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Turbulent transport of a passive-scalar field b3r using a renormalization-group method

Murshed Hossain
Bartol Research Institute, University of Delaware, Newark, Delaware 197I6

(Received 31 July 1992)

A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the
Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using
a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In
the absence of any correlation between the passive-scalar fluctuations and any component of the fluid ve-

locity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although
the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises
due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the tur-
bulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a depen-
dence of the turbulent decay of the passive scalar on the turbulent Prandtl number.

PACS number(s): 47.25.Jn, 47.25.Qv, 47.25.Cg, 44.30.+ v

I. INTRODUCTION

It has been well known for quite some time that the
transport of fluctuations of vector and scalar fields by a
turbulent fluid is greatly enhanced over the rate predicted
by their natural molecular diffusivities. Traditionally,
only phenomenological treatments were possible which
use an ad hoc mixing assumption and a relevant mixing
length. The estimation of transport coefficients then fol-
lows. These efforts fall under the general class of eddy
transport (eddy viscosity or eddy diffusivity) and sub-grid
modeling (used in large eddy simulations).

Recent advances in the renormalization-group (RG)
method applied to fluid turbulence led to systematic stud-
ies of turbulent diffusion processes. Two distinct ap-
proaches have been taken: e RG [1-,2] and recursive RG
[3—5]. In this work we take the latter approach. For a
recent discussion on aspects of the two approaches, see
Ref. [6]. The recursive RG method has been applied to
the passive scalar advected by a random frozen (time-
independently prescribed) fluid velocity [3] and to the
Navier-Stokes equation [4,5]. Here we consider the evo-
lution of a passive scalar by a fluid that is itself evolving
by the Navier-Stokes equation. The passive scalar could
be a model for temperature, chemical contaminant, a
component of the magnetic field, etc. Here we concen-
trate on the nature of the coupling of the viscosity and
the diffusivity.

We consider two cases: first, when there is no correla-
tion between the passive-scalar field and the velocity, and
second, when there is a correlation between them. If the
passive-scalar field is the temperature, and the fluid
evolves under gravity, then there is a correlation between
the passive-scalar fluctuation and the vertical component
of the fluid velocity, induced by buoyancy. In such a
case, either the Navier-Stokes equation must be modified
to take into account the gravity and the variation of den-

sity, or one must consider the Boussinesq or the full
compressible-fluid equations. But here we look at the
effect of the nonlinear terms only. Since the turbulent

II. SMALL-SCALE ELIMINATION
AND TURBULENT TRANSPORTS

We consider an incompressible fluid governed by the
Navier-Stokes equation

—+vok' u (k, t)
at

= f d'j M t3 (k)u&(j, t)ur(k j,t) . —

Here, u 's are the Fourier coefficients of the ath corn-
ponent of the fluid velocity and are a function of the wave
number k and time t. The molecular viscosity is vo. The
coupling coefficients M

& (k) are given by

M„tt,, (k)=[kttD (k)+k D tt(k)]/2i,

where

(2)

D p(k) =$
p
—k kp/k (3)

The coefficients M in Eq. (2) reflect the incompressibility
condition and the fact that, for such a flow, the pressure
is a function of the velocity.

We consider a simultaneous equation for a passively
advected scalar:

—+tcok' p(k, t)= ik f d'j u (—k —j, t)p(j, t),

(4)

where tco is the molecular diffusivity for P.

transport is essentially controlled by the nonlinear terms
in the equation, our simple model might capture the
essential features of the full problem.

In Sec. II we write the dynamical equations and intro-
duce the scheme for eliminating small scales. In Secs. III
and IV the elimination process is presented in detail.
Self-similar properties are discussed in Sec. V, followed
by a summary in Sec. VI.

46 1992 The American Physical Society



46 TURBULENT TRANSPORT OF A PASSIVE-SCALAR FIELD BY. . . 7609

If the dynainical equations (1) and (4) did not have the
nonlinear terms on the right-hand side, then each Fourier
mode of u or P would decay linearly in time at a rate
determined by their respective molecular transport
coefficients vp and Kp- But, because of the nonlinear cou-
plings, fluctuations undergo spectral transfer, usually
from large to small scales, where linear molecular dissipa-
tion is more efficient. This causes an enhancement of dis-
sipation over the molecular rate. Much of the analytical
effort in turbulence research goes into the calculation of
these enhanced or turbulent-transport coefficients (also
referred to as eddy-transport coefficients). To achieve
such a goal, the wave-number space is divided into two
parts, the large scales having k ~ k, and the small scales
having ki &k &ko. Here k, =fko, with 0&f &1. The

spectrum of fluctuations is taken to be zero for wave
numbers larger than the dissipation wave number kp.
For a molecular Prandtl number of less than unity, it
suffices to pick kp based on the molecular viscosity. The
dynamical equation is written for the small scale, and
then, with some approximation, an explicit expression is
found for the small-scale field. Then this is substituted
into the evolution equation for the large-scale field. An

I

averaging over the small spatial scales is performed, and,
with a suitably chosen closure scheme, the large-scale
equation is closed with renormalized transport
coefficients. The renorrnalized transport coefficients de-
pend on the integral over the small-scale spectrum. The
process is repeated by dividing the wave-number space
again into a large-scale part k ~ k2 and a small-scale part
k2 & k k, , with k2 =fk i

=f ko. This process of
small-scale elimination continues up to a cutoff' wave
number k, .

III. REMOVAL OF THE FIRST SMALL-SCALE SHELL

Now we follow the above procedure for the elimination
of the first small-scale shell in wave-number space in de-
tail. Let us introduce the notation

u (k, t)= u (k, t), k &k,

u (k, t)=u (k, t), k)k, .

Now, showing the explicit k dependence, we rewrite Eqs.
(1) and (4), first for the large scales and then for the small
scales:

—+vok u (k, t)= fd'j M tt (k)[u& (j,t)+u& (j,t)][ur (k j,t)+u —(k j,t)],—at
(7)

and

—+aok2 p'(k, t)= ik f d'—j [u (Ir j,t)+—u (k —j, t)][& (j,t)+p (j,t)]

for the large scales, and

—+vok u (k, t)= f d j M &~(k)[u& (j,t)+uti (j,t)][ur (k j,t)+u—(k j,t)], —
Bt

(9)

and

—+aok p'(k, t)= ik f d j—[u (k j,t)+u (k —j,t)][/ (j,t)—+p (j,t)] (10)

for the small scales. In Eqs. (7)—(10), the superscript on
the field limits the range of its wave-number argument.
For example, P (k, t ) indicates that It in the argument of

is a large scale wave -number, so that k & k, . Notice
that, by the same token, the range of integrals on the
right-hand side of Eqs. (7)—(10) will be determined by
which u&(j) or P(j) is involved.

Now, we assume that u and P evolve faster than
their large-scale counterparts, so that the time derivatives
in Eqs. (9)—(10) can be neglected [3,4]. (It has been
shown that this approximation is equivalent to the sta-
tionarity approximation of the small-scale spectrum [7].
Thus, from Eqs. (9) and (10) we have

, Jp f d'J'[utr'(j —j' t)+ut'(j —j', t)l

x
I
0'(j', t )+({l'(j',t ) 1 (12)

Now we substitute these small-scale fields into the equa-
tions for the large-scale fields; first Eq. (11) into Eq (7).
We keep terms only up to second order in nonlinearity.
On the right-hand side of Eq. (7) seven terms of the form

u u u, and u u u are generated. We perform en-
semble averages over the small scales, so that the follow-
ing holds:

uti (j,t)= f d j'Mtttr .(j)[utr {j',t)+utr (j', t)]
VpJ

(u. (I,t)) =0,
(u (k, t)) =u (k, t) .

(13)

(14)

and

X u ~ (j—j', t )+u ~ (j j', t )], —
A typical example of the application of Eqs. (13) and (14),
and of ensemble averages of a triple product, will be
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(u (k, t)utt (j, t)u (j', t)) =0 . (15)

By this averaging process, the terms of the form
u u u and u u u vanish. Moreover, the terms of
the form u u u vanish, since the latter two small-
scale fields in the triple products are connected by the
same vertex [4]. Terms of the form u u u are
dropped by a closure assumption. Therefore we are left
with three terms. The first term u u is just the large-

I

scale quadratic nonlinearity in the exact form as the orig-
inal Navier-Stokes equation (1). The second nonvanish-
ing term is the u u u term: a new triple nonlinearity
generated by the small-scale elimination. We chose to
keep this term. In some RG work this higher-order non-
linearity is neglected. The third nonvanishing term is the
u u u term, which after averaging takes the form
( u u ) u '. This is the enhancement of viscosity and is
denoted by 6vp, which is taken to the left-hand side and
added to vp after dividing by k . Thus

—+v, k u (k, t)= fd j M & (k)u& (j, t)u~ (k j,t)—

+2M
& (k) f d j d j' M&&~ (j)utt (j', t)u~ (j j', t)u—

~ (k —j,t),
vpJ

(16)

Vi =Vp+ 5Vp .

The enhancement of viscosity is given by

(17)

where all wave-number arguments are less than k &, and
I

u u ', P'u u, and P u u . We assume that the
ensemble averages over small-scale P are similar to those
of u's. Thus

fivo=2f d j Q(~k —j~),Ujk
with geometric factor Lk defined as

(18) (P'(k, t)) =0,

(P'(k, t)) =P'(k, t) .

(21)

(22)

Lk = —2M tt Mtttt (k)Dtr ~ (k —j)D, (k) . (19)

In (18), k& (j, ~k —
j~

+ ko. Above, we have used the fol-
lowing relations for the small-scale two-point velocity
correlation

(u (k, t)utt (k', t), =D tt(k)5(k+k')Q(ik~) . (20)

Above, we have substituted the small-scale velocity field
from Eq. (11) into Eq. (7), and then obtained a renormal-
ized evolution equation (16) for the large-scale field. This
equation has two features. First the viscosity is enhanced
due to turbulence, and second, a new higher-order (triple
nonlinear) term is generated. The u equations up to this
point are identical to those of our previous work [4).

Now we will substitute the small-scale velocity and the
passive-scalar fields (11) and (12) into the large-scale
passive-scalar equation (8). Again we keep terms only up
to second order in nonlinearity. On the right-hand side
we have 15 terms of the form u P, u u

Performing ensemble averages over the small scale makes
the termsoftheform u u P, u u P, P u u

u u 'P, and P u u vanish. The terms of the form
u u P, and P u u vanish, since the last two of the
triple product in each of these are connected by the same
vertex. Terms of the form u u P and P u 'u are
dropped by a closure assumption. Now we are left with
six nonvanishing terms. We consider these terms in the
large-scale P equation for two circumstances.

A. Uncorrelated P and u

If the scalar field P is uncorrelated with the fluid veloc-
ity, then two terms of the form u u P and P'u 'u
vanish after averaging. The terms of the form
( u u )P are the turbulent enhancement of the
diffusivity. The other terms are kept on the right-hand
side of the large-scale P equation. Again we keep triple
nonlinear terms generated by the small-scale elimination
process. Thus

—+~,k~ p (k, t)= —ik f d j u (k —j, t)p (j,t)

—k f d j d'j '
u (k —j, t)u& (j j', t)p (j')—

Kpj

Mp (j)—ik d jd j'
z u& j', t u~ j—j', t k —j, t

VpJ
(23)
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Here all wave-number arguments are less than k„and
the enhanced diffusivity K, is given by

this is the only term through which viscosity appears in
the passive-scalar dynamics.

Ki —Kp+ 5Kp . (24) B. Correlated P and u

The increment of the diffusivity is

k kp f d j D tt(k j)Q(lk —jl) .
k KpJ

(25)

Here k, &j, l
k —j l

& ko.
If the fluid velocity is prescribed as treated by Rose [3],

(as opposed to evolving by the Navier-Stokes equation),
then the last term in (23) would not be there. Notice that

I

(P (k, t )u (k', t ) ) =C (k)5(k+ k') .

Then the large-scale passive-scalar equation becomes

(26)

If for some reason there is a correlation between the
passive-scalar fluctuations and any component of the
fluid velocity, (for example, if P is the teinperature, then
correlation could be induced by gravity), then two more
terms out of the 15 listed just before Eq. (21) would be
nonzero. Now let us assume that P is correlated with u

so that

a—+i~,k p (k, t)+b&k u& (k, t)= ik f d—j u (k j,t)p—(j, t)

—k f d j d j' u (k j, t)u& —(j j', t)p —(j', t)
KpJ

M ti (j)
ik f—de d'j' u& (j', t)u (j j', t)p (—k —j,t) .

VOJ

(27)

Here all the wave-number argument are less than k& and

K& is the same as in the uncorrelated case, i.e., given by
Eqs. (24) and (25). The additional turbulent dissipation is
given by

6p= fd j j&C (k j) iM &
—(j)C (k j)—

+
Kp Vp

hp=a 5K+65v,

then

(29)

b 5v=a 5K 1+—p a 5K
(30)

The last term in (30) is a function of the turbulent Prandtl
number. This indicates that the turbulent Prandtl num-

I

(28)

Here k, &j, lk —j l

& ko. Notice that the new turbulent-
dissipation term is proportional to the fluid velocity and
the coefficient 6& depends on both primitive transports vp

and Kp.

If we write (28}symbolically as

I

ber appears in the turbulent diffusivity, and the rate of
diffusion is proportional to the amplitude of the velocity.
For the uncorrelated case, the viscosity can only appear
implicitly through the triple nonlinear terms. For the
frozen velocity field, as treated by Rose [3], this triple
nonlinear term [the last terin in (23) and (27)] does not
arise and thus the turbulent passive-scalar dynamics has
no direct dependence on the viscosity.

IV. REMOVAL OF THE nth SHELL

Now we take Eq. (16), drop the superscript &, follow
the same steps as was done for getting (16) starting from
(5), and remove the 2nd shell followed by the 3rd,
4th, . . . , and the nth shell. Now u (k, t) will indicate
that k ~ k„ for the nth step. Each time we have an addi-
tional triple nonlinear term induced by the process of
small-scale elimination. The viscosity increment is con-
tributed by the quadratic nonlinear product and each of
the n —1 triple nonlinear products. The calculation for
the fluid velocity is identical to that of our previous work
[4]. The result after the nth step is

—+v„k2 u '(k, t}=f d j M ti (k)u& (j, t)u '(k j,t}—
Bt

n

+2M& (k) g fdjdj'
r= 1

Mtttr .(j )u & (j ', t )u ~ ( j—j ', t )u (k —j, t ) .
~n —rJ

(31)

Here k &k„. For the first integral on the right-hand side, j, lk —j l &k„. For the rth term in the sum of the last in-
tegrals in (31), we have j', lj

—j'l, lk —j l k„, while k„„+i&j k„„.The eddy viscosity is

~n ~n —i+»n —] ~ (32)
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where

n —1 Lk.
fiv„,=2 g f d j ' Q(lk —jl) .

r=0 v
1 J k

(33)

The limits of the wave numbers are k„„&j, lk —jl & k„, „ for the rth term in the sum (33).
Now, for the passive-scalar field, we again treat the correlated and the uncorrelated cases separately. For the un-

correlated case:

n—+a„k p'(k, t)= ik—f d3j u '(k j, t—)p (j, t) k, —g f d j d j' u (k —j, t)u& (j—j', t)p'(j')
r=1 Kn —rJ

rr M ( )
ik—g fd jd'j' u& (j', t)u~ (j j',—t)p (k —j, t) .

r= 1 ~n —rJ
(34)

The limits are k ~k„and, for the first integral on the
right-hand side, j, lk —jl &k„. For the rth term in the
sum of the last two integrals in (34), we have j', lj —j',
lk —jl & k„, while k„„+,&j & k„

Here, K„ is the enhanced diffusivity

k kp
filc„)— g f d jk' ,=o Kn —

1
—rJ

xD p(k —j)Q(lk —j ) . (36)

Kn =Kn —1+&Kn —1

The increment of the diffusivity is

The limits of the wave numbers are k„„(J,
k —jl & k„, „ for the rth term in the sum (36).

For the correlated case:

a—+a„k' p'(k, t)+b&k'ut3 (k, t)= ik f d—'j u '(k j, t)p'—(j,t)

—k g fd'j d'j'
r=1

Jp
, u

' (k j, t )u & (j —j', t )p'(j'—)
Kn rJ

(37)
M r(')

ik g —fd'jd'j', u& (j', t)u'(j —j', t)p'( k j, t) . —
r=1 &n —rJ

n —
1."=sf '~, ,.2k 2

jpC (k —j)
Kn —r

iM
& (j )C (k —j)+

+n —r
(38)

The limits of the wave numbers are kn, &j,
lk —jl & k„, „ for the rth term in the sum (38).

Notice that, although there are formally n terms in the
sum (31), (33), (34), (36), (37), and (38), only a few (de-

pending on the shell fraction f) can be nonzero, owing to
the wave-number constraints (see Ref [3]).

The limits are k &k„and, for the first integral on the
right-hand side, j, lk —jl & k„. For the rth term in the
sum of the last two integrals in (37), we have j', lj —j'l,
lk —jl & k„, while k„„+,&j & k„„.The diffusivity l~„

is the same as that for the uncorrelated case (3S) and (36).
The additional dissipation of the passive scalar is given
by

V. SELF-SIMILAR PROPERTIES
OF THE RECURSION RELATION

The renormalized Na vier-Stokes equation and the
viscosity remain unaffected by the passive scalar. There-
fore the properties of the Navier-Stokes equation remain
the same as in Ref. [4]. With appropriate rescaling of the
spectrum, wave number, and the viscosity, the latter ap-
proaches a fixed point as the number of shell removals
goes to large values. See Eqs. (26)—(30) in Ref. [4]. See
also Ref. [8] for a numerical evaluation of additional fixed
points.

For the passive scalar, if u and P are uncorrelated,
then Rose's argument [3] exactly holds for Eqs. (35) and
(36). With appropriate rescaling of the velocity spec-
trum, wave number, and the diffusivity, the latter ap-
proaches a fixed point as the number of the shell removal
goes to large values. If we take the fixed-point values of
the turbulent viscosity [4] and diffusivity [3], then the tur-
bulent Prandtl number is of order 1. It is common to ar-
gue that the turbulent Prandtl number should be of order
unity since the spectral transfer of momentum and the
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ge(k) f(m+))/4 (39)

Here there is no singularity at f=1, unlike the fixed-
point diffusivity (which is the same as in Rose [3]):

f )f(m+))/2
(r'(k)=, , )

(40)f(m+) )/2

VI. SUMMARY AND DISCUSSION

We have studied the turbulent transport of a passive
scalar advected by an incompressible Quid governed by
the Navier-Stokes equation using a recursive
renormalization-group method. When the scalar field is
uncorrelated with the Quid velocity, then the turbulent
diffusivity is exactly the same as in the case of a frozen
velocity field. But the triple nonlinear term generated in
the dynamical equation for the passive scalar involves
both the diffusivity and the viscosity. Thus, it is only

passive scalar should be sitnilar. For example, in Ref. [9]
the turbulent Prandtl number is set to unity in simulating
compressible stellar convection.

For the correlated case it is more complicated, and the
above argument does not carry over, in general, since the
two transport coefficients, viscosity, and diffusivity, and
the two correlations, Q &(k) and c (k ), are all involved.
For a special case where Q &(k) and c (k ) scale similarly
with k, then, under the assumption of similar scaling for
both v(k) and (r(k), the recursion relation does go to a
fixed point. The fixed-point value of 5 will then be a
function off, in particular,

through the triple nonlinear term that the turbulent
Prandtl number can enter into the turbulent passive-
scalar dynamics. This might indicate that the triple non-
linear terms generated in small-scale elimination process-
es cannot be irrelevant, contrary to some arguments
given by Yakhot and Orszag [2] and Carati [10] for the
Navier-Stokes case. The importance of triple nonlinear
terms in the renormalized Navier-Stokes equation (with
no passive scalar) has previously been demonstrated [11].
The nature of the interaction that brings Prandtl num-
bers into the dynamics involves a quartic of wave num-
bers. Two large-scale modes (one fluid velocity and one
passive scalar) first influence a secondary small-scale
passive-scalar mode, which then interacts with a large-
scale fluid velocity to modify a large-scale passive-scalar
field.

In the case where the passive scalar is correlated with a
component of the fluid velocity, then there is an addition-
al turbulent dissipation of the scalar field. Then, the
viscosity and the diffusivity are also coupled through the
renormalization transport coefficient. The turbulent
Prandtl number in the case can enter into the problem
without the triple nonlinear terms.
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