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The process of pattern formation in the two-dimensional Swift-Hohenberg equation is examined
through numerical and analytic methods. Dynamic scaling relationships are developed for the col-
lective ordering of convective rolls in the limit of infinite aspect ratio. The stationary solutions are
shown to be strongly influenced by the strength of noise. Stationary states for small and large noise
strengths appear to be quasiordered and disordered, respectively. The dynamics of ordering from an
initially inhomogeneous state is very slow in the former case and fast in the latter. Both numerical
and analytic calculations indicate that the slow dynamics can be characterized by a simple scaling
relationship, with a characteristic dynamic exponent of 4 in the intermediate-time regime.
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I. INTRODUCTION

Convective instabilities in liquid systems provide an in-
teresting example of nonlinear, nonequilibrium processes.
An example of such phenomena that has received consid-
erable attention in recent years is the onset and formation
of roll patterns in Rayleigh-Benard convection [1—16]. In
this paper we consider a simple model of this process, the
Swift-Hohenberg [1] (SH) equation, to study the situa-
tion in which a nonconvective state is brought above the
convective threshold for a system of infinite horizontal
dimension. Once above the convective threshold, a com-
plex pattern of convective rolls emerges. By studying ex-
tremely large systems, we focus our attention on the col-
lective behavior of a large number of rolls. If all sources
of fiuctuations are small (let F denote their amplitude)
the rolls form small locally ordered domains (defined by
regions of rolls with the same orientation) that later re-
orient to become parallel to rolls of larger domains in
their immediate vicinity. Dynamic scaling relationships
analogous to those found in spinodal decomposition are
used to understand the transient dynamics of the collec-
tive ordering, while ideas based on critical phenomena
are used to analyze the asymptotic steady states.

The SH equation was developed by considering the set
of equations for a simple Quid in the Boussinesq approx-
imation, bounded by two infinite horizontal plates sepa-
rated by a distance d, at temperatures Tz and Ti + AT,
respectively. For values of the Rayleigh number R larger
than a critical Rayleigh number R„an instability occurs
giving rise to convective rolls. The solution of the lin-
earized equations for the velocity field perpendicular to
the plates v„and for the temperature field 8 (or more

precisely for the deviations from a linear temperature
gradient between the plates) contains stable and unsta-
ble eigenvalues. The SH equation is obtained by neglect-
ing all terms proportional to the stable mode and by
considering only the wavelengths near the most unsta-
ble wavelength obtained in the linear analysis. The SH
equation is asymptotically correct in the limit R ~ R, .
In dimensionless units, the SH equation reads

where Q is a scalar, two-dimensional field related to the
amplitude of the eigenfunction corresponding to the un-
stable mode and is commensurate with the convective
rolls. The quantity e = (R—R,)/R, acts as a control pa-
rameter, and rl is a random field that follows a Gaussian
distribution, with zero mean and correlations,

(rl(r, t)rl(r', t')) = 2Fb(r —r')b(t —t'),

where F is the intensity of the noise.
The salient feature of the SH equation is that the Lya-

punov functional associated with Eq. (1) is minimized by
a one-dimensional periodic function which corresponds to
a configuration comprised of straight, parallel rolls. The
appearance of such "striped" patterns is a common fea-
ture in nature and has also been observed in magnetic
films, block copolymers, the visual cortex, liquid crys-
tals, microemulsions, and eutectic growth. Equation (1)
can be expressed in terms of a Lyapunov functional T in
the following manner:

46 7618 1992 The American Physical Society



46 DYNAMIC SCALING AND QUASIORDERED STATES IN THE. . . 7619

8@(r,t) 6P(Q)
Bt bg(r t)

where P is given by

(3)

As noted in the original work of Swift and Hohenberg [1],
this model does not fall within the classification scheme
of Halperin and Hohenberg [17]. Although other sys-
tems select a characteristic wavelength which is finite (as
in order-disorder or antiferromagnetic transitions), this
model differs in that the pattern of rolls is rotationally
invariant. Thus small changes in orientation are associ-
ated with very small changes of E. Another important
feature of Eq. (3) is that @ is a nonconserved variable
since f dr @(r,t) can vary in time. In Sec. II a Lyapunov
functional with these two generic properties is considered,
in order to both study the SH equation and to establish
the extent to which our work may apply to other systems.

For the one-dimensional SH equation, Pomeau and
Manneville [7] have obtained an approximate solution
Q"=i that minimizes E in the limit of small e. This solu-
tion will be used to estimate the size of various quantities
that enter into the analytic calculation given in Sec. II.
The solution is given in a power series in s, and is

Q"= (z) = ) a;sin(kp[2i+1]z),
i=a

where ap(kp) = /4u(kp)/3, ai(kp) = -ap(kp) /
44)(3kp), cd(kp) = s —(1 —kp), and kp = 1 —e /1024.
In two dimensions, a solution that minimizes P is, for
example, Q(z, y) = /~=i(z). This solution corresponds
to a set of straight rolls parallel to the y direction. Al-
though this solution minimizes P, it is doubtful that it
could be obtained via numerical simulation of the SH
equation from an initially random state due to the diffl-
culty in removing defects in the absence of fluctuations.
In fact, Pomeau and Zaleski [8], and Kramer and Zim-
mermann [9] have derived other stationary solutions to
the one-dimensional SH equation that are not a global
minimum of E and involve a local shift in the phase of Q
[e.g. , Q sin(k, z) for z ( —a and Q sin(k, z+7r) for z ) a].

The presence of fluctuations (i.e., F g 0) changes mat-
ters significantly. In one dimension long-range order is
broken. A numerical solution of the stochastic SH equa-
tion in one dimension by Vinals et aL [14] has shown
that a finite F leads to a disuse peak in the structure
factor. This one-dimensional result has important im-
plications for the two-dimensional stationary state. If
the two-dimensional stationary state is a set of parallel
rolls, then no long-range translational order can exist,
since the one-dimensional solution should be valid nor-
mal to the rolls. The two-dimensional equilibrium state
could still, however, exhibit long-range orientational or-
der. One interesting feature of the SH equation is that
the orientational order parameter (i.e., a vector that lies
normal to the convective rolls) is continuous, similar to
the spin field in the XY model. Since the XY model
is the prototypical model of a Kosterlitz-Thouless (KT)

[18] transition it is possible that the SH model contains
such a Kosterlitz-Thouless phase. In fact Toner and Nel-
son [11,12] have suggested that this could be the case.
In Secs. II and III a more detailed discussion of the sta-
tionary states will be presented.

The dynamic evolution to the stationary states is re-
alized through the enlargement of regions of convective
rolls with the same orientation and the elimination of
defects. A singular perturbation solution [3] to the SH
equation predicts that correlations in @ obey the follow-
ing scaling relationship:

(6)

where S(k, t) = P&(~@(k,t) ~ )/P&, k is the wave vec-
tor, z is a dynamic scaling exponent, and the orientation
of k has been averaged over. This relationship should
be valid for extremely large systems, comprised of many
domains of difFerent orientation. Equation (6) is anal-
ogous to the scaling relationships observed in spinodal
decomposition and order-disorder transitions. In domain
growth phenomena the structure factor has been found
to obey the following dynamic scaling relationship [19,
20], S(k, t) = [R(t)]"f(kR(t)), where R(t) oc t* is the av-
erage domain size and d is the dimension of the system.
The differences between this result and Eq. (6) are due
to the existence of a nonscaling length: the roll width.
The specific value of z has been shown to be of consid-
erable importance in first-order phase transitions, and
is particular to a given universality class. Systems with
a conserved or nonconserved scalar order parameter fall
into classes characterized by x =

3 and &, respectively.
In Secs. II and III analytic and numerical methods

are used to estimate the dynamic exponent z for the
SH equation. The analytic calculation is an expansion
around a curved set of rolls of varying width, and is an
extension of the interfacial methods used in first-order
phase transitions. Some of the results of Toner and Nel-
son [11, 12] alluded to in the preceding paragraph are
recovered in Sec. II, and are shown to be consistent with
the numerical results given in Sec. III. In the final section
a discussion of these results is presented and comparisons
with other systems are made.

II. DYNAMICS OF CURVED ROLLS

Insight into the ordering dynamics can be obtained by
considering the relaxation of a set of convective rolls in
which the orientation and spacing varies slowly in space.
This description precludes the explicit consideration of
defects, which will be discussed later. A typical pattern
that falls within this description is shown in Fig. 1 which
was taken directly from the numerical calculations to fol-
low. In the absence of defects, the dynamic evolution can
roughly be separated into three distinct mechanisms: the
relaxation of the local curvature of the rolls, the relax-
ation of the distance between consecutive rolls, and the
relaxation in the functional form of @ (to be described
later). The latter fluctuations will be seen to decay much
faster than the other mechanisms which describe changes
in the positions of the rolls. To begin the calculation, a



7620

200

150

~00

K. R. ELDER JoRQE VgNA LS, AN

.-) ~ t

D MART&N GRANT 46

are ma Pped onto cur
' '

icated in th
rvilinear c d'

vector r(
gure. In th

«s ii and s
fi

copr ina

mth rpll
" m(s), where R

( ) &) = R

~(s) is the
~(s) is the 1

. ~ ) +

~ rlcted to the re
normal to the

ocatlon of the

and m 0
egipn (2m —1

e mth roll, z

ig. 1. In t}e
The cpprd

(2m+1)~ k

becpm
e new coprd'

lnate system
'

o,

es
lnates, the L

m ls shown

82

aplacian opera«r

Bu2 [1+ „
8

)))
—m~/k

50

}

5O 100—50 0

(g)

Fgo 1

X

150

on this fi ur
ear coordinaCurvlin

0
zeros

O'ste~

solid linThe th' } . f 0 at t — 4
he dotted l.

= 10 for —
e 1nes

was fit t .
025and F

e bg the e

o t;he so);g ).
' of the th, k

one, an& m
solq

Lyapunov fu

sn, m = +1,+2, . . . .

of a scalar func
'

etion Q of th

dr( 4(f(~'-)]0/2+ g(4) )
red, with the re

' '
s

(7

o noise ) by a roll str

—0. We restrict o
p tterns wh 1

o1

can lead

1 o1 io of g

Bt

o is given by

n(»i) = f(&')&—
t tht S

g

(

ian coordinat
ion ex

Bqd=l ) Bu) )

inates 2: andlnat y

)'86)j') ) (8'i" '
ia,

l

qd=i
'=2 2r ' 0

82h ).(2i)(2i-
Ou 21

1) ( 8 )2i i—Oh+ ) (2i)a,

b'X'i
6/+ q+ ~ ~ ~

o) ]Bu

[1+ (u /Ao)K]2 Bs2

(1

o ~s 8m —m~/k )

where th

I o)+] Bs '

e curvatur

2 8

"/ko ((1

8
8&2

K (10

" tlons in the
'" orporated b

is expanded a
paration bet

y onsiderin t},

lng ma n
na I stat i(

(u (r, t +
~here gd=i

' ~(&))), t)] + ~

«ned by th

' (r, &), (11)

( 82 )
equatipn

fl 8, I ~ = bgW)

is deco
cal curvatu

describesmppsltlo

La
ure throu h

s the relaxatlo

aplacian [E
K the curvat

»n pf the 1

ipn betwee
)], and the r 1

pendence of t}

al form pf Q d
put the on d

P ta&es into

this expan
escribed b E .

- ™ensipnal f

dimensional
pends on the a

' The valid't

defn
solution gd=i

sumption th

ned by )j) = 0.
is valid

at the one

fy that t},
The nume

" rmal to the 1.

um
lstances pf 6

e direction
a gpod

Ptlon that h;
onsecutive w

to the rp]&s

his gives th
er in K Ii

&»tp Eq

e resu/t
' and thelelr derivative



DYNAMIC SCALINCJ AND QUASIORDERED STATES IN THE. . . 7621

where tu = u + h(u ). The coefficients of the terms
proportional to r and Bh/Bu are identically zero if @d=

is of the form sin(kpip) or cos(kpip) with kp defined by
[Bf(k)/Bk]~I, I„—= 0. For the SH equation, replacing
Qd=i by a sinusoidal function is an extremely good ap-
proximation for small e as was shown by Pomeau and
Manneville [7]. The coefficient of the term proportional
to 6Q is less than zero since @d= is a minimum of P
which implies (b P/6Q )@ @~=& ) 0.

The evolution of bQ can be obtained by introducing
the projection operator,

(2i)(2i —1) o2, i
bs ——g a, )

2f O.1a=1

and

(((rn, s, t)((n, s', t'))

(2~+i)tt/&p /'Byd=i ) (Bi i'd=i )~, = k./(2~) dm
i&B~)(B~*)

(20)

'P~ =—k, /(2vr)
(2m+1) n /A:p = (2F/o i)[b,„/(2vr/kp)) b(s —s')b(t —t').

(2m —1)m/kp

Applying 'PH to Eq. (13) gives

where

(il'(n, si, ti) g'(m, s2, t2))

= 2F[b„ /(2n /kp)]tI(si —s2)b(ti —t2).

In deriving this equation, it was explicitly assumed that
the length scale over which 6@varies is much greater than
the roll wavelength; that is, 6@ is approximately constant
over length scales of the order 2vr/kp. In addition it was
assumed that the coefficient of Bh/Bu was negligible. For
the SH equation, Eq. (14) becomes

Bb@ 2 2

t
= [

—2e —(1+7' ) ]biI'+g',

if Eq. (5) to lowest order in e is used for gd=i. Thus 6Q
decays exponentially in time since —2s —(1 —k2)2 is less
than zero for all k. In the next few paragraphs, it will be
shown that the other mechanisms decay as a power law
in time and, consequently, the relaxation of the initial
roll pattern considered is controlled by the motion of the
rolls.

These dynamics can be extracted by applying a differ-
ent projection operator, i.e.,

Equation (16) is the main result of this calculation. A
simple dimensional analysis of Eq. (16) reveals that
two difFerent mechanisms provide different relaxational
rates: The distance between rolls relaxes at a rate of
t i/2, while the curvature of the rolls relaxes at a rate
of bit i/2+ b2t i/4. If gd=i = Asin(kpu), then the co-
efficient bi is identically zero, and the rolls straighten at
a rate of t i/4, which is considerably slower than the re-
laxation of the fiuctuations in the distance between rolls.
Therefore curvature relaxation is the dominant mecha-
nism in the limit bi ——0. Corrections to a sinusoidal Qd=i

are generally small close to onset. This leads to a small
but finite value of bi (e.g. , for s = 0.25, bi -1.0 x 10 s).
The low value of bi indicates that the asymptotic behav-
ior in which the curvature relaxes with a single power law
with an exponent of 2 should not be expected until very
late times. To estimate the time at which the crossover
from an exponent of 4 to 2 occurs it is useful to deter-
mine the dynamics of the line defined by ip(x, y, t) = 0,
i.e., r = xi + y(z, t)y. In this calculation we consider
only the effect of curvature and consequently drop the
term proportional to bs and the noise term. The growth
exponent can be inferred by the rate of relaxation of the
deviations (AS) of the arc length from its asymptotic

value I, te. , pS = L —
fz der/1 + (tr') . To lowest or-

der in (dy/dx)2 and for I large, AS becomes,

bS(t) = ((" /bi/~b2~/8)e " ' Ki/4(bit/4~b2~)

(:2/~/(8b, )t-'/2 (t oo) (21)

(2m+1)m/A, 'p /'Byd=l )'PJ = k, /(2vr) dw
i

(2vn i)m/Itp—

Applying 'P~ to Eq. (13) gives

OtU 02h= biz + b2~„+ bs + ((u, s, t),Bt u

where

~2i—1

01a=1

i(i —1) o2, s

a=2

(17)

(18)

where K1y4 is the Bessel function of an imaginary ar-
gument and random fiuctuations (of amplitude C) were
chosen for the dimensionless quantity y'(x, t = 0). AS(t)
is plotted as a function of time in a latter figure [i.e. , see
the inset in Fig. 8(b)] and shows that the crossover to
the 2 exponent does not occur until t = 10 —10 .

Equation (16) also describes the local fluctuations in
the position of the rolls. If the magnitude of the noise
intensity (i.e., 2F/cri) is sufficiently strong, i.e., greater
than the distance between the rolls, the pattern of par-
allel rolls would be broken. Hence a transition to a dis-
ordered state will occur when FKT oc cri/kp (for the SH
equation this corresponds to FKT oc e). It should be
noted that o.1 is typically proportional to ko. The con-
stant of proportionality is diKcult to obtain; moreover,
it would depend on the existence of defects.
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The effect of defects in related models has been studied
by Toner and Nelson [11,12]. Their analysis begins with
a generic free energy of the form

0.15

(22)

Assuming that bi is negligible, Eq. (16) can be written
in the form

0.1—

Bvi(z, y, t) hG(vi)
Bt hvar

(23)

where the free energy G(vi) is given by Eq. (22), with
B = bs and A = —b2/bs. Toner and Nelson [11, 12]
have shown that defects in conjunction with the generic
free energy given in Eq. (22) leads to algebraic decay
in the orientational correlation function (C(r)), i.e. ,

C(r) = (e '~(')e '4'( )) —
~r~ ", where P—:—Bvi/» and

[26] v = —2F/(~b2oi). The algebraic decay with dis-
tance with an F-dependent exponent implies that the
state is a Kosterlitz-Thouless phase. By using the theory
of Kosterlitz and Thouless [18] a transition to a disor-
dered state occurs when v =

4 or FKT = vrb2oi—/8
For the SH equation [assuming Q"= = /4e/3sin(tu)]
this relationship becomes FKT = ze/12. If an analogy
with liquid crystals can be made, as suggested by Toner
and Nelson [11,12], various phases can be identified: an
isotronic phase (for F ) FKT), a nematic or Kosterlitz-
Thouless phase (for 0 ( F ( FK~), and a smectic phase
(at F = 0). In using this terminology, we are explic-
itly following the somewhat unconventional terminology
of Toner and Nelson's [11,12] two-dimensional melting
picture of liquid crystals. For the purpose of this pa-
per, we use the term isotropic to refer to a system with
short-range order, the term nematic to describe a system
with quasi-long-range orientational order, and smectic to
refer to a phase with long-range orientational and trans-
lation order. In this terminology all phases select a finite
wavelength, as can be seen in Fig. 2, which depicts por-
tions of typical final configurations obtained by numerical
simulations of Eq. (1) along with the phase diagram. It
should be noted that the configurations labeled nematic
and smectic have not reached a stationary state and con-
sequently the labels correspond to the analytic results
given above. An implication of these results is that in
order to observe a scaling relationship an orientational
correlation function should be measured; however, S(k, t)
should provide an accurate description of the ordering dy-
namics when the translational correlation length is larger
than the average domain size.

The results of the preceding paragraphs indicate that
the dynamics in the absence of defects is controlled by the
straightening of rolls, and the rate associated with this
mechanism is t ~ during an intermediate time regime.
The effect of defects on the dynamics has been consid-
ered for a similar model (the XV model) by Kawasaki

[23] and Loft and DeGrand [24]. Dimensional arguments
and numerical simulations of the XY model led Kawasaki

[23) and Loft and DeGrand [24], respectively, to the con-
clusion that the separate mechanism of defect recombi-
nation occurs at a rate of t ~ . If the annealing away

0.05—

0—
I

0 0.2 0.4

FIG, 2. Portions of size 100 x 100 of typical configura-
tions obtained. The large and small circles correspond to the
large and small (see text) numerical simulations conducted
at F' = 0.075, 0.05, and 0, and F' = 0.025, 0.065, and 0.1,
respectively. The configurations shown in the insets labeled
isotropic, nematic, and smectic correspond to F' = 0.075,
0.05, and 0. The nematic and smectic configurations are
shown at t = 10 and are still evolving in time. In the in-
sets the lines shown are for @(r) = 0. The thick solid line
represents the numerical transition line, F' = 0.27m,

of defects in the SH equation is the same as in the XY
model, then the curvature relaxation mechanism should
still dominate in the intermediate-time regime since it is
the slower mechanism. The expected crossover to x =

2
at late times might, however, be influenced by defects.
The more important influence of defects is the breaking
of translational order and the creation of a disordered
state above FKT.

The idea of expanding Q around an almost parallel roll
configuration has been used by others, including Toner
and Nelson [12] and Ahlers et al. [10]. In these works

g(z, y) is expanded around sin(koz), not in a coordinate
system commensurate with the curved rolls. Cross and
Newell [15] considered a perturbative expansion of the
complex SH equation. The leading-order term in this ex-
pansion is sinusoidal, but higher-order terms lead to re-
sults that are somewhat similar to ours in that curvature
is identified as playing an important role in the dynamics.
While the above techniques have provided much insight
into the SH equation, the projection operator method
used in this work has several advantages. The method
provides insight into both the dynamics and stationary
solutions in the presence of noise, without explicit knowl-

edge of the one-dimensional solution (i.e. , g =i), or the
precise details of the free energy. In addition, the projec-
tion operator techniques not only decouple fluctuations
in the functional form of Q from curvature and wave-

length relaxation, but also show that the fluctuations in
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the functional form of Q are irrelevant, since their decay
is extremely fast.

III. NUMERICAL SOLUTION

Q(ij—n) ,+, q(ijn)
),

, (24)

where the indices (i, j) represent the coordinates (x, y)
and the index n represents time. The Laplacian is eval-
uated using the following discrete operator:

&'@( j) = -'). +-' ). —3 0( i)/(& )' (25)
(NN) (NNN)

where the notations (NN) and (NNN) refer to the nearest
and next-nearest neighbors to the site (i, j), respectively.
Absolute time and spatial coordinates are recovered by
the simple relationships t = nb, t and r = (ix+jy)Ax

As in most numerical simulations of this nature the
choice of (b,t, b,x) is dictated by the conflicting con-
straints imposed by the need for numerical accuracy
and the finite computational power available. The for-
mer constraint requires (b,t, 6x) to be vanishingly small,
while the latter requires the opposite. In practical terms
the size of bx is limited by the smallest length scale in the
problem. Typically the choice for b,x imposes a restric-
tion on 3t which can be obtained from a linear stability
analysis of the discrete map Eq. (24). In some problems
there may also exist nonlinear numerical instabilities that
further restrict the size of b,t. For the SH equation b,x
must be smaller than the wavelength selected, which is
of the order 2n. 6x was chosen to be 2x/8 to satisfy
this constraint. The linear solution of the discrete map
given in Eq. (24) contains a numerical instability (i.e.,
subharmonic bifurcation) that occurs when

2(Ax)4
[4 —(6x)z]z —~(Ax)4

'

Thus to avoid numerical instability in the linear analy-
sis for e = 0.25 and Ax = 2vr/8, b.t must be less than
0.067 (for the standard nearest-neighbor discrete Lapla-
cian operator At should be less than 0.014). Although
this analysis does not take into account the noise term
or the nonlinear terms, it does provide a minimum re-
quirement. Under these considerations a time step of
Lt = 0.05 was chosen and no numerical instabilities were
observed. Test runs with a smaller 42: indicate that the
dynamics of S(k, t) are insensitive to decreasing grid size
near k = ko [25]. The bulk of the simulations were run on
a 512 x 512 periodic lattice for e = 0.25 at I"= 0, 0.05,

The numerical results to be presented were obtained by
discretizing both space and time derivatives in Eq. (1).
Euler's method was used to discretize the time deriva-
tive and the approximation for the Laplacian included
contributions from nearest and next-nearest neighbors.
Schematically the numerical algorithm can be written

@(i,j,n+1) = g(i,j,n)

+Bi((c —(i+ V')')g(jjn), ,

and 0.075 [where F' = F/(hx) ] and averaged over 25
independent runs. Smaller systems were used to examine
the dynamics (at F' = 0.025, 0.065, and 0.1) and station-
ary solutions (at a large number of values F' between 0
and 0.09). For nonzero F', g was initially set to zero,
while for F' = 0, Q was chosen to be a random variable
that follows a Gaussian distribution with zero mean and
variance 0.1.

The results of the numerical simulations suggest that
there is a qualitatively difFerent behavior between the
runs conducted at high and low noise strengths. At
high noise strengths a steady state was rapidly reached
which corresponded to a disordered structure. Figures
3(a) and 3(b) display the configurations at t = 2500 and
104, respectively, for F' = 0.075. The striking similarity
of these configurations and small domain sizes indicates
that a disordered stationary state has been achieved. In
contrast, at low noise strengths a slow ordering of do-
mains was observed for all times probed. Figures 3(c),
3(d), and 3(e) display the configurations at t = 10z,
10s, and 104, respectively, for F' = 0.05. A similar
time sequence is shown for F' = 0 in Figs. 3(f), 3(g),
and 3(h). It is important to note that these runs had
not reached a steady state as the rolls were continuing
to order. The pronounced difFerence between the low
and high noise strength simulations was also apparent in
the structure factors and one-point distribution function
p(@). In Fig. 4(a) S(k, t = 700) is shown for F' = 0.075.
This structure factor was statistically indistinguishable
from any S(k, t) past t = 200. The solid line in this fig-
ure is a fit to A/[B + (kz —k&~)z], which is suggestive
of a disordered phase. The structure factors shown in
Figs. 4(b) and 4(c) for F' = 0.05 and 0, respectively,
are significantly different for two reasons. First, their
shape is much sharper and, second, they are continuing
to evolve in time. Further indication of the qualitative
differences is shown in Fig. 5 which compares p(g) at
the latest times for the three noise strengths. The low
noise strength one-point distributions are bimodal, while
the high noise strength p is peaked at Q = 0. To ob-
tain an estimate of where the transition occurs at for
e = 0.25, a stationary solution at F' = 0.09 was ob-
tained and then F' was decremented in steps of 0.005 at
time intervals of 103. This test reveals a transition in
the region FK& ——0.065 —0.070 (or F' 0.27(.) which is
signaled by a sharp decrease in the peak height of S(k),
and a crossover from a bimodal to unimodal distribu-
tion in p. In Fig. 6 the peak position in p is shown as
a function of F'. A similar transition has also been ob-
served in parametrically forced surface waves by Gollub
and Ramshankar [27]. In these experiments the transi-
tion was marked by a dramatic drop in the correlation
length and from a crossover from a bimodal to unimodal
distribution in p.

Although the numerical picture is consistent with the
predictions given in Sec. II, it is important to note the
limitations of the numerical results. The predictions of
smectic, nematic, and disordered states were not unam-
biguously verified. What is apparent is that the runs
above FK& are disordered states. The numerical results
also strongly suggest that the states below FK& are quali-
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tatively different from those above. Indeed, the structure
factors for the smectic and nematic simulations were in-
distinguishable at the latest times. If the F' = 0.05 is a
nematic state, one should observe only quasi-long-range
orientation order. In contrast, the numerical results in-
dicated growth of translational order up until the latest
times probed. Thus the numerical results indicate a tran-
sition from a disordered state to one with long or quasi-
long-range translational order. Presumably, if later times
were probed an orientational order parameter would have
to be introduced to observe the subsequent ordering of

domains. At the very least the transition observed cor-
responds to one in which there is a dramatic change in
translational order at FKT = 0.0675.

The dynamics of the collective ordering of rolls was an-
alyzed in terms of the dynamic scaling relationship given
in Eq. (6) for F' ( FKT In. Figs. 7(a) and 7(b) S(k, t)
is displayed for F' = 0 and 0.05, respectively, at sev-
eral times. The ordinate in these plots is S(k, t)/t* and
the abscissa is (ko —k)t . If the scaling predictions are
correct, the scaled form of S(k, t) should overlap for all
times, near k = ko. For F' = 0 [see Fig. 7(a)j the struc-

(a) (b)

FIG. 3. Sample configurations are displayed for e = 0.25 at various times and noise strengths. In all figures the points

correspond to Q ) 0. The configurations shown in (a) and (b) correspond to t = 2500 and 10, respectively, for F' = 0.075. In

(c), (d), and (e) the configurations correspond to t = 10,10, and 10, respectively, for F' = 0.05. A similar time sequence is

shown in (f), (g), and (h) for F' = 0.
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ture factor scales remarkably well over the time range
t = 10' to 104, with a growth exponent of 2: = s. Fig-
ure 7(b) shows that the dynamic scaling hypothesis also
works very well for F' = 0.05, if a growth exponent of 4
is used. If the scaling hypothesis is valid, all length scales
(except the convective roll width) should scale with the
same dynamic exponent. To investigate this hypothesis
the height (A), width (m), and various moments m„(t) of
S(k, t) were calculated. The height and width were deter-
mined by fitting the top portion of S(k, t) to a Gaussian

of the form Ae ((" "o&~~l and the moments were de-
fined to be m„(t) = f„"'+„"(tIdk~k —ko~ "S(k,t). In fitting

S(k, t), ko was found to be very close to 1 which is the

value selected by linear theory. The scaling relationship
given in Eq. (6) implies that m„(t) oc t ",m oc t
and A oc t*. The results are shown in Figs. 8(a) and
8(b) for F' = 0 and 0.05, respectively. For F' = 0 the
exponents measured from all lengths scales are within
2% of z, while the exponents are all within 1% of 4 for
F' = 0.05. Although the statistics collected for e = 0.025
and 0.065 were not sufficient to obtain accurate values of
x, the measured exponents were significantly closer to 4
than s. Computational restrictions made it impossible to
probe the expected crossover to an exponent of 2 at very
late times, and consequently no evidence of a crossover
was observed.

'Illlilijiliii~lllilllllllil'ii~~~. lil0li~&

(~)

MPH) 0 (/(C~
—

& II "llli'lIilIll 6
FIG. 3. (Continued).
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IV. DISCUSSION AND SUMMARY
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ship given in Eq. (6) for at least three decades in time.
In addition, a growth exponent of x =

4 was observed for
0 & F & FKT. This value of x disagrees with an earlier
theoretical calculation and we have presented a possible
resolution of the discrepancy. Our calculations show that
curvature relaxation leads to an early time exponent of

4 that should eventually crossover to late time exponent

of z. We are, however, unable to explain the smaller

I
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F' = 0.0
x = 1/5 0

0 0.2 0.4 0.6 0.8

FIG. 5. A comparison of the one-point distribution func-
tion for F' = 0, 0.05, and 0.075 at e = 0.25. The solid, dotted,
and dashed lines correspond to F' = 0 at t = 10, F' = 0.05
at t = 10, and F' = 0.075 at t = 700, respectively. The
thick solid line corresponds to a sine function. It should be
noted p(Q) is symmetric about @ = 0 and thus s bimodsl
distribution produces a peak at s finite @ in this figure.

3

M
2

strength divided by o (which is typically proportional to
the control parameter causing the instability) is of the
order of the wavelength of the periodic structure. The
transition observed by Gollub and Ramshankar [27] in
parametrically forced surface waves may also be of this
nature.

The dynamical behavior of the collective ordering be-
low FKT was found to obey the dynamic scaling relation-
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FIG. 6. Position of the peak (@„)in the one-point distri-
bution function (p(@)) ss s function of F' for e = 0.25.

FIG. 7. The dynamic scaling of S(Ir;, t) is shown for F' = 0
snd 0.05 in (s) and (b), respectively. In both figures the open
squares, crosses, and solid circles correspond to t = 10, 10,
and 10, respectively.
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FIG. 8. The amplitude A(t), width iu(t), and first five moments m„(t) of S(k, t) as defined in the text are displayed for
F = 0 and 0.05 in (a) and (b), respectively. The solid lines are presented as guides to the eye and all have slope 2: = —in (a)
and x =

4 in (b). In the inset of (b), b,S is plotted on a logarithmic scale for e = 0.25.

exponent of x =
5 observed for I' = 0. Although this

work focused on the stochastic Swift-Hohenberg equa-
tion, we expect that both features discussed, namely the
existence of a transition from a quasiordered to a disor-
dered state, and the asymptotic dynamical scaling be-
havior, are generic features of two-dimensional systems
defined by Eq. (8).

The difficulty in observing these phenomena in
Rayleigh-Benard experiments is that previous experi-
ments were conducted on very small systems in which
boundary effects play an important role. In addition,
the noise strengths estimated for real experiments are
typically much too small to observe the transition. It is
conceivable that external noise sources could be employed
to provide large values of F, although to our knowledge
this has not been attempted. Recent experimental stud-
ies of electrohydrodynamic convection in nematic liquid
crystals [28] have been able to detect and quantify the
amplitude of the fluctuations before onset. Furthermore,
since typical roll widths in these systems are of the order
of microns, large-aspect-ratio samples are readily avail-

able. However, the pattern that emerges in these sys-
tems is strongly anisotropic in that a preferred direction
is selected, whereas the equation that we have studied
is manifestly isotropic. Another candidate is the recent
Rayleigh-Benard experiments of Bodenschatz et al. [16]
which employ pressurized gases instead of liquids. In

these experiments very large aspect ratios (of the order
of 100) have been achieved. These experiments are influ-

enced by non-Boussinesq effects which lead to quadratic
terms in g in the SH equation. Nevertheless these effects
can be small in appropriate experimental conditions. In
spite of the mentioned difficulties, we believe it would be
of considerable interest to analyze the structure of the
steady states, and the transient dynamics following the
convective instability in both systems.
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