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Bifurcation phenomena in nonaxisymmetric Taylor-Couette flow
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Taylor-Couette flow subject to a nonaxisymmetric external Coriolis force is studied experimentally.
The Coriolis force is induced by placing the Taylor-Couette apparatus on a turntable such that the flow
is nonaxisymmetrically perturbed. This symmetry-breaking perturbation affects the entire sequence of
bifurcations found in the unperturbed system. We identify the dynamical regimes encountered as a func-
tion of two control parameters: a Reynolds number and a dimensionless turntable rotation rate. The bi-
furcation map for this system is presented, and we show that there is nonhysteretic reemergent order as a
function of either control parameter. We also find a possible codimension-2 bifurcation point beyond
which occurs a nonhysteretic direct bifurcation to turbulence from the time-independent base flow.

PACS number(s): 47.20.Tg, 47.25.Ae, 47.30.+s

I. INTRODUCTION

Externally applied potential fields are known to have
profound effects on the stability of hydrodynamic sys-
tems. Flows that have received considerable attention,
both experimentally and theoretically, include Rayleigh-
Benard convection (the flow between horizontal parallel
plates, heated from below) and Taylor-Couette flow (the
flow in the annular gap between independently rotating
concentric cylinders) [1]. Both the Rayleigh-Benard (RB)
and Taylor-Couette (TC) systems have been subject to an
external magnetic field. It was found that the base state
is stabilized, and the ordinary bifurcation behavior seen
in the unperturbed system is significantly altered [2,3]. In
the case of an applied magnetic field H (where the
Lorentz force FL —H X u acts), the working fluid is
conducting —mercury, for example. The RB system has
also been placed in a rotational field, QD (where the
Coriolis force Fc-QD X u acts). Again, the base state is
stabilized, and other interesting bifurcation phenomena
have been encountered as well [4,5].

Chandrasekhar made important early contributions to
this field of study [1]. By unifying theory and experi-
ments from a wide variety of flows and applied external
fields, he set the stage for much of the research carried
out subsequently. The research of Chandrasekhar and
his colleagues on linear stability has evolved and expand-
ed to contemporary studies of spatiotemporal chaos, tur-
bulence, pattern formation, and bifurcations. Such stud-
ies have had important implications to open and closed
flows as we11 as to magnetohydrodynamics and plasmas.
Understanding the effects of symmetry breaking and
mode competition has also become important.

By applying a nonaxisymmetric external Coriolis force
to the Taylor-Couette system, we have initiated an im-
portant extension to the study of external perturbations
on hydrodynamic flows [6]. The Coriolis force is applied
to the TC system by placing the cylinders on a turntable
so that the cylinders' common axis of rotation is orthogo-
nal to the rotational axis of the turntable (see Fig. 1). In

the Appendix we discuss the reasoning behind this orien-
tation of the cylinders relative to the turntable. In ordi-
nary TC flow (defined to be TC flow with only the inner
cylinder rotating and no applied field), the fluid velocity
in the base state is purely azimuthal because the flow
direction is determined by the direction of the inner-
cylinder rotation and the boundary conditions [7]. This
azimuthal base flow is called "Couette flow. " When the
system is placed on a rotating turntable, the ordinary ve-
locity field interacts with the rotational field, yielding a
Coriolis force. To first order in Q (where Q, to be defined
below, is a dimensionless measure of the Coriolis force),
the Coriolis force is axial, and it induces a corresponding
axial flow superimposed on the Couette flow [8]. The
Coriolis force is not unidirectional, however; as the fluid
flows about the azimuth, it changes direction with respect
to the turntable rotation vector. The axial component of
the modified base state changes direction corresponding-
ly, both in magnitude and direction, with the azimuthal
angle. The axisymmetry of the ordinary TC system is
thereby broken.

As the Reynolds number (a dimensionless measure of
the inner-cylinder speed) is slowly increased from zero,
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inner cylinder

FIG. 1. Side-view schematic of the experimental
configuration, showing the orientation of the cylinders relative
to the turntable and the orientation of the reflectance detector.
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the ordinary TC system displays a series of bifurcations
that lead to increasingly complex spatiotemporal behav-
ior and eventually turbulence [9]. Our experiments prior
to those reported here have shown that the introduction
of a small Coriolis force dramatically alters this sequence
of bifurcations. The Coriolis force stabilizes both the
base flow [6] and the bifurcation to the first time-
dependent state [8]. In addition, the stability of the base
state in the presence of a Coriolis force has been predict-
ed theoretically [10,11]. In this article we report that at
low values of either control parameter (the Reynolds
number or A), the flow displays reemergent order from

temporally disordered flow. We have also observed a
possible codimension-2 bifurcation point beyond which
there occurs a direct, nonhysteretic bifurcation to tur-
bulence from the base flow state [8]. Codimension-m bi-
furcations are found in m-control parameter systems and
are characterized by mode competition resulting from
multiple modes becoming simultaneously unstable
[12,13]. For a sufficient value of 0, the direct bifurcation
to turbulence occurs at a Reynolds number that is an or-
der of magnitude lower than that for ordinary TC flow.
These phenomena also occur at a relatively small values
of the control parameters, so that they might be under-
stood via numerical simulation or a weakly nonlinear
theory.

In this article we will report of our studies, building on
work by our group [6,8, 10] and that of Ning and his col-
leagues, who have carried out similar studies in different
geometries [11,14,15]. Section II places our experiments
in the context of ordinary TC flow and then follows with
a review of the previous work on nonaxisyrnmetric TC
flow that led up to our research. In Sec. III we present
the relevant experimental parameters and the experimen-
tal protocol we implemented. In Sec. IV we describe the
statistics and analysis we used to derive a picture of the
flow bifurcation behavior. In Sec. V we discuss the irn-
portant features of the bifurcation map, in particular, our
discovery of reemergent order and the direct bifurcation
to turbulence. Concluding remarks are made in Sec. VI.
In the Appendix we present theoretical and experimental
results for the configuration in which the cylinder and
turntable axes are parallel. This appendix clarifies the
importance of the cylinder-turntable positioning we have
employed to study nonaxisymmetric TC flow.

II. BACKGROUND AND PREVIOUS WORK

A. Bifurcations in ordinary Taylor-Couette flow

to outer-cylinder radius ratio, g. In our work, g=0.88
and Re, i,

= 120.5 [9,10]. At about Re = l. 14Re,ii, there is

a Hopf bifurcation which results in a traveling azimuthal
wave superimposed on the Taylor vortices. This state,
wavy vortex flow (WVF), persists until about
R 10R o.

The WVF eigenstate can be expressed in terms of an
azimuthal wave number, which describes the number of
waves wrapped around the azimuth, and an axial wave
number, which is proportional to the number of wavy
vortices stacked up in the annulus. King and Swinney
have shown that the eigenstate of a particular wavy mode
is dependent on both the Reynolds number and the nurn-

ber of vortices [16]. They also found that there are re-
gions in this state space where the wavy vortices are un-
stable. King and Swinney's findings were consistent with
those of Donnelly et al. , who found disordered states
that emerged hysteretically in the wavy mode for small
bands of Reynolds numbers [17]. They observed a dislo-
cation in the flow which mediated transitions in the wavy
mode from one state to another. These transition regions
were also characterized by broadband noise in the veloci-
ty power spectra.

At Re=—10Re,~, WVF bifurcates to modulated wavy
vortex flow (MWVF) in which a second azimuthal wave
appears in the flow whose frequency is incommensurate
with the first [18]. This quasiperiodic state appears visu-

ally as an amplitude modulation of the primary wave. It
is this beat frequency which is seen in the power spectra.
The pure modulated state persists until about
Re-=12Re,~, at which a broadband component emerges
in the velocity power spectrum, accompanied by an eleva-
tion in the spectral noise level above the instrumental
noise level [19]. It has been shown that this spectral
noise is deterministic, as opposed to stochastic [20]. This
finding and the broadband character of the power spec-
trurn, coupled with further analysis of the time series,
have led to the conclusion that this state is dynamically
low dimensional, i.e., chaotic [20].

At Re —=21Re,~ all spectral evidence of periodicity in
the flow disappears and the flow is characterized as tur-
bulent [20]. Note, however, that the axial array of Taylor
vortices does not disappear in this turbulent state. In
fact, Taylor vortices have been observed beyond
Re=67Re, ~ [21]. In addition, Walden and Donnelly
found that for Reynolds numbers approximately between
28Re,z and 35Re,z, a distinct periodic component reem-
erges in the power spectrum [21].

Ordinary TC flow displays a series of bifurcations that
progress toward turbulence from Couette flow as the
inner-cylinder angular velocity is slowly increased from
zero. Couette flow exists for Reynolds numbers Re less
than the critical Reynolds numbers Re,& and is purely az-
irnuthal; the flow displays no spatial or temporal periodi-
city. At Re=Re, ~, the base state becomes centrifugally
unstable and the flow bifurcates to Taylor vortex flow
(TVF), which consists of axially periodic, time-
independent toroidal vortices superimposed on the az-
irnuthal flow. Note that Re,~ is a function of the inner-

B. Previous studies of nonaxisymmetric
Taylor-Couette flow

Bifurcations in ordinary TC flow have been well
researched ([9,16—21], and references therein). As men-
tioned in the Introduction, several studies have been un-
dertaken to examine variations on the TC theme, most of
which have been axisyrnmetric. Mutabazi et al. have
studied the stability and bifurcation behavior of the
Taylor-Dean system (flow between horizontal coaxial
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cylinders with a partially filled gap) which is nonaxisym-
metric [22]. The base state in the Taylor-Dean system
can be thought of as a superposition of Taylor-Couette
flow and Poiseuille flow. The bifurcation phenomena ob-
served in the Taylor-Dean system have been attributed to
mode competition resulting from the combined flows
[22]. However, the Taylor-Dean system, while displaying
a distinct nonaxisymmetry, cannot be treated as pertur-
bation of the ordinary TC system because the base state is
significantly altered by the partially filled gap. Our
research was initiated by an interest in the effect of a
nonaxisymmetric perturbation (whose strength is tunable
by a control parameter and varies continuously from
zero} on the stability of the base state of the ordinary TC
system and on the subsequent bifurcation behavior.

The experiments of Wiener et at. (performed at
ted=0. 88) showed that for small fl (i.e., 0 &2.5), the base
flow is stabilized quadratically in 0 [6]. For 2. 5 & 0 &7,
higher-order effects cause the stabilization to become
stronger than quadratic, and then for 0 above 7, the sta-
bility boundary has an inflection point and then becomes
weaker than quadratic. Beyond this primary bifurcation
boundary and within the range of 0 that yields time-
independent secondary flow, the system bifurcates to tilt-
ed Taylor vortices (TTVF}. This state is similar to TVF
except that the Coriolis force induced axial perturbation
imposes a tilt on the Taylor vortices such that the vor-
tices are tilted out of the cylinders' axial plane. Ning
et al. showed that at g=0.753 and at constant Re, the
tilt angle of the vortices increases linearly with 0 [15].
We observed increasing tilt angle with 0 at g=0. 88, but
did not make any quantitative measurements of this
effect. Note also that we imposed hard boundary condi-
tions at the ends of the cylinders, thus requiring the tilt
angle to be zero at the boundary. We thus observe a
maximum tilt at the center of the cylinders and a tilt an-
gle that decreases as the ends are approached.

In addition, Wiener et al. obtained preliminary results
showing that the bifurcation to time-dependent flow is
also delayed as the strength of the Coriolis force in-

creased [8]. For 0)0, the first periodically time-

dependent state encountered is tilted wavy vortex flow

(TWVF). Again, this state is a single-frequency flow

similar to WVF, except here the wavy vortices are tilted
due to interactions with the axial flow. In addition, we

found that the primary stability boundary and the bound-

ary for the bifurcation to time-dependent flow converged
as 0 increased [8]. Beyond this convergence, the flow bi-

furcated directly to turbulence from the time-
independent base state [8].

These initia1 experiments were followed by theoretical
studies aimed at understanding the effect of the Coriolis
force on Couette flow [8]. This was followed by a linear
stability analysis on the resulting modified base flow

[10,11]. Wiener et al. found that to first order the
Coriolis force induces an axial flow which is superposed
on the azimuthal Couette flow. The magnitude of the ax-
ial flow varies as an m = 1 sinusoid about the azimuth [8].
This first-order correction to the base state is orthogonal
to the azimuthal mode, and it is the interaction and com-
petition between these orthogonal modes which gives rise

to much of the dynamics we observed in nonaxisym-
metric TC flow.

To investigate theoretically the stability of the modified
base flow, Wiener et al. perturbed the solution with small
0-dependent velocity and pressure fields. The perturba-
tions were three dimensional and time dependent. The
perturbed base flow was expanded to order 0, and a
linear eigenvalue problem was constructed for the stabili-
ty problem. The problem was separable into zeroth-,
first-, and second-order terms. The zeroth-order term re-
turned Re,o. The first-order correction to the critical
Reynolds number was found to be zero, which is con-
sistent with the symmetry of the perturbation, i.e., the
effect of the Coriolis force is not dependent on the direc-
tion of the turntable rotation. The second-order correc-
tion was the first surviving higher-order term, such that
for small 0, 6=c„Q, where c~ =0.043 63 and
6=(Re, /Re, o) —1. This theoretical result is in good
agreement with experimental results for small values of 0
[10]. Ning et al. conducted parallel studies and obtained
compatible results [11]. The linear stability analysis has
been taken to order (0 ) by Tveitereid, Ning, and Ahlers,
and their theory is also in good agreement with experi-
mental results [23]. In Fig. 2 we have compared our ex-
perimental measurements of the primary bifurcation
(boxes) to the theoretical prediction of Wiener, Hammer,
and Tagg (solid curve) [10], and to the prediction of
Tveitereid, Ning, and Ahlers (dashed curve) [23]. From
the figure it can be seen that the theory of Wiener, Ham-
mer, and Tagg agrees with the experimental data for
fL ~2.25. The theory of Tveitereid, Ning, and Ahlers is
in agreement with experiments for 0 ~ 3.5.
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FIG. 2. Comparison of experiment and theory for the pri-
mary instability at g=0. 880. The squares are the experimental
data. The solid curve is the second-order theoretical stability
boundary of Wiener, Hammer, and Tagg [10], and the dashed
curve is the fourth-order calculation of Tveitereid, Ning, and
Ahlers [23]. For the solid curve, b, =0.043 630; for the dashed
curve, 5=0.045510 +0.0012810 . The error bar represents
an estimate of the experimental uncertainty.
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III. EXPERIMENTAL PARAMETERS
AND PROTOCOL

A. Definition of the control parameters

Figure 1 represents the apparatus used in the experi-
ments reported here. The fluid used in our experiments
was an aqueous suspension of glycerol and Kalliroscope,
with bacteriostatic stabilizer added to extend the life of
the sample [24]. Kalliroscope is a suspension of highly
reflective, microscopic platelets and is used for flow visu-
alization experiments. Typically, the working fluid had
kinematic viscosity v=0.033 S. The inner-cylinder angu-
lar velocity was scaled by a reduced Reynolds number
b, =(Re/Re, o) —1, where Re=coR, d/v (co is the inner-
cylinder angular velocity, R& =2.235, cm is the inner-
cylinder radius, and d=0. 305 cm is the annular gap
width). Re,o is the critical Reynolds number at which the
primary instability from the base flow to Taylor vortex
flow occurs in ordinary TC flow. Recall that
Re,o=120.5 for the radius ratio g we used (rt=0. 88)
[9,10]. Another important parameter is the aspect ratio
of the apparatus, I, which is the ratio of the length of the
annulus to d. The angular velocity of the turntable is
scaled by 0=QDd /v (where QD is the angular velocity
of the turntable). Q can also be thought of as a dimen-
sionless measure of the amplitude of the Coriolis force for
a given Reynolds number.

B. Temperature control

In order to minimize temperature-induced fluctuations
in the viscosity, and hence uncertainty in the critical
Reynolds number, we housed the cylinders in an insulat-
ed box and maintained the brass end caps of the ap-
paratus at constant temperature with a circulating tern-
perature bath. The inner-cylinder motor was kept exter-
nal to the insulated box to further isolate the fluid from
sources of heat. These precautions resulted in tempera-
ture stability during a data run to within 0. 1 K. The
temperature of the fluid during the entire series of experi-
ments ranged from 23.4 to 24.2'C. Within this range of
temperatures, our uncertainty in v was about 0.6%,
which translates to a comparable uncertainty in Re,o.
Our apparatus also had an axial temperature gradient.
With the cooling of the end caps, we were able to keep
the gradient to less than 0.2 K. Other factors, the details
of which can be found in Ref. [25], contributed to an un-
certainty in co,o of about 0.8%. Finally, note that Ref.
[25] also contains a more detailed description of the ex-
perimental apparatus and procedures.

C. Protocol: Quasistatic Increments of 0 and 6

In our experiments we quasistatically increased one of
the parameters (0 or b) at small increments, while hold-
ing the other parameter fixed. At each increment of 0 or
6, a 2048-point time series of the Kalliroscope reflectance
was measured (increased occasionally to 8192 points).
The data acquisition frequency was 50(to/2') From the.
time series we were able to calculate the various statisti-
cal measures that we used to determine the location of
the bifurcation boundaries for this system.

It is important here to clarify what we mean by "quasi-
static increments" in our experimental control parame-
ters. Fluid dynamic states require a finite time in which
to fully develop, that is, a change in Re causes a change
in u which takes time to propogate, even in the base
state. Thus the time rate of change of a control parame-
ter must be much smaller than the growth rate of a par-
ticular state. Also the bifurcations to TVF and WVF are
nonhysteretic in the Reynolds number, if Re is increased
slowly enough, i.e., quasistatically. Therefore, a criterion
was needed to minimize the hysteresis in the flow bifurca-
tions.

The effect of the Reynolds number rate of change, a',
on the bifurcation to TVF was studied by Park, Craw-
ford, and Donnelly [26]. They defined a ' to be

R)d Ia'= ' (a),
V2

where (a) is the average time rate of change of co. Their
experiments showed that if a is too large (i.e., if the
Reynolds number is increased through the bifurcation to
TVF too rapidly), then the critical Reynolds number will
be overestimated. Similarly, if Re is decreased from TVF
to the base flow state too rapidly, then Re,o will be un-
derestimated. The difference between these two critical
Reynolds numbers is proportional to the hysteresis for
that a*. Park, Crawford, and Donnelly found an upper
limit on a* at which the critical Reynolds numbers for
increasing and decreasing Re agreed to within an accept-
able percentage. Their conclusion was that a*&6 is
sufficient to minimize the hysteresis is the first bifurcation
[26]

In subsequent work, Park and Jeong showed that
a* & 1 is needed to get repeatable and nonhysteretic re-
sults for the bifurcation to WVF [27]. By repeatable,
they meant that different experiments would yield states
with the same axial and azimuthal wave numbers, that is,
a * & 1 resulted in reproducible eigenstates of the system.

In the Coriolis-force experiments reported here and
elsewhere [6,8, 10], the above criteria for quasistatic in-
creases in Re were used, except that repeatability in the
wavy-mode eigenstate was not required. This require-
ment was dropped because our experiments were
designed to locate bifurcations; as such, the dynamics of
the various states were not examined closely.

In initial experiments on the primary bifurcation (base
flow to secondary fiow), Wiener et al. obtained results
that showed that a* ~6 yielded nonhysteretic bifurca-
tions [6]. In the experiments reported here we chose
a *-=0.66 so that we could confidently attain nonhysteret-
ic bifurcations to and from time-dependent states as well.

Wiener et al. also found that the bifurcations were in-
sensitive to the acceleration of the turntable, 50, /5t
[6,8, 10]. However, in Sec. V A we report that we did ob-
serve slight 0-dependent hysteresis across one of the bi-
furcation boundaries. Also, Ning, Ahlers, and Cannell
observed 0-dependent hysteresis in the transition to what
they refer to as "chaotic tilted vortices" [14]. Note, how-
ever, that their experiments were performed on an ap-
paratus with g=0.753 and with different boundary con-
ditions. Thus, the chaotic tilted vortices they reported
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could have resulted from the dynamics of this larger
gap system. For our experiments we chose
5Q/6t=0. 00196 s ', and we generally did not observe
any significant 0-dependent hysteresis.

IV. ESTABLISHING THE BIFURCATION MAP

A. Locating bifurcations using reflectance

Our goal in the series of experiments reported here was
to establish a bifurcation map for the nonaxisymmetric
TC system. Previous work had shown that the Coriolis
force perturbs the system in profound ways
[6,8, 10,11,14,15], and analogies to other work, such as
that on the Kiippers-Lortz transition in rotating RB con-
vection [5], suggest that an exploration of parameter
space would reveal unexpected bifurcations to novel spa-
tiotemporal states.

As mentioned in Sec. III, our analysis is based on mea-
surements of Kalliroscope reflectance. In water-glycerol
mixtures, Kalliroscope is a suspension of nearly neutrally
buoyant microscopic platelets [24]. The platelets align
with the shear in a flow and give the fluid a highly
reflective pearlescent sheen. When the ordinary TC sys-
tem is in its azimuthal base state, the flow is laminar and
the platelets are aligned such that the normal to their
broad plane is, on average, aligned radially. In this orien-
tation of the platelets, an external light-intensity detector
aligned tangential to the glass outer cylinder and normal
to both the cylinder radius and cylinder axis will measure
relatively high reflectance. In Couette flow, one thus ob-
serves a uniform silvery flow, which is consistent with the
absence of spatial or temporal structure to the flow.
When the bifurcation to TVF or TTVF occurs, there is
an onset of radial inflow and outflow jets that results in
the toroidal vortices. The Kalliroscope platelets partially
realign with this radial flow and one observes silvery tori
separated by darker bands corresponding to the alternat-
ing inflow and outflow boundaries (see Ref. [9], p. 140,
and Ref. [13] for photographs of states from ordinary TC
flow). Measurements reveal that at the bifurcations to
TVF and TTVF, there is a sharp drop in the average
reflectance, ( r ), due to this realignment of the platelets.

When the flow is in a time-independent state, the fluc-
tuations of the reflectance about the average are relative-

ly small. The platelets do have some random wobble, but
our detector measures an area that is large compared to
both the size of a platelet and the amplitude of the wob-
bles. This measurement technique has the effect of spa-
tially averaging the small-scale random wobbles of the
platelets. At the onset to a time-dependent state the fluc-
tuations about the average of the reflectance increase
measurably and significantly. Accordingly, there is a
sharp increase in the variance of the reflectance, o. , at
the bifurcation to time dependence, relative to that mea-
sured in a time-independent state.

By making systematic comparisons of relative changes

in the average reflectance and the variance of the
reflectance, we can accurately determine the parameter
values for the primary bifurcation and the bifurcation to
time dependence, respectively. Within the time-
dependent flow state, however, there are both periodic
and aperiodic states. We thus required additional infor-
mation to distinguish among these various states.

Gorman and Swinney have shown that a fast Fourier
transform (FFT) of a reflectance time series from a
periodic or quasiperiodic state in ordinary TC flow will

reveal accurate frequency information about the flow
[18]. While it is unclear whether Kalliroscope reflectance
will yield accurate information about the dynamics of a
disordered flow, the work of Savas [28] and of Schwarz
[29] do show that the motion of Kalliroscopic flakes is
connected to the underlying structure of both ordered
and turbulent flows. Based on the above studies and
findings we will discuss below, we have adopted the view
that relative changes in well chosen statistics will indicate
bifurcations to different flow regimes. The average and
the variance of the reflectance are two such statistics. To
locate bifurcations between periodic (ordered) states and
aperiodic (disordered) states, additional statistics are re-
quired.

The character of a time-dependent state is most im-
mediately seen by examining its reflectance power spec-
trum. A power spectrum of the base flow and TTVF in
the nonaxisymmetric TC system (both time independent)
is charactered by instrumental noise and peaks indicating
the frequency of the inner cylinder. The appearance of
the inner-cylinder frequency is an experimental artifact:
The inner cylinder is composed of black anodized alumi-
num; when the cylinder was first constructed, it was uni-
formly black, but within a short time the blackness lost
its uniformity and the inner cylinder was no longer opti-
cally round. We attribute this loss of optical uniformity
to a thin layer of Kalliroscope platelets adhering to the
cylinder in places where there were small divots in the
anodization. Fortunately, we could essentially ignore the
presence of the inner-cylinder frequency in these power
spectra, since our goal was to identify relative changes in

power spectra for a large range in control parameters.
The presence of the inner-cylinder frequency in the
power spectra does not affect these measurements.

Power spectra for TWVF are characterized by sharp
peaks representing the wave frequency and its harmonics.
Also present are sum and difference peaks for the wave
and inner-cylinder frequencies. The noise in these power
spectra is still at the instrumental level. Power spectra
from TWVF can be contrasted to those from aperiodic or
disordered states which are characterized by significant
increases in the noise level. In nonaxisymmetric TC flow
the strength and distribution of the noise level vary con-
tinuously as the spatiotemporal disorder increases to-
wards turbulence, but in all cases the noise level is higher
than the instrumental noise. To measure relative changes
in the spectral noise and the power distribution among
the spectral components, we used two statistics: the spec-
tral mode number (SMN) and the spectral number distri-
bution (SND).

The SMN is given by
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where P,- is the amplitude of the ith Fourier component
of an n-component power spectrum. The SMN is a slight
variation on the "degrees of freedom" used by several au-
thors as a tool to detect changes in the disorder in a flow.
Crutchfield et al. used the degrees of freedom in an at-
tempt to distinguish sharp features from broad features
among power spectra from the Rossler system (the
Rossler system will be described below) [30]. Their re-
sults were inconclusive, but Park and Donnelly success-
fully used a similar measure to detect the bifurcation
from laminar flow to TVF [31]. Park and Donnelly were
concerned with relative changes in the degrees of free-
dom as a signature of bifurcation, whereas Crutchfield
et al. only hinted at this application. Babcock, Ahlers,
and Cannell used a stasitic similar to the SMN to locate
the boundary separating the convective and absolute in-
stabilities in TC flow with a superimposed axial through
flow [32]. Note also that the measurements of Park and
Donnelly, and of Babcock, Ahlers, and Cannell were
based on Kalliroscope reflectance.

We have carried out a study of the SMN and found
that it provides a rough measure of the number of dorn-
inant peaks in a power spectrum. Ideally, D = 1 for a sine
wave and D =n for white noise. Our study consisted of
calculating D as a function of the number of sine waves in
a given numerical signal, with and without the addition
of varying amounts of noise. The signals we analyzed
were composed of 1 to 99 sine waves linearly superim-
posed with frequencies ranging from 5 to 490 Hz at 5-Hz
intervals. Each time series consisted of 4096 points. The
power spectra had 512 points resulting from four aver-
aged of 1024-point FFT's. The Nyquist frequency was
500 Hz. For the case of an increasing number of sine
waves without the addition of noise, we found that D is
roughly equal to two times the number of sine waves in
the signal.

After looking at the effect of summing pure sine waves,
we looked at the effect on the SMN of noise added to the
summed waves. We summed the specified number of sine
waves and then added random noise with a normal distri-
bution to this signal. This numerical experiment was per-
formed at four different noise levels: 0.5, 1.0, 2.0, and 3.0
times the amplitude of the combined sine waves. Figure
3 shows the SMN as a function of the number of com-
bined waves plus the added noise. The result for a noise-
less signal is also shown for comparison. The clean signal
shows a linear increase in the SMN as the number of
waves increases. Adding 0.5 amplitude noise had the
effect of shifting the SMN slightly up and changing the
slope of the line such that the influence of noise was
greatest for smaller numbers of combined waves. As the
amplitude of the noise was increased, its effect on the
SMN became more pronounced. This was especially true
for smaller numbers of combined signals, where the noise
dominated the periodic component of the signal, causing
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FIG. 3. The spectral mode number D (where D is dimension-
less) plotted as a function of the number of combined waves.
The solid curve is for combined sine waves with no added noise.
The dotted curve is for sine waves combined with half-
amplitude random noise. The short-dashed curve is for random
noise of equal amplitude added to the combined sine waves.
The long-dashed curve and the dot-dash curve are for random
noise of amplitude two and three times that of the combined
sine waves, respectively.

the SMN to be large. As the number of waves was in-
creased, the SMN rapidly decreased until it reached a
minimum. Beyond this minimum, the SMN then gradu-
ally increased with a slope approximately equal to that of
the clean signal, only shifted by a constant value depen-
dent on the strength of the noise. Clearly then, the SMN
is a useful statistic for distinguishing among periodic sig-
nals of increasing complexity and noise.

To complement the SMN, we chose the SND as anoth-
er statistic that might provide us with similar information
about relative changes in the degree of order or disorder
in the flow. The SND was developed as a variation of the
spectral distribution function used by Ditto et al. [33].
The SND is found by counting the number of com-
ponents N(p) in a power spectrum that have power
greater than or equal to p, where p =log&o(P), and P is
the Fourier amplitude. The SND is useful for examining
changes in the distribution of spectral components as a
system evolves from one composed of a single mode to
one composed of multiple modes. The SND is useful for
looking at the distribution of spectral components as
deterministic noise begins to dominate a power spectrum.

The differences in the SND profile are most striking
when comparing the profile for a sine wave to that for
random noise (see Fig. 4). For a single-mode sine wave,
all of the energy in the spectrum should be found in one
sharp, narrow peak (ideally a delta function). This highly
localized distribution of power in the spectrum should be
evident as a decrease in the SND as the power increases
[see Fig. 4(a)). This dropoff is indicative of a nonuniform
distribution of power with respect to frequency. The
slope of the dropoff is related to the narrowness of the
peak, i.e., the steeper the slope, the narrower the spectral
peak. The SND profile for random noise, on the other
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FIG. 4. Spectral number distributions for (a) a sine wave and

(b) random noise. The horizontal dashed lines indicate
N=0. 25n, where n =4096. The vertical dashed lines indicate
the spectral noise (see text, particularly that pertaining to Fig.
6): (a) spectral noise = —15.75, and (b) spectral noise = —0.91.

hand, stays level, then drops off sharply, indicating that
the power in the spectrum is more evenly distributed
throughout its range [Fig. 4(b) j. The power at which
log, o(N(p)) —=0 is the saturation power. Figure 4 indi-
cates that a periodic system saturates gradually, while a
noisy system will saturate quickly beyond a certain
power.

Besides being useful for comparing the power distribu-
tion of different spectra, the SND can be used as a means
of estimating the relative spectral noise level among spec-
tra. To measure the spectral noise, we adopted the fol-
lowing criterion: After calculating the SND, we choose
the spectral noise to be the power p at which N(p) drops
below 0.25n, where n is the number of components in the
power spectrum (see Fig. 4 for an example). In other
words, a criterion of 0.25n means that 25% of the spec-
tral components have power less than a given power p.
Our choice of 0.25n as the cutoff for the spectral noise
measurement was made as an attempt to systematize the
noise estimate that one typically makes "by eye" when
examining power spectra. As we shall explain, the 25%
criterion provided a useful means for detecting relative
changes in the spectral noise.

The 25% criterion for measuring the spectral noise
provided us with a systematic and efficient means for
measuring the relative degree of disorder among many
points in 0-5 space. The spectral noise measurement
was also robust with respect to where we chose the cutoff.
That is, we were able to obtain consistent results in a
variety of systems for 0. 10&x &0.80, where x deter-
mines the percentage of n at which the cutoff is made. So
although our choice of 0.25n was arbitrary, it did reliably
yield the information we desired about the relative disor-
der among different dynamical states of the same system.

In an attempt to study a system more complex than the
combined sine waves, and one that was nonlinear, we
chose the Rossler system. The Rossler system is de-
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FIG. 5. Four states of the Rossler system as a function of the
adjustable parameter p and initial conditions (x;,y, ,z;). Shown
are the power spectra, with the x-y phase portraits inset, for (a)
8=3.5 (3.3425, 2.9585, 1.2043); (b) 9=4. 1 (4.0902, 2.1835,
0.5043); (c) p=4. 23 (4.3063, 1.9216, 0.4517); and (d) p=4. 30
(4.5701, 1.6765, 0.4573) ~ The power spectra are based on 2048-
point FFT's. In (a) 3000 x-y points are plotted; (b) 3000 points;
(c) 6000 points; and (d) 12000 points.

dz==0.2+xz —pz .
dt

As the control parameter p is varied, the system under-
goes a series of period-doubling bifurcations.
Throughout the periodic regimes the largest nonzero
Lyapanov exponent is negative (i.e., the system is non-
chaotic). At a critical value of p the largest Lyapanov ex-
ponent becomes positive and the system bifurcates to
chaos. Figure 5, which was motivated by Fig. 1 of Ref.
[30], shows the power spectra and x-y phase portraits of
the four Rossler states we analyzed. Figure 5(a) is a
period-2 state, Fig. 5(b) is a period-4 state, Fig. 5(c) shows
chaotic broadening of the period-4 state, and Fig. 5(d)
shows chaotic broadening of the period-2 system. The
Rossler system is useful as a more complicated system
with which we could check both the SMN and the SND.
For example, we examined various dynamical states of
the Rossler system as a means to test the robustness of
our spectral noise measurement technique.

To test the robustness of the spectral noise measure-
ment, we calculated the spectral noise as a function of
cutoff percentage for the four different states of the
Rassler system we examined (see Fig. 6). The solid curve
corresponds to Fig. 5(a), the dashed curve to Fig. 5(b), the
dotted curve to Fig. 5(c), and finally, the dot-dash curve
corresponds to Fig. 5(d). The curves are presented in or-
der of increasing complexity. Figure 6 conveys that the
spectral noise does increase as the Rossler system be-
comes more chaotic. The other important aspect of Fig.
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FIG. 6. The relation between cutoff criterion and spectral
noise. The criterion gives the percentage of the spectral com-
ponents that have power less than a given power p. The figure
demonstrates the robustness of the spectral noise measurement
to the choice of cutoff criterion, using power spectra from the
Rossler system. See Fig. 5 and its caption for details on the
Rossler states used. The solid curve corresponds to Rossler sys-

tem (a); the dashed curve corresponds to Rossler system (b); the
dotted curve corresponds to Rossler system (c); and the dot-
dash curve corresponds to Rossler system (d). The horizontal
dashed line is the 25% criterion.

6 is that the relative spectral noise of the four Rossler
states does not change as the cutoff percentage is in-
creased. We obtained similar results from calculating the
spectral noise for the combined sine waves with and
without the addition of random noise; the spectral noise
measurement was robust in this system too. The robust-
ness of the spectral noise gave us confidence that the 25%
criterion would yield important information about bifur-
cations among ordered and disordered states in nonax-
isyrnmetric TC flow.

We also used the Rossler system to characterize fur-
ther the SMN, but we found that in this case the SMN
did not yield conclusive results: There was no significant
change in D as the system became more complex. This
finding was consistent with that of Crutchfield et al. [30].
We suspect that the SMN was inconclusive for the
Rossler system because even in its most chaotic state, the
power spectra were composed of dominant, though
broad, peaks. For example, the spectra of Figs. 5(a), 5(b),
5(c), and 5(d) had D =2.28, 2.46, 2.34, and 2.35, respec-
tively. Measurements of the relative noise from the SND
yielded results that were more convincing that those from
the SMN. Using the 25% criterion, we found that the
spectral noise increased steadily as the Rossler system be-
came more complex; for the spectrum of state a the spec-
tral noise was —12.08, for b the spectral noise was—10.04, for c the spectral noise was —6.54, and for d the
spectral noise was —5.86.

B. Constructing the bifurcation map

Our use of the SND and SMN allowed us to complete
the bifurcation map for the nonaxisymrnetric TC system.
To determine where a bifurcation occurred in 0-6 space,
we plotted each of the four statistics as a function of the
parameter being varied. We then looked for a sharp, sys-

tematic change in the behavior of that statistic. A bifur-
cation was determined to have occurred when the statis-
tic changed locally by -50%. Figure 2 shows points
where the relative reflectance had dropped by 50% (or
risen, depending on the direction from which the bifurca-
tion boundary was approached), thus indicating the pri-
mary bifurcation. Also presented are the theoretical pre-
dictions for the primary bifurcation [10,23]. For the pri-
rnary bifurcation, our method of detecting bifurcations
yielded results that were in good agreement with theory,
small Q. The measurements used in Fig. 2 also agreed
well with previous measurements using a slightly
different method [6].

We applied the 50%-change method to our data, and
the resulting bifurcation map is shown in Fig. 7. The
symbols are the experimental points. For clarity we have
not displayed all of the experimental points. The curves
are best fits to the experimental data (including those
points not displayed) using a nonlinear least-squares fit to
functions of the form

b(A)=aQ +bQ +cQ +d . (4)

The fits are provided as visual guides through the data.
Odd-order terms are not included in the fit because
theory predicts [8,10,11], and experiments confirm [6]
that the Coriolis force interacts symmetrically with the
flow in the sense that +0 produces the same changes in
bifurcation behavior. The squares and the solid curve
represent the bifurcation boundary separating the base
flow state from the secondary flow states. The experi-
rnental points correspond to those shown in Fig. 2; this is
the boundary at which the relative reflectance has
changed sharply. Similarly, the circles and the dashed
curve indicate the boundary separating the time-
independent flow state within the secondary flow (i.e.,

2.8

2.4—

2.0—

1.6—

0 4~4

-0.4
0

FIG. 7. The bifurcation map for nonaxisymmetric Taylor-
Couette flow (g=0.880). See the text for a description. Note
that for clarity the fit to the variance data (circles) was not
shown for data above 0=7.5. Note also that at Q=O there is
no Coriolis force and so the Taylor vortices and wavy vortices
are no longer tilted; the Q=O boundary is consistent with that
for ordinary TC flow. The error bar is an estimate of the error
in determining the bifurcation point.
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TTVF) from the time-dependent flow states. This bound-
ary is where the variance of the reflectance has changed
relatively sharply. The triangles and the dash-dot curve
separate TWVF (periodic, ordered flow) from disordered
flow (either noisy or turbulent). This boundary was
determined by detecting sharp changes in the spectral
noise (using the SND). Finally, the diamonds and their
accompanying dash-dot curve are the other boundary
separating ordered from disordered flow; this boundary
was also found using the SND to estimate the spectral
noise. As explained earlier, the SMN and the SND pro-
vide similar information about a system. We chose to use
the SND for the bifurcation map because in practice it
was slightly easier to determine bifurcations from the
spectral noise than from the SMN. The error bar in the
upper left corner of Fig. 7 is an estimate of the error in
determining the point at which the bifurcations occur.
This uncertainty is primarily due to the uncertainty in
choosing where sharp breaks occur in the date.

V. DISCUSSION

The bifurcation map shows the five states that have
been distinguished by their differences in terms of the
statistics we employed in our analysis (see Sec. IV}. The
base flow state is time independent and essentially lami-
nar (although as 0 gets large, some structure is observed,
appearing as two long curving axial streaks of Kalliro-
scope; we speculate that the platelets are caught in two
stagnation zones that are created from the turnaround re-
gions of the axial flow). The base state is thus character-
ized by high relative reflectance, low variance, low spec-
tral noise, and low SMN.

TTVF is a time-independent, axially periodic flow. It
is characterized by low relative reflectance (since the base
state has bifurcated) and lower variance. The spectral
noise and SMN are also lower than they were in the base
state. The drop in the variance and the noise in the
power spectra occur because in TTVF the platelets are
less likely to wobble randomly in this more structured
state.

TWVF is an ordered, spatiotemporally periodic state
identified by low reflectance, a sharp rise in the variance,
and a slight increase in both the spectral noise and the
SMN.

We have identified two disordered states within the
time-dependent flow regime: noisy flow and turbulent
flow. These two disordered states are distinguished from
TWVF by their large increase in spectral noise and SMN.
The difference between noisy flow and turbulence is that
noisy flow has strong spatiotemporal periodicity accom-
panied by an elevation in the power spectral noise. This
increase in disorder is not apparent in the flow visually,
however. Turbulent flow is highly mixed and disordered,
both visually and spectrally.

We observed that, as 5 is increased at constant Q, the
turbulence grows in as a strong swirling pumping action
from the ends and, when fully developed, displays no
temporal periodicity and only ghosts of the tilted vor-
tices. One might suspect that the turbulence is driven by
end effects. However, Ning et al. observed a similar bi-

furcation to turbulence in nonaxisymmetric TC flow us-

ing an apparatus with "soft" boundary conditions that do
not constrain the tilted vortices at the ends [15]. Their
results thus suggest that the turbulent flow we have ob-
served is not an end effect.

Although we have made a distinction between noisy
and turbulent flow, we have not been able to define a
sharp boundary separating them. Our measurements in-
dicate that the noisy flow continuously becomes more
spatiotemporally disordered as the system approaches
turbulence. This would be similar to the gradual transi-
tion to turbulence from chaos in ordinary TC flow

[9,19,20].
Several interesting bifurcation sequences in the nonax-

isymmetric TC system are revealed by the bifurcation
map. The map shows that the bifurcation behavior of or-
dinary TC flow is markedly different from that observed
in the ordinary system. Specifically, we observe two
nonhysteretic bifurcation sequences that display reemer-
gent order. In addition, above a sufficient value of 0, the
flow bifurcates nonhysteretically to turbulence directly
from the time-independent base state. It should be noted
that reemergent order and turbulence both occur in ordi-
nary TC flow, but at Reynolds numbers at least an order
of magnitude higher than those observed in the nonax-
isymmetrically perturbed system.

A. Reemergent order

Reemergent order is characterized in parameter space
by a disordered state bracketed by ordered states. In or-
dinary TC flow there are known instances of reemergent
order, but they are either hysteretic or they occur at Rey-
nolds numbers much larger than those used in the experi-
ments we are reporting.

Hysteretic reemergent order occurs at 0=0 in the ap-
proximate range 0.35 (5 & 0.8, and this is shown on our
bifurcation map. Donnelly et al. [17] and King and
Swinney [16] reported that the region of disorder they ob-
served resulted from eigenstate instabilities in WVF,
whereby the number of waves and/or vortices changed.
In this unstable WVF state the flow appeared disordered,
both visually and spectrally. Visually, a dislocation in the
vortex array was observed. The power spectra were
characterized by a broadening of the peaks and an in-
crease in the noise significantly above the instrumental
level. In addition, the bifurcations through this disor-
dered state were hysteretic. In other words, as the Rey-
nolds number was increased, the system reorganized itself
(by changing states}, but the initial state could not be
recovered by decreasing the Reynolds number back
through the bifurcation boundary. We repeated the mea-
surements of Donnelly et al. [17] and confirmed their
findings by detecting a rise in both the SMN and the
spectral noise as the system passed through this disor-
dered state. This hysteretic bifurcation sequence can be
seen in Fig. 8, which is a plot of the spectral noise for
0, =0. The solid curve is for b increasing and the dashed
curve is for 6 decreasing. At b =0, the bifurcation to
TVF can be seen by the drop in the spectral noise. At
4=-0. 14, the spectral noise rises, indicating the bifurca-
tion to WVF. These changes in the spectral noise are rel-
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FIG. 8. Spectral noise vs 5 at Q=O, showing hysteretic
reemergent order. The solid curve represents 6 increasing and
the dashed curve is for 5 decreasing.

FIG. 10. Spectral mode number D (where D is dimensionless)
vs 6 at 0=0.62, showing nonhysteretic reemergent order. The
solid curve represents 6 increasing and the dashed curve is for
6 decreasing.
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FIG. 9. Spectral noise vs 5 at Q =0.62, showing nonhysteret-
ic reemergent order. The solid curve represents 5 increasing
and the broken curve is for 5 decreasing.

atively slight, however, when compared to that for the bi-
furcation to noisy flow that occurs at 5—=0.50. This
noisy state persists until 6—=0.90, at which point the
spectral noise drops back down and remains relatively
low. When 5 is brought back toward its initial value, we
see that the bifurcation sequence for 6 increasing does
not repeat itself. For 6 decreasing, we do see a narrow
band of disorder between 6—=0.5 and 0.45, but it is clear
that the bifurcation sequence displaying reemergent order
is hysteretic for 0=0.

Our experiments have shown that for QAO the situa-
tion is quite different. As 6 is increased, the flow still
passes through a region of disorder, but within the ap-
proximate range 0.6+ 0 ~ 2. 5, the bifurcations no longer
display hysteresis. This sequence of bifurcations, from
TWVF to disordered flow back to TWVF, can be seen
clearly in Figs. 9 and 10, which are typical of the bifurca-
tions between 0.6&0~2.5. Figure 9 shows the spectral
noise, measured using the 25% criterion from the SND,
as a function of b, for 0=0.62. As b, is increased (solid
curve), the spectral noise is relatively low. At about

6=0.45, there is a sharp increase in the spectral noise;
for 0.45 ~ 5 0.68, the flow is disordered. Above
6=0.68, and for the rest of the range in 6 explored, the
system has bifurcated back to TWVF. After the ordered
state reemerged in the flow, we quasistatically decrease h.
The dashed curve in Fig. 9 is a plot of the spectral noise
versus 6 for decreasing A. It is clear that the bifurcation
sequence nearly replicates itself; from this we conclude
that for a sufficient value of 0, the flow experiences
nonhysteretic reemergent order. Figure 10 shows the
SMN versus 5 at 0=0.62 for this same sequence of bi-
furcations. Figure 10 confirms that the flow undergoes a
series of bifurcations that display nonhysteretic reemer-
gent order. Figures 9 and 10 also indicate that the SND
and the SMN do provide consistent information about
the bifurcation behavior of our system. Finally, note that
the measurements yielding Figs. 8, 9, and 10 were made
at the same a' (a"=0.66). Thus the bifurcation se-
quence shown in Fig. 8 can be considered dynamically
distinct from that shown in Figs. 9 and 10.

We looked at the nonhysteretic reemergent order in
another way by examining the general characteristics of
the power spectra for ordered flow (TWVF) versus those
of the disordered state. We then compared the profiles of
the SND for these states. Figure 11 shows the power
spectra for TWVF [Fig. 11(a)], noisy How [Fig. 11(b)],
and the reemerged TWVF [Fig. 11(c)]. These three spec-
tra are accompanied by their respective SND's [Figs.
11(d)—(f)]. The power spectra were constructed by calcu-
lating the FFT's from 8192-point reflectance time series.
The spectra shown in Fig. 11 have 2048 bins. The data
represented in Fig. 11 were acquired at 0=0.62, the
same 0 at which the measurements of Figs. 9 and 10
were made. The significant increase in the broadband
spectral noise in Fig. 11(b) as compared to Fig. 11(a) is in-
dicative of a bifurcation to noisy flow. The SND's for
Figs. 11(a)—11(c) show how the power in the spectra is
redistributed as the flow goes through a disordered re-
gime. The spectral noise, determined using the 25%%uo cri-
terion, is indicated by the vertical dashed lines in Figs.
11(d)—11(f).
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Note that in Fig. 11(b) there remain sharp spectral
peaks even though the noise level has risen significantly.
As stated earlier, what we have identified as noisy flow is
characterized by an increase in broadband noise above
the instrumental level, accompanied by spectral com-
ponents that indicate that the flow is still strongly period-
ic. Two other aspects of Fig. 11(b) are important. The
first is that this power spectrum is reminiscent of the
spectra observed by Brandstater and Swinney for chaotic
ordinary TC flow [20]. The second important aspect of
Fig. 11(b) is its marked difference from a typical spectrum
measured for turbulent flow in our system. Figure 12
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FIG. 12. Typical power spectrum for turbulent flow. Here,
0=10.41 and 5=3.78. This figure was generated using a com-
mercial spectrum analyzer with 256-channel resolution.

FIG. 11. Power spectra and spectral number distributions of
representative data showing reemergent order. (a), (b), and (c)
are the power spectra; (d), (e), and (f) are their corresponding
SND's. The system is ordered in the states shown in (a) and (c),
and (d) and (f). (b) and (e) show the spectral features of noisy
flow, The measurements were made at 0=0.62. b =0.24 for
(a) and (d), 6=0.59 for (b) and (e), and 6=1.01 for (c) and (fl.
In (d) —(f) the horizontal dashed lines indicates N=logto(0. 25n ),
and the vertical dashed lines indicate the spectral noise rnea-
sured using the 25% criterion.

shows spectral behavior for flow in the turbulent regime.
This figure, although plotted on a different scale, does not
have any sharp components and the noise level is quite
high. Visual observations of the Aow confirm that the
state represented by Fig. 12 is turbulent: No wavy
motion is detectable, there is a high degree of irregularity
and mixing in the Aow, and there are disordered struc-
tures down to the smallest visible length scale. In con-
trast, the disorder in the noisy state is not apparent visu-
ally even though it is quite striking spectrally.

The bifurcation map also indicates that the flow under-
goes reemergent order as A is increased at constant A.
For 0, =0, and above 6=0. 14, the flow is time depen-
dent, that is, the relative reAectance is low and the vari-
ant of the reflectance is relatively high. We have shown
that there is a region of disordered Aow between 6=—0.35
and 0.8 (see Fig. 8). Above b =—0.8, the disordered flow
returns to periodic flow. If we now turn on the Coriolis
force and increase 0, a boundary is encountered across
which there is a sharp rise in the spectral noise, while the
reflectance remains low and the variance high. This indi-
cates that the Aow has become disordered; only here it is
turbulent as opposed to the noisy state found at lower 0, .
Also, there was hysteresis in this bifurcation to tur-
bulence, although it was very small compared to the hys-
teresis shown in Fig. 8. As 0 is increased further, the
spectral noise drops and TWVF reemerges (the
reflectance remains low and the variance remains high).
At slightly higher 0, the variance drops indicating that
the flow has bifurcated to TTVF. Finally, the flow bifur-
cates to its base state as signaled by a sharp increase in
the relative reflectance. These last three bifurcations
were all nonhysteretic.

We have seen that nonaxisymmetric TC flow under-
goes reemergent order as a function of either control pa-
rarneter. That this system displays a broad region of
disordered bracketed by ordered states suggests that
there are competitive processes occurring in the flow.
The two control parameters 0 and 6 tend to induce flows
that, to first order, are orthogonal. Increasing 5 at fixed
0 means increasing the amount of azimuthal energy in
the flow field, hence bringing the system closer to its ordi-
nary state. This tendency back to the ordinary system as
6 is increased is particularly important at low 0 where
the symmetry-breaking perturbation can still be con-
sidered small. Furthermore, for low 0 we find that as 5
is increased, the tilt angle of the vortices is decreased.
Conversely, increasing 0 for fixed 6 induces a stronger
axial Aow and forces the system farther from ordinary TC
flow. Recall from Sec. IIB that to first order the axial
flow is an m =1 mode, varying sinusoidally about the az-
imuth. This mode is orthogonal to WVF, and induces
the tilt in the wavy vortices.

In the region in 0-6 space where neither parameter
can establish dominating modes, the Aow exhibits an in-
crease in the power spectral noise which we attribute to
mode competition. This rise in the spectral noise, and its
nonwhite distribution suggest that the noise is deter-
rninistic. Since the flow is not strongly turbulent and
since this increase in noise occurs at low values of the
control parameters, this deterministic noise state could be
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chaotic.
The role of mode competition in the onset of noisy or

chaotic flow is a topic of much current research. For ex-
ample, Coughlin et al. have performed a Navier-Stokes
simulation, and a corresponding experiment (using Kal-
liroscope reflectance as their data), in which the calcula-
tions and the experimental data revealed an aperiodic
flow state resulting from mode competition among the
Zhang-Swinney (ZS) and Gorman-Swinney (GS) modulat-
ed wavy vortex modes [34]. Our experiments have all oc-
curred at relatively low Reynolds numbers —typically,
Re(3Re,o. With the appropriate addition of a small
Coriolis force to the Navier-Stokes equations, theoretical
progress might be made toward understanding reemer-
gent order in the nonaxisymmetric TC system via numer-
ical simulation or a weakly nonlinear theory. This work
might also significantly add to our understanding of the
role of mode competition in low-dimensional determinis-
tic noisy flows.

B. Direct bifurcation to turbulence

The effect of the Coriolis force on the ordinary TC sys-
tem is seen most profoundly in the direct bifurcation to
turbulence. In this phenomenon the flow nonhystereti-
cally bifurcates to turbulence directly from the base state.
Furthermore, the Reynolds number at which the bifurca-
tion occurs is an order of magnitude 1ower than that for
the ordinary system. Also, there is a similarity between
the direct bifurcation to turbulence in nonaxisymmetric
TC flow and a similar bifurcation in Rayleigh-Benard
convection subject to a Coriolis force. Niemela and Don-
nelly studied this bifurcation (known as the Kiippers-
Lortz instability) in which the purely conductive state in
a rotating Rayleigh-Benard system becomes unstable and
bifurcates to a convective state in which the orientation
of the convective rolls switches turbulently [5].

The direct bifurcation to turbulence can be seen in the
convergence of the three lower bifurcation boundaries in
Fig. 7 as Q increases. Specifically, as 0 approaches
-7.5, the boundaries for the drop in relative reflectance,
the rise in variance, and the rise in spectral noise gradual-
ly converge.

The nature of this convergence is more evident if we
examine the coincident behavior of the various bifurca-
tions. For instance, Fig. 13(a) shows the relative
reflectance plotted with the variance for increasing 5 at
constant Q in a parameter space region before the direct
bifurcation to turbulence; Fig. 13(b) is a similar plot for
measurements in a region beyond the direct bifurcation
to turbulence. In Fig. 13(a) the bifurcation to TTVF (in-
dicated by the drop in reflectance) occurs at a lower Rey-
nolds number than the bifurcation to TWVF (indicated
by the rise of the variance). When we take the ratio of
the Reynolds number for the bifurcation to TTVF, Re„
versus the Reynolds number for the bifurcation to time-
dependent flow, Re„we find that Re, /Re, &1. Figure
13(b) also shows strikingly difFerent behavior. Here, Re,
coincides with Re, such that Re, /Re, -=1. In addition,
the data display much more fluctuation than those in Fig.
13(a). This fluctuation is suggestive of a qualitative
change in the flow beyond Re„indeed, power spectra
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FIG. 13. Average reflectance (r) and variance o' plotted
simultaneously. The curves that are initially high are the rela-
tive reflectance, and the curves that are initially low are the
variance of the reflectance. (a) 0=2.08. Notice that the transi-
tions do not coincide: Re, /Re, -=1.08. (b) 0=10.41. Notice
that the transitions now coincide: Re, /Re, -=1.00. Also note
the differences in the critical Reynolds numbers in (a) and (b),
indicating strong stabilization due to the Coriolis force.
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FIG. 14. (a) Re, /Re, vs Q. {b) Re„/Re, vs Q. The solid di-

agonal line is a linear fit to the experimental data. The dashed
horizontal line indicates where the ratio of the critical Reynolds
numbers equals unity.

typical of the flow beyond Re, in Fig. 13(b) indicate that
when Re, and Re, coincide, the flow bifurcates to tur-
bulence as opposed to TWVF (see Fig. 12).

To examine more closely how the bifurcation boun-
daries converge, we plotted in Fig. 14, Re, /Re, versus 0
and Re„/Re, versus 0, where Re„ is the critical Rey-
nolds number for the bifurcation to disordered flow. The
solid diagonal line in Fig. 14 is a linear fit to the experi-
mental data. The dashed horizontal line indicates where
the ratio of the critical Reynolds numbers equals unity.
From Fig. 14 we can see that both Re, /Re, and Re„/Re,
approach unity as 0 approaches 7.5. This means that the
bifurcation of the base flow directly to a time-dependent
state (i.e. , Re, /Re, =l) is coincident with the initial
time-dependent state being turbulent (i.e., Re„/Re,=1).
Recall Fig. 12 which shows the spectral behavior of the
flow for 0 & 7.5 and for 6 beyond the boundary
Re„/Re,=1. This figure indicates that beyond the direct
bifurcation to time-dependent flow there are no strong
periodic components in the flow. In addition, visual ob-
servations confirm what we have learned from the infor-
mation summarized by Figs. 12—14. We thus conclude
that the system undergoes a direct bifurcation to tur-
bulence from the base flow state for a sufficient Coriolis
force.

Although the flow bifurcates directly to turbulence
from the base state, the bifurcation does not occur sharp-
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ly [compare Figs. 13(a) and 13(b)]. The turbulence grows
in as a function of A. The region between the initial drop
in reflectance and the beginning of the large fluctuations
in Fig. 13(b) can best be referred to as a transition region.
This transition region was typically about +5% of 5„,
where 6„is the reduced Reynolds number at which the
flow bifurcates to disordered flow. Although the tur-
bulence develops in a transition region, the convergence
of the bifurcation boundaries implies that the system may
display codimension-2 bifurcation behavior.

Codimension-2 bifurcations occur in two-control pa-
rameter systems and are of interest because at these
points multiple modes are unstable simultaneously
[13,34]. As a result, mode competition can occur, giving
rise to interesting dynamics and pattern formations, and
possibly turbulence. Coughlin et al. have theoretical
reasons to believe that the direct bifurcation to chaos
from a limit cycle (i.e., a periodic state) in ordinary TC
flow results from this sort of behavior [34]. They make
the conjecture that the aperiodicity they observe results
from the mode competition arising from the dynamics
around a "bicritical point" separating the ZS and GS
modes that occur in MWVF [18,34]. Important insight
about a flow can also be had from a weakly nonlinear
theory in the vicinity of multicritical or codimension-2
points.

The convergence of the bifurcation boundaries in
nonaxisymmetric TC flow strongly suggests that there
may be a codimension-2 point in the region 0=7.5,
6=2.43. Our data indicate that for 0 substantially less
than 7.5, the flow does not display a direct bifurcation to
turbulence for increasing 6; for 0, substantially greater
than 7.5, we do observe a direct bifurcation. The fits to
the data in Figs. 14(a) and 14(b) indicate that 0=7.5 is
the convergence point for the critical points Re„Re„
and Re„.However, our experiments lacked the necessary
precision to definitively identify 0=7. 5 as a
codimension-2 point. We do suspect, though, that with
better experimental precision a codimension-2 point
could be located in this region.

We believe that there is much interesting work to be
done with the non axisymmetric TC system in the
codimension-2 region we have described. The broken
symmetry of this system and the dynamics we have ob-
served suggest that further experiments and theoretical
investigations would be of great importance to the fluid

dynamics and nonlinear dynamics communities.

to an aperiodic state back to a periodic state as a function
of either control parameter. The other sequence is the
direct bifurcation to turbulence, whereby the flow bifur-
cates to a state of a high spatiotemporal disorder directly
from the time-independent base state. The value of the
fL-6 point at which the direct bifurcation occurs appears
to be a codimension-2 bifurcation point at which three bi-
furcation boundaries converge.

We believe there are still several interesting
unanswered questions about this system. For instance,
do the dynamics in the noisy state display low-

dimensional chaos? One way to resolve this question ade-

quately would be to make point velocity measurements
with a laser Doppler velocimeter; however, this is an
exceedingly difficult task to undertake on a rotating
turntable. What happens to the flow at much higher 6,
that is, how is quasiperiodic flow affected when the rota-
tional symmetry of the system is broken? It has been sug-
gested that the incommensurate modes might lock if the
symmetry of the flow is broken [35]. What sort of
theoretical progress might be made on this system, espe-
cially in the disordered regimes and around the co-
dimension-2 point? What are the implications to bifurca-
tion theory for systems that have broken symmetry from
the outset? And, finally, are there any bifurcation phe-
nomena that occur for Coriolis forces larger than those
explored in the work reported here? In particular, are
there any time-dependent states that are Coriolis-force in-

duced? For large 0, , the flow approaches the geostrophic
limit, in which interesting phenomena with geophysical
implications are known to occur [7].
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VI. CONCLUSION

Our experiments on Taylor-Couette flow subject to a
nonaxisymmetric Coriolis force have shown that a
symmetry-breaking perturbation has profound effects on
ordinary Taylor-Couette flow. The bifurcation sequence
that one observes in the ordinary system is altered by the
Coriolis force. Specifically, the base state is modified and
stabilized, as are Taylor vortex flow and wavy vortex
flow, both of which also have a tilt induced by the
Coriolis force. We have found two striking nonhysteretic
bifurcation sequences in this system. One is reemergent
order, in which the flow bifurcates from a periodic state

APPENDIX

To break the axisymmetry of the ordinary TC system,
the Taylor-Couette cylinders must be placed such that
their common rotation axis is nonparallel to the rotation
axis of the turntable. We will show below that if the axes
are parallel, the only effect will be to vectorially add the
turntable rotation to that of the cylinders. Furthermore,
the location of the cylinders relative to the center of the
table does not affect the fluid dynamics. This is because
any radial dependence enters the equations of motion
through the centrifugal force, and as we will also show,
the centrifugal force simply adds to the pressure gradient
term, yielding an effective pressure. In the absence of
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TABLE I. Theoretical predictions and experimental measUrements of Re,
&

and Re,2.

0.10

0.20
0.30

Theor.

14.74

29.43
44.67

Re, &

Expt.

14.74
14.74
29.48
44.22

Diff.

(%)

0
0

—0.17
1.01

Theo r.

122.44

126.35
132.38

Re, l

Expt.

122.06
121.93
125.83
131.01

Diff.

(%)

0.31
0.42
0.41
1.03

u 1

at
=vV u —(u V)u ——Vp' —Q X(Q Xr) —2Q Xu,

P
D D D

(Al)

where u is the three-dimensional velocity field, p is the
density of the fluid, p' is the pressure, and QD is the rota-
tional vector of the reference frame [7]. The continuity
equation is

V.u=o . (A2)

density gradients (that is, if the fluid is homogeneous), the
pressure gradient is a static force similar to the gravita-
tional force, and hence does not affect the flow dynami-

cally.
The Navier-Stokes equations for a flow in a rotating

reference frame are

B
U —Ar+

r
(A6)

2

p=pf dr . (A7)

If cu& and co2 are parallel to QD and if we apply the as-
sumptions that enter into the derivations of Eqs. (A6) and
(A7) [7], then we get Eq. (A6) as a solution to the
Na vier-Stokes equations. The difference is that
co)~coi+QD, and co2 —+cu2+QD, so that p, A, and B are
changed appropriately. We do find, however, that the
pressure is modified:

where v is the component of u: u(r, O,z)=(u, u, to) [7].
In Eq. (A6), r is the distance from the cylinder axis. A

and B are constants that depend on co&, the radius ratio g,
and p. The pressure field in the azimuthal base state of
ordinary TC flow is

The double cross product in Eq. (Al) is the centrifugal
force term, and it can be rewritten as the gradient of a
scalar:

U2

p =p I +QDU dr
r

(A8)

QD X(QD Xr)= V( ,'QDr' ), —— (A3)

where r' is the distance from the axis of rotation. If the
fluid is homogeneous, then the pressure in Eq. (Al) can
be combined with the right-hand side of Eq. (A3) and ex-
pressed as an effective pressure p:

p =p' ——'pQ r' (A4)

Combining Eq. (A4) with Eq. (Al) yields the appropriate
equation of motion for our system,

Bu 2 1=vV u —(u V)u ——Vp —2QD Xu .
at p

(A5)

The pressure gradient is simply modified by the centrifu-
gal force, and the modified pressure does not affect the

dynamics since the fluid is assumed to be homogeneous.
Ning, Ahlers, and Cannell experimentally verified that
centrifugal effects could indeed be ignored in the nonax-
isymmetric TC system by placing their apparatus in vari-
ous radial positions on a turntable [14]. They did not no-
tice any dependence of the flow on the radial position of
the cylinders. We obtained similar results in our labora-
tory.

We can now examine the effect of placing the
cylinders' rotation axis parallel to that of the turntable.
Let co, be the inner-cylinder rotation vector, co2 the
outer-cylinder rotation vector, and p=(co2/co&) their ra-
tio. The solution of the Navier-Stokes equations for ordi-
nary TC flow is

Again, this modification to the pressure will not have any
effect on the fluid dynamics as long as the fluid is homo-
geneous.

We theoretically and experimentally verified that in the
parallel orientation, QD would simply add to the cylinder
rotation vectors and result in bifurcations to Taylor vor-
tex flow consistent with the results for corotating or
counterrotating cylinders. Our predictions were formu-
lated using the technique described by Wiener, Hammer,
and Tag g for @%0 [10]. With co& =0, we get

p =QD/(co, +QD ), and our calculations resulted in pre-
dicted values for Re„and Re, 2 (which are the inner- and
outer-cylinder critical Reynolds numbers, respectively)
for various values of QD. We then performed experi-
ments to measure the primary bifurcation at these values
of QD. Our theoretical predictions and experimental
measurements of Re„and Re,2 are shown in Table I.
Within the range investigated, our theory and experimen-
tal measurements agreed to within l%%uo.

We have demonstrated two important conclusions
about our system. The first is that centrifugal effects can
be safely ignored, at least at the small rotation rates we
used. The second is that parallel orientation is equivalent
to corotation (or counter-rotation in the case of antiparal-
lel orientation) of the concentric cylinders. To break the
axisyrnmetry of the ordinary TC system, the cylinders
must be placed so that their rotation axes are nonparallel
to the rotation axis of the turntable.
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