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Stochastic resonance in transient dynamics
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Stochastic resonance has been examined in a number of systems that have steady states. We examine a
dynamical system that allows for the escape of a particle from a potential well, and that is subjected to
the combination of a periodic forcing term and noise. We show that in such a system the addition of a
small amount of noise can actually increase the average time for the particle to escape from the well.
This effect depends on the frequency of the external field and in this sense is a form of stochastic reso-

nance.

PACS number(s): 05.40.+j, 82.20.Db, 82.20.Fd

I. INTRODUCTION

The competitive effects of noise and (generally period-
ic) time-varying fields on the qualitative behavior of
dynamical systems has proved to be of considerable in-
terest within the past decade, particularly effects that
have been studied under the heading of stochastic reso-
nance [1-9]. So far stochastic resonance effects have
mainly been studied in the context of nonlinear systems
which exhibit steady-state behavior, exemplified by
motion in a bistable potential. The typical problem ap-
pearing in the literature concerns the analysis of proper-
ties of the Langevin equation

y=—%y£+A Sinor+2Dn(r) , 8
in which n(7) is zero-mean, 8-correlated Gaussian white
noise and U(y) is a time-independent potential. The pro-
totypic bistable potential can be written as

__».

Uly) 3 + 7 ()
and a typical investigation studies the interaction be-
tween the nonlinear U(y ), the noise, and the sinusoidal
forcing term. Some qualitative properties of Eq. (1) with
the potential in Eq. (2) may be derived from comparative-
ly simple considerations. When both the noise and the
sinusoidal forcing term are absent ( 4 =D =0), the sys-
tem will eventually reach the equilibrium point y . = +1,
provided that the particle is initially in the interval (0, « )
and reaches y _ = — 1 starting from any point in (— «,0).
When one adds noise to this picture (but not the
sinusoidal term), the system will make transitions be-
tween y . and y_ and vice versa. Qualitative changes in
the behavior of the system occur on the addition of the
periodic term, as shown in Eq. (1).

Most analyses of stochastic resonance focus on charac-
terizing the sharp enhancement of the signal power spec-
trum that occurs within a small neighborhood of the
forcing frequency. The phenomenon of stochastic reso-
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nance was first suggested as accounting for the periodici-
ty of the Earth’s ice ages [1-4], but has been applied to
the analysis of a number of other physical systems as well
[5-7]. A number of variations of the basic notion of sto-
chastic resonance have been investigated using both
mathematical analysis and simulations [8,9]. Most analy-
ses of such systems consider limiting cases of either weak
noise, a weak periodic forcing term, or are made under
the assumption that the frequency is either large or small
in some suitably defined sense. Such analyses are general-
ly directed towards the calculation of resonance effects in
correlation functions.

Another type of resonance effect due to a periodic forc-
ing term has been discussed in the context of a different
parameter, the trapping time of random walks on a finite
line terminated at both ends by traps [10] in the presence
of a periodic modulation of the transition probabilities.
The mean trapping time of a random walker was shown
to exhibit a minimum at a resonant frequency. A slightly
different version of the same model was studied indepen-
dently by Reichl [11], who also demonstrated the ex-
istence of a resonance effect for a diffusion system in the
presence of reflecting boundaries. These, in contrast to
the present work, were for linear systems. More recently
Zhou, Moss, and Jung [12] discussed escape-time distri-
butions for particles in bistable systems.

In the present paper we discuss a different form of res-
onance for a particular choice of U(y) in Eq. (1). We will
refer to this as transient stochastic resonance. This refers
to a resonance effect in the escape time from an unstable,
periodically modulated nonlinear system. As a prototype
of this type of system we choose the particular potential

.y
Uly) 2 + 3 (3)
which is characterized by having two equilibrium points,
one stable and one unstable, as illustrated in Fig. 1. The
presence of noise in the system eliminates the possibility
of a steady state for the system, which is equivalent to
saying that the particle always escapes from the potential
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FIG. 1. A curve of the potential showing an unstable point at
y =0 and a point of stable equilibrium at y =1.

well. We concentrate on the effect of the amplitude of
the noise term D on the mean escape time in the presence
of the periodic forcing term. No assumption will be
made about the magnitude of A4, in contrast to the analy-
ses in Refs. [1-9].

In the absence of noise, i.e., D=0, a particle that
moves according to Eq. (1) with the potential energy
given by Eq. (3) will necessarily escape from the potential
well and move to y = — « provided that the amplitude 4
is sufficiently large. We will estimate a parameter related
to the escape time from the potential well, in the presence
of additive noise. One’s initial intuitive feeling about
such a system is that an increase in the amplitude of the
noise should decrease the mean escape time because noise
forces the particle to sample more of the available space
than otherwise occurs without noise. Our simulation
studies show that this is not necessarily the case and that
at an appropriately chosen frequency the sinusoidal term
can actually lead to an increase in the escape time when
the amplitude of the noise term increases. This is the
phenomenon that will be referred to as stochastic reso-
nance in transient dynamics.

II. DETERMINISTIC MOTION

On substituting Eq. (3) into Eq. (1), we obtain the basic
equation of motion

y=y—y*+ A cos(wr)+2Dn(7) , 4)

in which A is a positive constant and n(7) is zero-mean
white noise defined by the properties

(n(r))=0, (n(rn(r))=8(r—1"). (5)

The solution to Eqg. (4) in the absence of both the noise
and the external field (4 =D =0) is

pir)= »(0) , ©)

y(0)—[p(0)—1]e "

which shows that a particle whose initial position is y (0)
will escape to infinity in a finite time provided that y(0) is
negative, but will not do so when y (0) is positive. When
the additive noise is allowed to contribute to the dynam-
ics but not the oscillatory forcing term, it is clear without
further calculation that the escape time will be finite for
any initial position.

Before proceeding to an analysis of the full problem it

is useful to examine some properties of Eq. (4) in the ab-
sence of noise but keeping the sinusoidal forcing term
(D=0, A50). While a full solution of this equation can
be found in terms of Mathieu functions it is possible, by a
more direct argument, to find relevant qualitative proper-
ties of the solution to the noise-free version of Eq. (4) to
understand the role of frequency. We first observe that
when A4 is sufficiently small, more precisely if 4 <, the
particle trajectory always remains bounded provided that
the initial position satisfies

»O)211—VIF44). %)

This follows from the consideration that the bound on A4
ensures that for a fixed 7 the equation

y—y*+ A cos(wr)=0 (8)

has two real roots, which is equivalent to the statement
that the particle will remain trapped between the two
values of y that correspond to these roots.

When the system is free of noise, but the sinusoidal
forcing term is retained, we need to define what is meant
by “escape” from the potential well, since there is no
unambiguous escape in which y(7) reaches — o at a
finite time similar to the effect given by the singularity in
Eq. (6). However, in the present case, we will say that the
particle has escaped from the well when
lim__  y(7)=—c. We can derive a sufficient condition
for this to occur by noting that in any cycle of the cosine
term in which y(7) <O there is a value of 7 such that y(7)
reaches a minimum. Call the value of 7 at which this
occurs 7,, and the value of y(7) at this point y,,. Escape
will inevitably occur when the velocity at y,, remains
negative even when the contribution from the sinusoidal
term attains its maximum positive value, i.e., provided
that

Ym —VE+ A <0 )

or, equivalently,
=2, >V1+44 —1. (10)

It is clear from both this relation and on intuitive
grounds that the larger the value of the amplitude of the
periodic term, the more negative must be the value of y,,
in order for escape to occur. Figure 2 shows curves of
y(7) for several values of the frequency. The curves serve
to illustrate the fact that escape can occur at the end of
any cycle. They also illustrate the extreme sensitivity of
results to changes in the frequency.

We next consider the question of whether the condition
A > 1 always guarantees that a particle will cross the bar-
rier at y =0 and derive a criterion for the particle to
reach this point without escaping from the well. Let
T=2m/w be the cycle time associated with the periodic
term in Eq. (1). We need only consider the case in which
the particle is initially within the well. It will be shown
escape is impossible provided that y(7)>y(0). For the
purpose of demonstrating this result, define the difference
function e(r)=y(r+T)—y(r). We will show that the
condition €(0)> 0 implies that e(nT)=0 for n=1,2,. ...
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FIG. 2. Numerical solutions of Eq. (4) written in dimension-
less form with the parameters 4 =0.3, D=0, and frequencies
(a) @=0.13196, (b) ©=0.13197, (¢) @=0.13198, and (d)
©=0.13199. Notice that particles can escape at different cycle
numbers and that the escape cycle is very sensitive to frequency.

This is equivalent to the assertion that the particle never
escapes from the well.
The function €(7) satisfies the equation
de

7;=(1—2y)€—62 (11

with the solution
_ €(0)f (1)
[1+e0) [ e |

where the function f(7) is defined by
T—2foy(§)d§] . (13)

Since f(7) is non-negative it follows from Eq. (12) that
€(7) has the same sign as €(0). The implication of this
analysis is that when €(0)>0 the particle cannot per-
manently leave the well. We cannot say what happens in
general when €(0) <0, except in the special case in which
y(0)=0, when one can show that escape is certain when
y(T)<0. Qualitative aspects of the behavior of the es-
cape time for different values of the amplitude 4 and T
are shown in Fig. 3 in this special case. For all values of
A and T located above the upper curve, escape occurs
even before the end of the first cycle. The uppermost
curve corresponds to systems in which the particle es-
capes at the end of the first cycle. The curve just below
this corresponds to systems in which the particle escapes
just at the end of the second cycle. Points lying in the re-
gion between these two curves correspond to systems in
which the particle escapes at some time between the two
cycles. The points below the lowest curve in Fig. 3 corre-
spond to systems in which escape does not occur.

e(7) (12)

f(r)=exp

III. THE INFLUENCE OF NOISE

Let us next examine the effects of noise on this picture.
When both 4 and D differ from zero in Eq. (4) the condi-
tion in Eq. (7) no longer suffices to guarantee return to
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FIG. 3. Separatrices in the (A4,T) plane for the noise-free
case. The region above the uppermost curve corresponds to
(A, T) pairs in which a particle “escapes” before the end of the
first cycle. The region below the lowest curve corresponds to
the parameters in which the particles never escape and the in-
termediate regions are for ( A4, T) pairs which lead to escape at a
finite number of cycles.

the well since a return can theoretically occur from any
value of y, although the larger the value of —y the less
likely this is to occur. We will be interested in the effect
of the noise amplitude on the escape time. Since we
present only the results of a simulation we cannot verify
whether the particle, in fact, escapes to — «. On intui-
tive grounds one expects that an increase in the noise am-
plitude D should lead to a decrease in the quantity that
we define as a measure of escape time. To study the effect
of changing the noise amplitude we simulated the process
whose mathematical expression is that in Eq. (4), intro-
ducing the noise term into the numerical algorithm sug-
gested in Ref. [13]. For the values of 4 and D used in the
numerical calculations we defined the escape time as the
mean time for the particle to reach the value y =—10,
since that appeared to guarantee that the particle never
returned to the well. The initial condition for our simula-
tions was set to y(0)=1, which corresponds to the parti-

log,, D
FIG. 4. The average escape time {7) plotted as a function of
the logarithm of the noise amplitude for 4 =0.3, and the same
frequencies as used in Fig. 2.
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FIG. 5. A comparison of results obtained for the average es-
cape time (7) with (a) y(0)=1 and (b) a Gaussian-distributed
random variable with (y(0))=1 and o*y(0))=0.5. The
different curves correspond to different frequencies. These are
(a) @=0.510, (b) @=0.530, (c) ©=0.540, (d) ©=0.542, and (e)
©=0.546.

cle being initially at the well minimum, and then we cal-
culated the average escape time {7) by averaging with
respect to the results of 500 runs.

Some typical results obtained from our study are plot-
ted in Fig. 4 as a function of the amplitude of the noise
term. The frequencies correspond to those in Fig. 2. The
most striking feature of the indicated results is that at
some frequencies an increase in the noise amplitude in-
duces an increase in (7). At sufficiently high amplitudes
(7) will be determined entirely by the noise, leading to a
coalescence of all of the curves. At the very lowest am-
plitudes the discrepancy between curves obtained roughly
correspond to different escape times in the noise-free
case. These are very sensitive to changes in frequency of
the external field, as may be inferred from the curves in
Figs. 2 and 3. If one focuses on particles that escape
from the well during the first cycle, i.e., almost immedi-

|Og|o D

FIG. 6. A plot of the average escape time {7) for the larger
amplitude 4=1 and for the frequencies (a) w=1.09, (b)
o=1.14,(c) ©=1.19, (d) ®=1.24, and (e) 0=1.34.

ately, and ask how noise can affect the escape time, then
one finds that the escape time must increase, since the
noise can move a particle about to escape away from the
top of the well, directing the motion towards the well.
This is one route to stochastic resonance for the system
under study.

A replacement of the initial condition y(0) by a Gauss-
ian distribution of this variable with {y(0))=y(0) does
not change the qualitative features of the resonant effect.
This can be seen from the data shown in Fig. 5, which
compares data obtained from runs with and without a
distribution of initial positions. When the amplitude of
the periodic term is increased, one needs a correspond-
ingly larger value of D to change the process to an entire-
ly noise-driven one and the maximum in {7) is also shift-
ed to a higher value. This is illustrated by the curves in
Fig. 6.

Let us mention some applications of our analysis. The
kinetics of second-order phase transitions can be de-
scribed by Egs. (1) and (2). The competitive influence of a
multiplicative periodic force and noise has been studied
numerically in such systems [14] and experimentally [15].
Our system is different from the one studied in these
references in that it describes the kinetics of a first-order
phase transition under the combined influence of an addi-
tive periodic force and noise. Such a system could be
studied experimentally by adding a periodic thermal
pulse to a system consisting of supercooled water
dispersed in oil which is undergoing solidification [16].
Equations of the type in Eq. (4) find a wide application in
biology, chemistry, physics, and the social sciences. One
such application outside the area of physics is the
Verhulst-Pearl model equation for density-limited popu-
lation growth [17]. In such an application the addition of
a periodic force may, at some resonant condition, in-
crease the time to reach population extinction, i.e., it may
be useful for the survival of the species.
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