for the interpretation of light- and neutron-scattering data of colloidal dispersions is also briefly
discussed.

PACS number(s): 82.70.Dd, 61.20.Gy

I. INTRODUCTION

Complex liquids like colloidal dispersions are known to
consist of a collection of macroparticles that exhibits a
size distribution, a shape distribution, and, if the macro-
particles are charged, also a charge distribution [1—5].
Whereas the shape polydispersity can often be avoided,
the size and charge polydispersities are unavoidable, and
they have to be considered as intrinsic characteristics of
charge-stabilized colloidal dispersions. As a conse-
quence, a statistical-mechanical description of the disper-
sions has to take into account the polydispersities and has
to show how they influence measurable quantities like the
structure factor S(k), the diffusion coefficient D, and
thermodynamic properties.

Here we show how to handle, in an (almost) exact way,
the charge and size polydispersities of dispersions of
spherical colloidal particles whose interactions can be de-
scribed by Yukawa-type potentials. Despite their experi-
mental importance, these charge- and size-polydisperse
systems are theoretically less investigated as compared to
size polydisperse hard-sphere systems, for which an
analytical solution of the PY (Percus-Yevick) closure is
known when the polydispersity is described by a continu-
ous Schulz distribution [6]. The main reason is due to the
fact that an accurate and quantitative description of Yu-
kawa systems is possible through closure relations, i.e. ,
HNC (hypernetted chain), MHNC (modified HNC), or
RY (Rogers-Young) that have only numerical solutions.
Analytic solutions of the MSA (mean spherical approxi-
mation) scheme for n-component mixtures of Yukawa
particles have been recently published [7,8]. Although to
solve MSA equations is in principle simpler than to solve
HNC or RY equations, difficulties in selecting acceptable
solutions from the manifold of solutions prevented the
application of MSA to cases with continuous polydisper-
sity. The only application to the microscopic structure
concerns a case with n =2 [8]. It should also be recalled
that MSA needs an ad hoc rescaling procedure when ap-
plied to a range of parameters characteristic of colloidal
dispersions [9,8]. Another attempt to treat polydisperse
colloidal suspensions has been made by Lowen, Roux,
and Hansen [10]. When compared to MD (molecular-

dynamics) data, the results show the same kind of draw-
backs found from comparisons between one-component
results and MD data on polydisperse systems. A satisfac-
tory treatment of polydisperse Yukawa systems is, there-
fore, still lacking.

It is our aim to show how infinitely-many-component,
or polydisperse, systems can be successfully described in
the framework of the HNC and/or RY closures. We will
present a methodology that is general and can be applied,
with the necessary modifications, to cases in which po-
lydispersities are described by a distribution different
from the Schulz distribution, like the log-normal, the
Gaussian, the exponential, etc. In addition, the method
will give a comparable degree of accuracy also for cases
in which the interparticle interactions are different from
the Yukawa potential, since a large class of interactions is
well treated by HNC and/or RY closures.

II. THEORY

We consider systems of 1V Yukawa particles whose size
polydispersity is described by the Schulz distribution [11]
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with (cr ) =1. We classify the different systems accord-
ing to their standard deviations in size,
s =((o ) —(o ) )' /(cr ). The charge polydispersity
is obtained by simply fixing the charge Q& &

on the parti-
cle of diameter (cr ) and keeping the surface charge den-
sity constant, an assumption that can easily be replaced
by a different scaling, if necessary.

in which o is the particle diameter, I (t) is the gamma
function, and t denotes a parameter controlling the width
of the distribution. The normalized moments of this dis-
tribution are given by the recursion relations

(o )= 1 ~ t+m
dcr o F(o )= (o '),

( )m 0 t+1
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where Ls=e /(4neoek&T) is the Bjerruin length, Z is
the valence of the particle o, P= I /( ks T), and
s=(4mLsg. n Z )' denotes the inverse Debye-Hiickel
screening length, with n the number density of species
0.

To show how to treat polydispersity in calculating
various correlation functions, we consider the number-
number pair-distribution function gzz(r), and the "mea-
sured" static structure factor S (k). For a system with
infinitely many components, g~~(r) is defined by

gz~(r)= f do fdo'F(cr)F(o')g .(r), (4)

where

N N,
g, =, X Z 'g(r+r,' —r,')), (5)

NnF (cr )F (cr')

with the prime on the summation indicating the emission
of the i =j terms when 0.=0', and with r; denoting the
position of the particle i belonging to the N particles of
diameter o.

The "measured" static structure factor S (k) is intro-
duced in the context of static light-scattering experiments
[13,14] and is defined by

f dcr f do'F(cr)F(cr')b (k)b~ (k)S (k)
S (Ic)= fdoF(cr)b (k)

(6)

in which, for the form amplitudes b (k), we take the ex-
pression obtained for spheres with a homogeneous distri-
bution of scattering material

j&(kcr/2)
b (k) ~cr (7)

Here j, is the spherical Bessel function of first order.
The partial static-structure factors S .(k) are

The form of the interaction potential energy between
particles o. and o. ' is taken as [12]

I, 1/2eKo/2 Z L 1/2eKo'/2

Py (r) =
1+vo. /2 1+vcr'/2 r

tacked from two different points of view. In the first one,
which is more numerical by nature, we take advantage of
the particular dependence of F(cr) on the integration
variable o. Using Eq. (1), the integrals appearing in Eqs.
(4) and (6) can be written in the form

I(x)=f dcr o'exp( —ao )f (cr;x),
0

(9)

in which f (cr;x) stays for a generic function of o, and x
is a parameter. As is well known, integrals of the same
form as in Eq. (9} can be evaluated using the p-point
Gauss-generalized Laguerre quadrature method [15],
where the integration is replaced by the sum of the p
quantities w;f( o;;x ), with w; and cr, being weights and
positions, respectively. The method is exact for functionsf(o;x) that are polynomials of degree 2p —1 in the vari-
able cr. The method allows us to rewrite Eqs. (4) and (6)
as

gjvz(r)= g g w w, g (r),
o =1 u'=1

P
w w .b (k)b .(k)S,(k)

SM(k)
fda F(o)b (k)'

(10)

The integral in the denominator of this equation is not
approximated by a sum since it can be evaluated analyti-
cally. A collection of analytical results for five different
F (o ), and for b (k) given in Eq. (7), has been recently re-
ported by Sheu [16].

Even for polydispersities as large as s =0.3, the vari-
ous functions f (o",x) appearing in Eqs. (4) and (6) are ex-
pected to be slowly varying functions of o., so that they
are well represented by polynomials of low degree.
Therefore p is a reasonable small number, and gNN(r) and
S (k) can be efficiently evaluated in the framework of
the HNC and/or RY schemes.

From the second point of view, the integrals in Eqs. (4)
and (6) are transformed by representing the continuous
distribution F(o ) by a histogram. The Schulz distribu-
tion is replaced by a p-component histogram whose posi-
tions cr; and molar fractions w; are obtained by solving
the following system of 2p equations:

S (k) = +nb .(k),F(o )
(8) two, =(o ), m=0, 1, . . . , 2p —1 (12)

is the Fourier transform ofwhere h .(k)
h .(r) =g .(r) 1. —

Equations (4) and (6) for g+N(r} and SM(k) are of no
practical use in connection with integral-equation
theories that require a numerical implementation for
their solution, like the HNC and/or RY schemes. The
only chance is to reduce the integrals appearing in these
equations to summations over a small number of terms.

The problem of evaluating g&~(r) and S (k) can be at-

with (cr ) given by Eq (2). With. this reduction, the re-
sulting expressions for gN&(r) and S (k) are, once more,
given by Eqs. (10) and (11). We expect also, in this case,
that p will be a small number; this expectation is based on
the experience with polydisperse hard-sphere systems
[17,18]. In this case it has been shown that, within the
PY approximation, the thermodynamics depends only on
the first three moments of the size distribution, irrespec-
tive of the amount of polydispersity.
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FIG. 1. Cumulative Schulz distribution of 256 Yukawa particles with s =0.2 vs reduced distance r/(cr ).

Although the two different points of view both lead to
Eqs. (10) and (11), it is so far unclear whether the molar
fractions and positions determined from Eqs. (12) are the
same as those in the Gauss-generalized Laguerre quadra-
ture method. It is, however, easy to see that the two sets
of 2p quantities w; and 0.;, i =1, . . . ,p, obtained by both
procedures are identical and that, therefore, both pro-
cedures are really two different points of view of the same
method to take care of polydispersity. The solutions w,
and o; of Eqs. (12) determine the moments of F(cr) ex-
actly for m ~2p —1. The mth moment is of the form of
Eq. (9) with f(o,x)~o . Therefore, the quantities w,
and 0.

, give the exact results of the integrals of the type of
Eq. (9) for polynomials of degree 2p —1, just as in the
Gauss-generalized Laguerre quadrature method.

charge sz, and the second and third moments of the size
distribution (proportional, respectively, to the mean
charge and to the total volume fraction), as a function of
the standard deviation of the size. For the MC simula-
tions, the particles of different size and charge are initial-
ly randomly distributed on a fcc lattice and equilibrated
over = 10 configurations. The same number of
configurations are generated to evaluate the block aver-
ages of the quantities of interest. To compute S ( k ) we
used the efficient procedure proposed by Frenkel et al.
[19] in which

1.5

III. RESULTS AND DISCUSSION

10 ———==—
The way to verify the reduction of the continuous dis-

tribution to a small number of components p, and to
show how small p can be chosen in order to give satisfac-
tory results, is to compare Monte Carlo simulation data
for polydisperse systems with results from the RY
scheme for p-component systems. To this purpose we
performed standard Metropolis MC simulations on sys-
tems with standard deviation s =0.0, 0.1, 0.2, and 0.3.
We used cV =256 particles, which all have different diam-
eters. The diameters are determined by the corresponding
cumulative Schulz distribution, as in Fig. 1. The parame-
ters of the one-component system (s =0.0) (which are
kept constant for the system with s %0.0) are (cr )
=250 A, Z( &

=200, n*=n(o. ) =0.005, and L~=7.01
A. In Fig. 2 are shown the standard deviation of the

Sz
——&0')~(Z)
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FIG. 2. Variation of the standard deviation of the charge sz,
and of the second and third moments of the Schulz distribution
(proportional, respectively, to the mean charge and to the
volume fraction), as functions of s
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2 2N

X b(k, )oos(k r) , + X b, (k)sio(k r, )
i=1 i=1

N

g h;(k)
i=1

The statistics of S (k) is improved by taking the vector k
along six in epen en id d t d'rections the permutations of
[100]and [110].

The RY scheme [20], which consists of the following
closed set of equations for a given interaction potential

P
h (r)=c (r)+n g tt)&h z(r)s cz (r),

A, =1

exp [f(r)[h, (r) —c,(r) ] j
—1

h ~ .(r) = —1+exp[ Py—,( r) ] 1+ f(r)
f ( r) = 1 —exp( yr ),—

(14)

where y is e path arameter that ensures thermo ynamic
consistency an e eand e denotes the convolution integra, as

edure of Nbeen solved iteratively with the speeding procedure o g
[21].

The MC and RY results for gz~(r) are shown in ig.ninFi . 3.

~oo MC
RY (3comp)

d withFor all cases, a quantitative agreement is obtained
=3 components, proving that both the RY scheme and

the discretization are surprisingly goo pp
Calculations have been performed alsoso with five com-

d the results are indistinguishable from thoseponents, an e
with p =3. For the particular case o s
present also the results of the HNC approximation; they
clearly un eres ima ed t' t the structure. The underestimation

ation itse fh t be traced back to the HNC approximation itseas o e
and not to the reduction approximation invo ved

'
q.

(10).
M k)In ig. , e mF' . 4 th "measured" static structure factor S (

Z
Z

Ul
—-- HNC{3comp)

sy=0.2

s()= 0.3

so= 0.0ll

II

sy=0. 1

((rl

il

)I )

/W
il (

I I

I

sy= M

sy=0.1

sy=0.2

sg= 0.3

0:—--
0 10 15

r /(~)
20

FIG. 3. MC and RY results for g»(r) vs reduced d&stance
rl((r). Except for the case s =0.0, the RY results come from
the p =3 component model. A further increase in the number
of components does not aSect the RY results. For the system
parameters, see the text.

k (rr)
FIG. 4. "Measured" structure factors S (k) for the four in-

vestigated systems of Fig. 2 as function of the reduced distance
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is shown. Once more, the three-component model gives
quantitative agreement. When applied to fit small-angle-
neutron-scattering (SANS) and static-light-scattering
(SLS) data, the quantitative treatment of polydispersity
leads to a different understanding of the underlying inter-
particle structure (microscopic level), and of the thermo-
dynamic behavior (macroscopic level). A systematic
study of such aspects has been given in Ref. [4].

This treatment of polydispersity can be applied to the
inverse problem, namely the characterization of the col-
loidal particles and dispersions from scattering data. The
full inverse problem requires, together with the study of
the "measured" structure factor [Eq. (11)] and of the
averaged form factor [denominator of Eq. (11)], the
analysis of the Porod [22] and Guinier and Fournet [23]
plots. The simultaneous fitting of all these experimental-
ly accessible quantities with the results from the po-
lydisperse model allows the exact determination of the
density of the dispersion, the refractive index of the parti-
cles, and the shape and the moments of the size distribu-
tion. A successful application of our treatment of po-
lydispersity to the full inverse problem has been given by
Wagner et al. [24].

Parallel to the structural data, the excess internal ener-

gy U" and the excess pressure p'" were obtained from
both MC simulations and RY equations. As a function
of s, the relative percentage deviations of the two

methods are, respectively, less than 1% for U'"/X and
less than 3% for Pp'"/n .To understand the thermo-
dynamic behavior of polydisperse systems as a function
of s and sz, we performed several computations moving
in the parameter space spanned by Z, o., n, and T. We
did not find any systematic behavior, and more detailed
calculations are presently in progress.

Summarizing, we have shown that size- and/or
charge-polydisperse Yukawa systems can be well de-
scribed by performing a reduction of the continuous dis-
tributions to a small number of components, thus reduc-
ing the complexity of the calculations to a very low level.
In addition, the RY closure scheme has been found to be
in quantitative agreement with MC simulation results.
We also note that this methodology can be extended to
situations in which the polydispersity is described by
different distribution functions, and it can be used to
achieve a successful fit of SLS and SANS data.
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