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Control of vortex shedding in a two-dimensional How past a plate
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A version of the no-feedback-control method developed by Hiibler and Liischer [Helv. Phys. Acta
62, 544 (1989)] is applied to two-dimensional open-channel flow past a plate The control is applied
in the vortex-shedding regime with the aim of reducing the effective Reynolds number, thereby
suppressing the vortex shedding. It is shown that the method works well not only when the Bow is
globally forced but also when the forcing is restricted to the boundary-layer region.

PACS number(s): 47.90.+a, 02.70.+d, 47.10.+g

I. INTRODUCTION

The quest for successful control of hydrodynamic sys-
tems is one of the most exciting challenges in the fluid and
control sciences today. Developing a systematic method
for controlling fluid systems effectively will allow new
technologies to emerge and could make older ones more
eEcient.

Much work has been conducted recently into alter-
ing fluid behavior via external forcing [1—14]. There are
various approaches taken to the idea. In the open-loop
approach, the experimenter makes measurements on the
system, Fourier analyzes the data to determine the pri-
mary frequencies, and then adjusts the frequency of the
driving force based on that analysis. The driving force
in the majority of cases is sinusoidal with one or two
frequencies. Feedback control methods have also been
applied to Quid experiments. In most cases, the forcing
has been limited to sinusoidal oscillations in time with
little or no spatial complexity.

An alternative approach to spatial control known as
model-based control [15] allows the determination of a
driving force of the appropriate complexity. In fact, the
driving force is determined so that the desired asymptotic
behavior is a solution to the forced system. The idea is
to use a model to predict what the system will do and
then use the information from this complete description
of the flow field, rather than from limited measurements,
to compute the control force. Using a model to predict
the behavior of the system means that calculations for the
control need not take place in real time. Furthermore, no
complicated measurements or real-time signal processing
is necessary.

The paper is arranged as follows. In the theory sec-
tion, the general approach of the method is described
as it applies to systems governed by partial differential
equations. The driving force is then computed for gen-
eral Navier-Stokes problems in the common formulations.
The stability issues are also addressed. Details of the nu-
merical simulations are described at the beginning of the
results section. A simple numerical experiment involv-
ing open-channel How with a plate is the main focus. In
the first part of the study the driving force is applied

to each grid point at each time step, as specified by the
original development of the method. In the second part
of the tests, the driving force is restricted to a localized
region; applied only to a neighborhood of points around
the plate. Some further discussions and directions are
given in the summary.

II. THEORY

w(x, t) = G(w, x, t). (2)

Since our knowledge of the experiment is not exactly the
experiment itself, an intermediate set of equations known
as the model is often defined for the purpose of investigat-
ing the behavior of the control in the presence of model
errors,

'v(K, t) = M(v, x, t). (3)

After subsitution of the goal field into the experiment

The ideas presented here are extensions of the control
technique developed by Hubler and Liischer [16]. Various
directions have since been explored [17—21]. A detailed
study of model-based control applied to a restricted class
of ordinary differential equations was recently published
by Jackson [22]. Work by Jackson and Hiibler [23] and
Jackson [24] explores the criteria needed for successful
application of this theory for maps. Some progress has
been reported in the realm of partial differential equa-
tions [15,25]. The present work focuses primarily on the
application of the spatial theory to hydrodynamic sys-
tems.

Model-based control works by determining the correct
driving force to make the goal dynamics a solution to the
forced experiment. For any spatially extended system,
we define the experiment as a state vector field, u(x, t),
x E R" and the dynamical equations of motion,

u(x, t) = E(u, x, t) + f(x, t)

that govern the time evolution of the Beld. Unlike stan-
dard feedback controls, a goal dynamics must be expli-
citly chosen:
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equation, replacing the experiment dynamics with the
model, and solving for the force, we find the equation for
the force,

F(x, t) = G(w, x, t) —M(w, x, t).

This equation gives the correct form of the forcing so that
w(x, t) is a solution to the driven experiment, Eq. (1)
when the model is exact.

The boundary conditions in (2) used to determine
F(x, t) should be the same as those in (1), since the driv-
ing force does not account for any possible difFerences.
Given both systems with fixed but difFerent boundary
conditions, a boundary layer will form where there will
be no entrainment. The size and behavior of this region
is dependent on the nature of the equations and the dif-
ference in the specified boundary conditions. If the aim
of the control is to change the value of the experiment at
the boundary, an additional driving force must be applied
'to that region.

For identical initial and boundary conditions, and M =
E, the experiment immediately entrains to the goal dy-
namics. Granted, this is not suiBcient to guarantee suc-
cess in an actual application. It must further be shown
that the solution is stable under perturbations of noise
and differences in both the initial and the boundary con-
ditions.

Limited stability analysis has been worked out for a few
partial difFerential equations [15,25]. The only technique
that has yielded useful information at this point has been
determined by defining a difFerence dynamics, s = u —ui,
governed by

18P 1u = —(u ~ V)u —— Vp+ —pV' u+ F(x, t),p8p p
(12)

p = —V (pu),

requires an equation of state,

P(p) = f(p)

The driving force is

(13)

F(x, t) =, V w. (15)

By adding an additional forcing term to Eq. (13), the
density field can also be modified.

With the same equation of state, and goal functions ur

and o, the s stability equation is

lution equation. Instead, they are each constrained by
Poisson equations. Such variables are often treated as La-
grange multipliers and the equations that specify them,
constraints. The lack of dynamic specification implies
that there is no straightforward way to define a difFerent
goal dynamics for those variables, or compute time de-
pendent driving forces for the equations that define them.
Any variable behaving as such should be left alone. This
is equivalent to the requirement that the goal dynam-
ics for the variable be specified by the same constraint
equation as that of the experiment.

The compressible form of the Navier-Stokes equations,

s = E(s + QI, x, t) —M(tg, z, t). (5)

The boundary conditions for this problem are computed
as the difFerences (errors) between the experiment and
the goal boundary conditions. The initial conditions are
obtained in the same manner.

The control technique can be written down for the
Navier-Stokes equations in each of the standard formula
tions. For the stream-vorticity form,

W' 6 —6' W

8P
(pVo —o Vp)

8p

+ —& &+I ———I& wp, (y, vl
~)

6 = —V ' (be + bw + 0's).

(16)

+ + pV hl+F(x, t),
8$ 8~ 8$ 8~

y x z y

V2$+u = 0,

(6)

F(x, t) = (p' —p)V' ar.

~ is the corresponding goal variable for cu.

For the incompressible form and a goal dynamics of a
higher viscosity, the force is similarly,

(9)

V u=0, (10)

F(x, t) = (p' —p, )V'2w. (11)
The density in the incompressible form and the stream

function in the vorticity form are not dynamically spec-
ified. That is, neither variable is defined by a time evo-

u = —(u V)u —VP+ pV' u+ F(x, t),

and a god dy ~ics that is identic@ in form but with a
larger viscosity, the driving force is

Solving Eqs. (16) and (17) would determine exactly the
necessary conditions for the control to succeed or fail and
yield the rate of convergence to the goal fiow field from
the given initial conditions. The form of these equations
is particularly difficult, hence no attempt has been made
to solve the equations once they have been written down.
The equations are shown to emphasize the difBculty of
working with a Navier-Stokes system and to show due
justification for exploring the behavior of these systems
numerically.

Previous work indicated that model-based control
should work under at least some circumstances for the
Navier-Stokes equations. Past results indicated that the
stability of the control is linked with the dissipative na-
ture of the experiment's equations. Numerical work sug-
gests that if the experiment has dissipation in a region,
the control succeeds in that region. Viscous terms seem
crucial to the stability while hyperbolic terms appear
neutral. It is believed that the pressure term could also
help in the stability.
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III. RESUL&s

Numerical simulations of Eqs. (12)—(15) were con-
ducted to determine the stability of the control directly.
The simulation is of an open-channel flow with a vertica
plate obstruction. The experiment was run in a vortex
shedding range while the goal was chosen to be a laminar
flow field.

The computational grid consists of an open-flow chan-
nel similar to that of Fromm and Harlow [26]. The chan-
nel is 60 grid points from wall to wall and 120 grid points
from inlet to outlet. A thin rectangular plate 3 sites long
and 10 wide is situated 19 sites from the inlet and cen-
tered vertically. The computation was written to sim-
ulate the compressible Navier-Stokes equations using a
finite difference scheme.

The experiment was chosen to be a flow with an ap-
proximate Reynolds number of Re = 200. The boundary
con i ions od'tions of both goal and experiment were indentical.

delNo noise was added to the experiment —thus the mo e
was exact to within the numerical accuracy of the simu-
lations. The goal equation was chosen to obey the same
equations but with a lower Reynolds number. The same
equation of state was chosen for both experiment and
goal. Additionally, the density of the goal and the exper-
iment were each determined by the standard equation o
conservation.

The goal was chosen to be a laminar steady-state flow
with approximate Reynolds number, Re = 20 in order to
reduce the amount of computation necessary. The con-
trol driving force could then be computed in the following
manner. The goal simulation was turned on from an ar-
tificial initial condition and then allowed to settle to a
steady laminar flow as shown in Fig. 1. At this point the
velocity and pressure fields of the goal for just one time
step were stored for future use. The experiment was ini-
tiated and allowed to run until all transients had passed
and the flow had developed the usual von Karman vor-
tex street as in Fig. 2. Arbitrarily beyond this point, the
driving force, shown in Eq. (15), which was computed
from the stored goal data, was applied at each time step
of the experiment. This time-independent approximation
of the driving force is only valid when the goal is chosen

FIG. 2. Velocity profile of the uncontrolled experiment
[integration of Eqs. (12)—(14), with F(x, t) = 0] after the
transients have passed (t ) 800.0 s]. The number of compu-
tational grid sites is 60 in the vertical direction and 120 in the
horizontal. The fluid enters at the left and leaves at the right.
The u er and lower boundaries are no-penetration walls of
the channel moving at u~. An obstacle in the form o a a

e uppe

late is positioned 18 grid points from the inlet. The length of
the plate is 10 sites and the width is 3. Simulation parameters
were u = 0.8, p = 1.0, p = 0.01. With the numerical vis-
cosity accounted for, the Reynolds number is approximately
Re = 200.

to be a steady-state flow field. No information about the
present state of the experiment was incorporated into the
driving force. The simulation was allowed to settle before
producing Fig. 3.

The control worked reasonably well in that the vortex
shedding halted after about 500 s. The controlled exper-
irnent's flow field shown in Fig. 3 is close but not iden-
tical to that of the goal flow field in Fig. 1. There may
be several causes for this behavior. The most significant
influence is believed to arise from an incorrect estimation
of the numerical viscosity inherent to the computational
method used.

Using boundary flow fields determined from the pre-
vious simulations a second computation was run to test
whether favorable control could still be effected when the
driving force applied only to a localized region around the

FIG, 1. Velocity profile of the goal after the transients
have passed (40 s). Simulation parameters were the same
as for Fig. 2 except the viscosity was chosen to be p = 1.0,
yieielding an approximate Reynolds number of 20.

FIG. 3. Velocity profile of the controlled experiment [inte-
gration of Eqs. (12)—(14), with an applied force as defined in
(15).] Compare the profile with that of both the uncontrolled
experiment and the goal. The flow pattern is close to that of
the goal but not quite identical. Simulation parameters are
the same as for the uncontrolled experiment (Fig. 2), but with
the additional body force applied.
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FIG. 4. The control scenario here is the same as in Fig. 3
except that the forcing has been spatially localized to a region
around the plate. The flow is not identical to the goal flow in

Fig. 1, but it appears to be very close to the flow in Fig. 3,
indicating that some model error still exists. The residual
model error comes from the error in estimating the numerical
viscosity. The force was limited to the region 16 ( y & 44
vertically and 18 & x & 22 horizontally.

plate. Though this approach may appear intuitively ac-
ceptable, it must be stressed that w(z, t) is now no longer
a solution of the forced experiment. F(z, t) is no longer
the correct driving force for the specified w(z, t).

As before, the experiment was brought to the peri-
odic shedding stage before the control was applied. The
control was applied to the boundary layer at each iter-
ation. The system was allowed to run for several thou-
sands of iterations. The results are shown in Fig. 4. The
control not only worked well, it worked as well as the
globally forced system. The reason being that the force,
F(z, t) oc 7'2w(z, t) and V~w(z, t), decays rapidly away
from the plate.

IV. SUMMARY

I have attempted to demonstrate the potential useful-
ness of Hiibler's model-based control method in hydrody-
namic applications through a simple open-channel Bow
example.

This control method appears to be stable for systems
governed by the Navier-Stokes equations; suggesting a
systematic method for developing complex control forces
appropriate in hydrodynamic applications. Though the
method formally specifies a global body force that cannot
be realistically applied in most situations, the potential
exists for reducing the scope and dimensionality of the
fore" possibly limiting it to an airfoil boundary.

A major potential advantage of the method is that
the engineer would have complete freedom to choose the
goal dynamics. One would not be limited to just driv-
ing forces that damp out the characteristic dynamics but
may choose from a nearly limitless variety of goals.

Another advantage of the approach is that the calcula-
tion yields the full complexity of the driving force rather
than just the fundamental frequency in the first-order
linear open-loop approach. The method computes the
correct nonlinear driving force to essentially all orders
being limited only by the spatial and temporal accuracy
of the simulations.
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