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Evolution of disorder in magnetic stripe domains. I. Transverse instabilities
and disclination unbinding in lamellar patterns

M. Seul and R. Wolfe
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 13 May 1992)

Video polarization microscopy, optical diffraction, and digital image analysis have been employed to
investigate the transformation of a well-ordered lamellar (“smectic”) domain phase of ferrimagnetic gar-
net films into a globally disordered, “labyrinthine” pattern. Surprisingly, in view of the presence of non-
local interactions, the ensuing pattern evolution in response to temperature-induced strain is character-
ized, in its first stages, by a (local) transverse elastic response which manifests itself in the form of “smec-
tic” instabilities and generates undulation and chevron (“zigzag”) patterns. At a characteristic limit of
accumulated strain, the nucleation of topological defects in the form of disclination dipoles initiates the
second stage of the evolution. The subsequent continuous, topologically constrained “unbinding” of
these dipoles represents the essential mechanism mediating the loss of global orientational order in the
pattern. The application of a set of algorithms for line-pattern analysis to track the motion of individual
topological charges permits the quantitative description of this process. The emerging labyrinthine pat-
terns represent the result of a constrained optimization and, while globally disordered, have in fact been
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shown to exhibit a robust and well-defined local structure in the form of “cybotactic” clusters.

PACS number(s): 64.60.—1i, 05.70.Fh, 64.70.—p, 75.70.Kw

I. INTRODUCTION
A. Modulated phases

The idea that competing interactions favor the appear-
ance of modulated phases has been fruitfully employed to
yield mean-field descriptions of a wide variety of
condensed-matter systems in two and three dimensions
[1]. The unidirectional modulation of the appropriate
order-parameter field constitutes the simplest possible
realization of such a modulated phase, and stripe mor-
phologies are in fact commonly encountered in diverse
circumstances, including realizations in thin films of fer-
roelectrics [2], type-I superconductors [3], ferrofluids [4]
and magnetic garnets [5], as well as in monomolecular
amphiphilic films adsorbed at an air-water interface [6].
Very frequently, the observed stripe phases are disor-
dered, a ‘“labyrinthine” morphology predominating, and
a stripe liquid having been observed recently in Langmuir
monolayers [7]. Given the unifying nature of the descrip-
tion in terms of modulated phases, significant similarities
among pattern morphologies in the various representa-
tive systems are to be expected, and the question arises as
to the mechanisms underlying the evolution of disordered
patterns. The effectively two-dimensional realizations of
stripe patterns in Langmuir and magnetic garnet films
offer the advantage of facilitating identification of topo-
logical (point) defects and analysis of their role in the dis-
ordering process. The results of such an investigation,
undertaken with the aid of optical polarization micros-
copy and extensive digital pattern analysis on magnetic
garnet films, will be described in the present and in the
following article, referred to as II in what follows. Brief

accounts of parts of this work have been previously given
(8,9].

The evolution of labyrinthine patterns along two mutu-
ally orthogonal trajectories has been analyzed in detail.
In II we investigate the processes mediating pattern evo-
lution in response to demagnetization at a fixed tempera-
ture from a state of saturated magnetization. In the
present article we report the results of a systematic
analysis of the mechanisms by which globally disordered
stripe domain states in ferrimagnetic garnet films evolve
from a well-defined initial state in the form of an ordered
lamellar pattern, realized at zero net magnetization. We
rely on the extensive application of algorithms for line-
pattern analysis to elucidate the essential role played by
“nucleation” and “unbinding” of defect pairs in this pro-
cess. The evolution of disorder is driven by strain, im-
posed on a given pattern by means of tuning the charac-
teristic modulation wave vector via its temperature
dependence.

B. Summary and outline

In II it is shown that field-induced pattern evolution
from an initial state of homogeneous magnetization leads
to a labyrinthine pattern via the elongation of a single (or
a few) meandering stripe(s) of the invading (‘“minority”’)
component, consisting of reverse-magnetized domain(s),
confining topological defects completely to the ‘“majori-
ty” component [9,10]. The resulting disordered state ap-
pears to represent a deep local minimum in the free ener-
gy of the stripe pattern which is reached under “adiabat-
ic” conditions of increasing strain whenever topological
constraints prevent access to the lamellar pattern
representing the state of globally minimal free energy
[9,10]. In contrast, the proliferation of defects in the
domain pattern by continued nucleation predominates in
response to rapidly increasing, magnetic-field-induced
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strain, favoring the formation of highly branched stripe
configurations. Striking ‘“comb” patterns, composed of
ordered arrays of alternating disclination dipoles, are ob-
served in this situation. These findings suggest the ex-
istence of distinct classes of disordered structures, dis-
tinguished by the relative preponderance of branching
over defect-dipole-unbinding events in the course of dis-
ordering.

In the present article we focus on the evolution of dis-
order in response to temperature-induced strain, follow-
ing a trajectory along the symmetry axis (H =0) of the
phase diagram. Our principal observations may be sum-
marized as follows.

Starting with a lamellar state, prepared at a tempera-
ture T, and magnetic field H =0, temperature-induced
strain triggers a sequence of ‘“‘smectic” instabilities, con-
sistent with a local elastic response of the pattern. The
first instability is a transverse undulation, characterized
by a single mode in the optical diffraction spectrum.
Within the framework of an effective elastic theory, dis-
cussed in Sec. IIlI, the corresponding period is set by
effective curvature and compression moduli. A continu-
ous addition of further modes of transverse distortion
transforms the “curvature walls” of the undulation pat-
tern into the ‘“discontinuity walls” characterizing chev-
ron (“‘zigzag”) patterns [11]. This accommodation of in-
creasing dilative strain culminates in the nucleation of to-
pological defect pairs in the form of disclination dipoles,
indicative of stripe or line branching. Under conditions
of slowly increasing strain, existing disclination dipoles
undergo a continuous ‘“‘unbinding” transition. This en-
tails the motion of disclinations of opposite charge, ini-
tially paired into a dipole, to uncorrelated positions and
is described in detail in II.

Disclination dipole unbinding leads to the appearance
of a globally disordered, labyrinthine state with a well-
defined local structure. This is based on a prominent
motif in the form of oblong polygonal clusters of ordered
stripe segments [9]. Labyrinthine patterns display a
characteristic density, np of disclinations defining an “in-
termediate” length scale £ ~n,, /2, related to the charac-
teristic size of segment clusters. As shown elsewhere
[10], extensive statistical analysis of numerous structural
attributes of such segment clusters reveals these to be re-
markably robust and independent of the choice of trajec-
tory in the magnetic-field -temperature phase diagram.

The remainder of this article adheres to the following
outline: Sec. II contains a brief summary of experimental
aspects which are more fully described in article II; a de-
tailed discussion of the methods of digital image and pat-
tern analysis employed here is given elsewhere [10]. In
Sec. III we review the theoretical concepts providing the
context for the discussion of our results. Section IV con-
tains the bulk of our observations pertaining to the evolu-
tion of disordered patterns from a lamellar initial state in
response to slowly varying, temperature-induced strain.
The discussion of these findings in Sec. V is largely limit-
ed to the transverse instabilities of the lamellar pattern,
arguing for the validity of a description in terms of a lo-
cal “smectic” elastic Hamiltonian. A full discussion of
the defect-mediated evolution of disorder, based on the
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entirety of pertinent results, is contained in II. This is
guided by references to concepts from the theory of
defect-mediated melting as well as to the description of
amorphous structure.

II. EXPERIMENTAL PROCEDURES

A detailed account of experimental procedures is given
in II. A brief summary of pertinent aspects is included
here for the sake of completeness.

Experiments were performed on thin, transparent films
of magnetic garnet of composition (YGdTm);(FeGa)¢O,,,
grown on single-crystal substrates of gadolinium gallium
garnet (GGG) of (111) orientation to a thickness of about
13 um. The field required to saturate the films parallel to
the surface is a factor of about 30 larger than the perpen-
dicular saturation field. The films therefore exhibit the
behavior of an Ising ferromagnet over a wide temperature
range, with alternating domains of ‘“up” and “down”
magnetization in the characteristic “stripe” and ‘bubble”
configurations.

Samples were placed into a small, temperature-
controlled ceramic furnace of cylindrical shape, equipped
on top and bottom with double-paned windows
(Meadowlark Optics, Longmont, CO). The furnace was
designed to fit into the 1-1-in.-diam bore of an air-cooled
solenoid of 2-1 in. length, capable of generating an axial
magnetic field of up to approximately 500 Oe. The entire
assembly was placed on a stage to fit a standard Zeiss
Universal microscope, equipped for polarization micros-
copy. Domains of magnetization were illuminated in
transmission with polarized light, contrast resulting from
the Faraday effect. A charge-coupled-device (CCD)
video camera with external control of gain and black lev-
el (CCD 72, Dage MTI, Michigan City, IN) served to
record images which were stored for later analysis on a
video cassette recorder (Sony VOS5800H, Sony Corp.,
Secaucus, NJ).

Diffraction spectra were recorded by imaging the depo-
larized component of the input illumination, in this case
provided by the 514-nm line of an argon-ion laser (Innova
90-5, Coherent, Palo Alto, CA), in the back focal plane of
a 10X objective of numerical aperature 0.3. This is ac-
complished by means of a Bertrand lens inserted in the
optical train of the microscope. The spectra were record-
ed with a silicon intensified target (SIT) video camera
(Cohu 5650, Cohu, San Diego, CA).

Computer control of all measurement and video-
recording functions allowed for convenient and reproduc-
ible ramping of temperatures and magnetic fields and the
capture of images as well as experimental parameters on
video tape for subsequent analysis [12].

III. THEORETICAL CONTEXT

A. Theory of modulated phases: stripe and bubble
domains in magnetic garnet films

Modulated phases appear in a number of condensed-
matter systems under a variety of circumstances. In the
smectic or analogous lamellar phases of liquid crystals
[11] and amphiphilic materials such as phospholipids [13]
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and in diblock copolymers [14], the characteristic modu-
lation period is determined by molecular dimensions. Of
particular interest in the present context are those in-
stances in which it is the competition of short-ranged at-
tractive and long-ranged repulsive interactions which
gives rise to the modulation of the order-parameter field
and the concomitant domain formation. Ferroelectrics
[2], ferrofiuidic layers [4,15], monomolecular amphiphilic
(“Langmuir”) films confined to an air-water interface
[6,7] and the ferrimagnetic garnet films considered here
[5,16] fall into this category. In all of these cases, a local,
attractive interaction giving rise to a domain-wall energy
or line tension, is balanced by a nonlocal repulsive contri-
bution to the free energy which is of electrostatic or mag-
netostatic origin. Related theories of a mean-field type,
all based on this general idea, have been advanced to ac-
count for domain formation in all the aforementioned
systems. A similar argument has also been invoked to
construct an elastic theory for the steps on vicinal sur-
faces of semiconductors; it is again based on the concept
of competing interactions, the repulsive part arising from
(generally anisotropic) strain [17].

Pertinent to the present discussion is the theoretical
analysis of domain formation formulated by Garel and
Doniach in which a thin uniaxial magnetic garnet film is
represented as a dipolar Ising ferromagnet [18].
Specifically, the theory is based on a free energy of the

type
F~ f dzr(fattr+frep) *

Here, the attractive part, reflecting the ferromagnetic ex-
change coupling between neighboring spins, determines
the energy of the domain wall separating domains of op-
posite magnetization. The repulsive component, arising
from (sample shape-dependent) demagnetizing fields, is
modeled in the form of an additional dipolar interaction
between spins. Within the framework of a Ginzburg-
Landau treatment, the theory thus takes the following
form for a system assumed to be isotropic within the
plane of the film [18]. It contains an attractive part,

_ D 2 D m2 DTC 4
fattr—zJ(Vm) +?(T_TC)T+ 12(13m
D
—,uBg;;mH ,

where a, D, J, T.~J, m, and H, respectively, represent
the (microscopic) lattice constant of the garnet, the thick-
ness of the film, the nearest-neighbor ferromagnetic ex-
change, the mean-field ferromagnetic transition tempera-
ture, the layer magnetization m =(0,0,m), oriented nor-
mal to the plane of the film, and the external (axial) mag-
netic field. Balancing f,,,, is a repulsive contribution of
the form

frp=1% [ drm(rg(r,rim(r)

where the kernel g(r,r’) incorporates dipolar interac-
tions:

g(r,r’)=('uBg)2qu%(l_e—qD)eiq(r—r’) ]

7521

The gradient-square term in f,,, represents the energy
penalty incurred by introducing a domain wall. It is
equivalent to a line tension and balances the tendency of
continued domain subdivision favored by the repulsive
term, because that process requires the proliferation of
domain walls. One therefore expects the appearance of a
new length scale, the modulation period d =27 /q, of the
intralayer magnetization which is determined by the rela-
tive strengths of domain-wall and dipolar energies.
Within a single-mode approximation, assumed to be valid
near the (mean-field) critical point and in the limit
goD >>1,implying e *°” ~0, the theory gives
173
(upg)
as? |

90~

The exponent of 1 is the consequence of relying on a
single-mode approximation and the assumption gD >>1,
the solution for the full square-wave profile yielding an
exponent of 1 [19,20]. Irrespective of this detail, the ex-
pression is entirely consistent with the qualitative argu-
ment just given: The relative strengths of dipolar
[(upg)?] and domain-wall (J) coupling terms determine
go, strong dipolar interactions favoring a small stripe
period, d,=2m/q,; note also that in the expression just
given, g, is independent of the external field H.

The field dependence of the stripe period, d =d(H),
has been determined numerically from the complete solu-
tion for the magnetostatic potential of a set of parallel
stripe domains of alternating magnetization [5,21,22]; for
convenience of reference, a graph of the solution given by
Kooy and Enz [5] is reproduced as part of Fig. 1. A scal-
ing prediction for the temperature dependence of the
modulation period, d =dy(T), T <T,, is also available
[20]. As will be discussed in greater detail elsewhere [23],
Barker and Gehring [20] combine the result [24]
d~(oD/m})""* for a square magnetization profile of
amplitude *m, with the temperature dependence
o~m}|T—T.,|'? for the energy of a domain wall of the
Ising type [25]. For temperatures T <T,, this leads to
the prediction d ~|T—T,|'/%, expected to be valid as
long as adjacent domain walls do not interact, i.e., in a re-
gime approaching (but not actually attaining) a limit
equivalent to “weak segregation,” familiar in the context
of phase-separation theory.

Note that the cited temperature dependence implies
the decrease of the stripe period with increasing tempera-
ture. This situation, somewhat counterintuitive at first
sight, arises as a result of the fact that the long-range di-
polar interaction is expected to scale with temperature in
the same way as the order parameter, my~|T—T.|?,

=3, while the domain-wall (or line-tension) term van-
ishes more rapidly, a~]T—Tc|“, u>pB. Consequently,
the dipolar repulsion predominates as the mean-field crit-
ical point is approached, favoring the proliferation of
domain walls.

Interestingly, the qualitative argument just sketched to
rationalize the predominance of dipolar interactions as
T, is approached is analogous to that advanced to postu-
late the existence of critical-point wetting [26]. Consider-
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FIG. 1. Upper panel (a): mean-field phase diagram of the di-
polar Ising ferromagnet exhibiting, respectively, the trigonally
and unidirectionally modulated “bubble” and “stripe” phases.
First-order transition lines are shown to meet in a critical point.
The drawing is adapted from Fig. 3 of Ref. [18]. Lower panel,
left-hand side (b): magnetic-field dependence of the stripe
period, d =dy(H), at fixed temperature T, also shown is the
field dependence of the respective thicknesses of majority
(d+(H)] and minority [d_(H)] phases where d=d, +d_.
The drawing is adapted from Fig. 15 of Ref. [5]. Lower panel,
right-hand side (c): temperature dependence of the stripe
period, d =dy(T), at fixed magnetic field H. The drawing is
adapted from Fig. 5 of Ref. [20].

ing, for example, a solid phase s in contact with two fluid
phases a and 3, one generally has 0,52 iaas—oﬁsl, o
denoting surface tension. As the critical point, Tc(“’B), is
approached, both ¢ ,5 and o, —0p, vanish; however, as
before, o,; vanishes more rapidly, o,z~ |T— Tc(aﬁ’l“,
than does 0 5, — 0, ~|T—T*|f. As a result, the equal-
ity 0,3=0 4, —0p, will be satisfied, and a wetting transi-
tion must therefore occur, before TC‘“B) is actually at-
tained, and one of the fluid phases, 8, say, completely
wets the solid, intruding between s and a so that
Ous=0g; T 04g

The phase diagram derived on the basis of mean-field
theory from the energy functional just discussed is repro-
duced in Fig. 1 and exhibits unidirectionally modulated
(“stripe”) and triagonally modulated (“bubble”) phases
exemplified by the patterns in Fig. 2. The first-order-
transition lines separating stripe, bubble, and homogene-
ous, that is, completely magnetized, phases are expected
to meet in a critical point [18]. The actual existence of
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this critical point remains open to question, and is an is-
sue we will discuss elsewhere in more detail [23].

Aside from continuing interest in the domain structure
of magnetic garnets motivated by potential technological
applications [27-29], a variety of problems involving to-
pological considerations have been recently pursued in
connection with stripe and bubble domains. These in-
clude the coarsening of cellular-domain networks [30,31],
closely related to the analogous phenomenon in soap
froths [32]; the study of two-dimensional melting of the
“hexagonal” bubble phase whose ordered state was in
fact found to lack long-range positional order due to ran-
dom impurities [33]; the observation of discommensura-
tions in lamellar stripe patterns formed in garnet films
whose thickness D was modulated so as to favor differing
values of the stripe period [34]; and the topological hys-
teresis experienced by stripe patterns subjected to a
variety of magnetic-field cycles [35]. The type of pattern
evolution reported by the latter group of authors is of
particular interest in the present context. Another refer-
ence point is the existence in a Langmuir film of what we
have referred to as a two-dimensional “stripe liquid” [7].

To investigate the elastic properties of a collection of
magnetic stripes, Garel and Doniach [18] model the
response of this system by a harmonic expansion in the
displacements away from the selected optimal modula-
tion period, d,=2m/q,. As detailed by Sornette [19], the
phase approximation

m(r)=mgcos{go[x —u(x,y)]}

for the x-modulated magnetization m(r), u=ul(x,y)
representing the stripe displacement field, eventually
yields, up to quadratic order in u, an effective smectic
elastic free energy of the well-known form [11,36,37]

F(K,B)= [ d*[1B(3,x)*+1K(3y)],

where K and B, respectively, represent effective curvature
and compression moduli; they are given by [19]

k=2D
a
JD
328'0—”2%‘15 )

so that the “penetration depth” [11] A=V K /B becomes
A=1q,=d,/4m. A peculiarity of this smectic free ener-
gy is the anisotropy of its elastic response to transverse
undulation modes, restored only by curvature and
characterized by relatively low excitation energy, as op-
posed to longitudinal layer compression modes of higher
energy. As a result, bending of layers is generally favored
over compression. This anisotropy also manifests itself in
anisotropic scaling of positional correlations near the
disclination-unbinding transition of two-dimensional
stripes into the isotropic phase [37].

Helfrich discovered that thermally excited undulations
of sufficient amplitude will lead to entropic repulsion be-
tween adjacent layers in lamellar arrangements [38]. This
prediction has in fact been confirmed experimentally in
ternary surfactant mixtures [39]. In contrast, magnetic
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stripes are expected to exhibit a very substantial bending
stiffness: Sornette [19] gives an estimate of K ~10°kT,,
T, denoting the mean-field ferromagnetic transition tem-
perature. Entirely consistent with this expectation is the
absence of any readily observable effects of thermal fluc-
tuations over most of the experimental phase diagram
[23,35]. A significant bending stiffness implies a macro-
scopic range of smectic positional correlations in magnet-
ic systems. Given the pertinent expression for
(m(r)m(0)) derived by Toner and Nelson (Eq. 1.8 in
Ref. 36), the transverse correlation length has the form
& =4BA/q}kT, and with A’=K/B=1¢}, one finds
&, =(dy/4m)(K /kT); given the cited estimate K ~ 103k T,
this implies & ~10’d,. For our experiments, a typical
value for d of 10 um yields correlation lengths &, > £, of
the order of millimeters. Clearly, it would be difficult to
assess the predicted exponential decay of positional
correlations for a two-dimensional smectic phase in any
magnetic film of practical size. The smectic elastic
theory of magnetic stripe domain phases advocated by
Sornette [19] accounts well for a variety of “smectic” pat-
tern instabilities as well as defect formation. We return
to it in the discussion of our results on strain-induced
stripe-phase disordering in Sec. V.

B. Topological defects, melting, and amorphous structure

A question of fundamental importance to the under-
standing of structural disorder and its evolution has sur-
rounded the role of topological defects. Long considered
essential in this context [40], topological defects are ex-
plicitly invoked in analytical theories of melting in two
dimensions which connect the appearance of free topo-
logical charges to the disruption of long-range transla-
tional and orientational correlations. A great deal of ex-
perimental and computational effort has been directed at
the elucidation of the novel hexatic phase predicted in
these theories, an orientationally ordered phase of a tri-
gonally symmetric two-dimensional condensate which
contains a finite density of free dislocations and exhibits
an exponential decay of translational, but a slower, alge-
braic decay of orientational correlations [41]. The

theoretical analysis has  been extended to
anisotropic [42] and to unidirectionally modulated,
“smectic” or “lamellar” phases in two dimensions

[36,37]. Commonly observed in thermotropic and lyo-
tropic liquid crystals and related materials [13,14] and
known to display a lower marginal dimension of d =3
and hence algebraically decaying translational correla-
tions [43], smectic phases in three dimensions have been
the subject of extensive study. In two dimensions, theory
predicts the unbinding of dislocations to occur at T =0,
implying the existence of a finite density of free disloca-
tions at all finite temperatures (7 >0) [18]. Given the
twofold symmetry of the unidirectionally modulated
state, one expects the formation of a two-dimensional
“nematic” phase [37,44] characterized, in analogy to the
hexatic phase, by the exponential decay of translational
and algebraic decay of orientational correlations.
Specifically, this phase is envisaged to be populated by a

7523

density of free dislocations, separated by a characteristic
distance £, ~np /2. On length scales less than £, smec-
tic order is realized; the ordered regions, or “cybotactic
clusters,” attain a characteristic size and eccentricity,
such that L~§‘l‘)/3, W~§§)/3, and A4 ~§%); L, W, and A4,
respectively, denote cluster length, width, and area. On
length scales exceeding &p, nematic ordering of cybotac-
tic clusters obtains. The appearance of the isotropic
liquid is thought to be mediated by the unbinding of dis-
clination pairs [36]. Attempts to investigate the melting
of two-dimensional stripe phases experimentally have
been few, partly as a consequence of the limited number
of systems which are suitable for requisite measurements
and which exhibit such phases and their melting transi-
tion [45-47].

Topological defects also represent a prominent feature
of amorphous structures. It has been suggested that their
ubiquitous appearance is a consequence of topological
“frustration.” This arises when local chemical ordering
generates a packing arrangement in the form of a regular
polyhedron, such as the tetrahedron favored in metallic
systems, which does not permit the tesselation of three-
dimensional Euclidean space and is therefore inconsistent
with long-range translational ordering [48,49]. This frus-
tration, generic to amorphous structures, may be alleviat-
ed by permitting the embedding space to curve, thereby
enabling the formation of periodic arrangements in ac-
cord with local packing requirements. In this picture,
networks of disclination lines appear in the process of
mapping the periodic structure constructed in an ap-
propriately chosen curved space into Euclidean space
[48]. Alternatively, the defect lines may be viewed as a
natural consequence of the curvature mismatch between
the curved space permitting tesselation and ordinary Eu-
clidean (flat) space [49].

To construct explicit structural models for amorphous
structures, one of two descriptive frameworks is frequent-
ly invoked. In the case of covalent glasses, preference is
normally given to the continuous-random-network
(CRN) picture, while a random-close-packing (RCP) rep-
resentation is favored in connection with elemental (me-
tallic) glasses. Given that a random-packing representa-
tion generates an associated random network via Voronoi
tesselation, these two modes of description are in fact
complementary in this sense [50]. The network represen-
tation reveals a characteristic feature of amorphous
structures in the form of rings (or cells) containing an odd
number of bonds (or faces). The disclination (or “odd”)
lines associated with odd-numbered rings figures prom-
inently in a recent attempt to develop a general theoreti-
cal treatment of glasses, adopting the point of view that
“odd” lines in fact constitute a central element of random
matter [51,52].

A universal structural attribute of glasses manifests it-
self in diffraction measurements on a diverse variety of
such materials in the form of a prominent peak in the
structure factor, S(q), at low values of the momentum
transfer, g. This feature indicates that glasses, while by
definition failing to achieve long-range ordering, never-
theless exhibit ordering on intermediate length scales
exceeding the first few nearest-neighbor distances [53,54].
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IV. EVOLUTION OF DISORDER IN LAMELLAR
STRIPE DOMAIN PATTERNS: DISORDERING
IN RESPONSE TO TEMPERATURE-INDUCED STRAIN

In this section we investigate the disordering of an ini-
tial state displaying well-defined smectic or lamellar or-
dering, exemplified by Fig. 2. In all experiments analyzed
here, as well as in II, disordering is driven by externally
imposed strain. While this is controlled via the tempera-
ture [20,23] and, as discussed in II, via the magnetic-field
[5] dependence of the characteristic modulation wave
vector, g =q(H,T), described in Sec. I B, it is important
to note that, over the range of parameters relevant to the
present report, temperature is otherwise not a relevant
variable. That is, no fluctuation effects are in evidence, in
contrast to what is observed in the “critical” region [23]
and at distinct variance with the fluctuation-dominated
behavior of the stripe phase currently under study in cer-
tain Langmuir films [7].

In particular, we investigate in what follows the disor-
dering process along the H =0 symmetry axis of the
mean-field phase diagram, sketched in Fig. 1. By symme-
try, the net magnetization

mE(MT—Ml)/(MT—i-Ml)

"L

M %)‘ &)

FIG. 2. Experimental examples of (spontaneously formed)
“stripe” and “bubble” phases, recorded in a ferrimagnetic gar-
net film of the type investigated here and described in Sec. II of
the text. Field and temperature settings were H =0 Oe,
T~0.6T. and H=5 Oe, T~0.9T,, respectively, for stripe and
bubble patterns; 7,~=192°C. The horizontal dimension of the
field of view is 570 um in both cases.

M. SEUL AND R. WOLFE 46

vanishes on this line: m =0. Invoking digital line-
pattern analysis, we examine in detail the formation and
eventual unbinding of disclination dipoles, the process
mediating the formation of globally disordered “la-
byrinthine” patterns. An abbreviated account of some of
the results to be presented here has been given previously
[8].
A. Transverse (smectic) instabilities

Along the H =0 axis, the modulation wave vector
q =qyu—o(T), and hence the stripe period d =dy_(T),
may be tuned via its temperature dependence, predicted
to have the form shown in Fig. 1(c). We have investigat-
ed this dependence experimentally and find it to be in
qualitative accord with the simple scaling prediction

dy_oT)~|T—T,|'7*,

introduced in Sec. IB, although important deviations
from this behavior have been observed in the vicinity of
the “critical” point [23]. For the present purpose it
suffices to realize that d does indeed exhibit a slow de-
crease with increasing temperature. It follows that the
pattern may be expanded and compressed by moving
along the H =0 axis, i.e., by, respectively, lowering or
raising the temperature.

As pointed out by Molho, Porteseil, and Souche [34], a
well-ordered lamellar pattern may be generated by cool-
ing a garnet film from the “paramagnetic” state at T > T,
through the phase transition in zero (normal) field, H =0.
Unless special precautions are taken, small (S Oe) in-
tralayer fields H, will be present which break the azimu-
thal symmetry and aid alignment of the lamellar phase, a
point discussed more thoroughly in the appropriate con-
text of addressing the system’s critical behavior [23].

Given the dependence of the stripe period d, the stripe
pattern continues to expand or ‘“‘coarsen,” as T is
lowered, necessitating the adjustment of the number N,
of lamellae present in the film. In a sample of linear di-
mension Ly=N;d, the ‘“equilibrium”  density
n; =N; /L, of lamellae is trivially seen to vary as
n,~d .

The process by which the number of lamellae is de-
creased to accommodate the pattern coarsening induced
by cooling along the H =0 axis is that of dislocation nu-
cleation and climb, facilitating the ‘“‘ejection” of lines
from the sample; it is depicted in Fig. 3. The force acting
on the free stripe end and thus facilitating defect motion
results from the strain-induced curvature of lines adja-
cent to the defect; this Peach-Koehler force [11] has been
recently analyzed in the present context by Sornette [19].
Although no quantitative study has been made, the pro-
cess is closely related to the mechanism of period adjust-
ment of rolls [55] in dynamical systems exhibiting a
Rayleigh-Bénard instability. Bodenschatz (personal com-
munication) has pointed out that, as with dynamical sys-
tems locked into a unidirectionally modulated (“roll”)
state, the lamellar magnetic pattern may also exhibit an
Eckhaus instability [55] manifesting itself in the form of a
longitudinal modulation of long wavelength, A, >>d, and
corresponding satellite peaks at ¢ +Ag about the harmon-
ics of
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FIG. 3. Snapshot of dislocation climb, observed in the course
of cooling a lamellar stripe pattern along the H =0 axis of the
phase diagram of Fig. 1: This process of “ejecting” stripes en-
ables the pattern to accommodate the increase in the stripe
period induced by lowering the temperature, as discussed in Sec.
IV A of the text. The horizontal dimension of the field of view
is 930 pm; the stripe period is 32 pm.

au—ol T=2m/dy_|(T) ,

where Ag=2m/A,. While this point may warrant closer
attention, our existing Fourier spectra do not contain
pertinent satellites, but may be resolution limited.

The ejection of lines is mediated by dislocation climb
and thus involves domain-wall motion. It is therefore
sensitive to domain-wall pinning by impurities, a process
observed in samples with surface defects. In this situa-
tion, the application of an ac magnetic field H,. of small
amplitude can be useful, particularly at lower tempera-
ture. Importantly, the process of line ejection just de-
scribed permits the system to remain in the lamellar state
during coarsening along the H =0 axis between T=T,
(=~192°C) and room temperature. It is readily apparent
that there will be a sequence of unstrained ‘“‘commensu-
rate” states in which the actual number of lamellae exact-
ly matches that dictated by the condition N, -d ~L,.
Deviation of d from the corresponding value leads to the
accumulation of strain and the eventual formation of de-
fects and elimination of additional lamellae.

The coarsening process may be stopped at any temper-
ature T, along the H =0 axis. We now proceed to exam-
ine the response to temperature-induced compression of
the lamellar state, prepared at T, and H =0 and com-
posed of a number N; ~L/dy —o(T,) of lines (or lamel-
lae). The argument N; ~d ~! implies that, as d decreases
with increasing 7T, N; must be increased, necessitating
the nucleation and “injection” of additional lines if the
system is to remain in the lamellar state. However, the
requisite process of nucleating new lamellae—that is, the
converse of the generation of edge dislocations during
coarsening—is generally not observed. Consequently,
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the temperature-mediated reduction of the stripe period,
coupled with the constraint m =0, implies that the lamel-
lae pattern accumulates dilative strain. To accommodate
the required decrease in the stripe period, d, the system
undergoes an undulation (“buckling”) instability when a
threshold é=(d,—d)/d, in dilative strain is reached,
dy=d(T,) denoting the period of the lamellar initial

H)’ffSS ( j e
L

.

FIG. 4. Undulation instability of lamellar stripe pattern; the
instability is induced by dilative strain, generated by heating
along the H =0 axis of the phase diagram of Fig. 1(a). The
lamellar initial state is displayed in the top panel. The transient
depicted in the middle panel suggests that amplitude growth
(along each undulating stripe) is continuous. The fully evolved
undulation is shown in the bottom panel. The original images
were processed by successive application of low-pass and high-
pass filters. For clarity the vertical panel on the right-hand side
of each figure depicts a twofold magnified view of the portion
delineated by the rectangular box in the original. The horizon-
tal dimension of the original field of view is 1.2 mm.
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state. The inspection of transient states, obtained in the
presence of a small lateral temperature and hence strain
gradient, and illustrated in Fig. 4, suggests amplitude
growth to be continuous, as expected on the basis of a
linear stability analysis of the smectic free energy func-
tional introduced in Sec. IIT A [19]. This analysis follows
that first given in the context of the completely analo-
gous, mechanically induced undulation instability of a

|

i
0 120 240
g av)

(three-dimensional) smectic- A liquid crystal of N lamel-
lae, confined between two glass plates [56,57]. This
analysis also yields an expression for the new length scale
introduced by_the instability, namely, the transverse
period, kl:\/kLo, where A=V'K /B is the penetration
depth of Sec. IIT A.

From Fourier spectra of the type shown in Fig. 5, we
find g, /g, =1 for the ratio of transverse and longitudinal

FIG. 5. Optical diffraction patterns characterizing transverse instability of lamellar pattern, the resulting undulation and chevron
patterns, and the appearance of disclination dipoles and their subsequent unbinding (see further discussion in the text). The limiting
ratio q,/q,=q,/q,=0.71, realized in the chevron pattern giving rise to the spectrum in D, implies a substantial strain,
e=(dy—d)/dy=1—1/[1+(q,/q,)*]'"/*=0.18. Insets contain resolved recordings of the central portion of the pattern in (b)—(f), as
well as longitudinal (a) and transverse scans (b)—(d), the latter centered at the (10) position.
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components of the modulation wave vector, implying
A ~2X5Xd,, where dq=2m/q,; hence,

V/'AL,=V/(dy/47) (N dy)=1/N /4wdy~10d,

and N, ~1200—that is, the instability involves the col-
lective buckling of several hundred lamellae, occupying
macroscopic portions of sample. The diffraction pattern
in Fig. 5(b) reveals the instability to involve a single
mode, as suggested by theory [19].

Further compression, inducing additional dilative
strain, transforms the essentially sinusoidal undulation
continuously into a chevron or ‘“zigzag” pattern, shown
in the top of panel Fig. 6. That is, the wide “curvature
walls” of the undulation pattern contract into narrow
“discontinuity walls” [11,19] characterized by a distinct
tip in which the curvature energy is now concentrated.
Optical diffraction patterns recorded in the course of this
evolution and displayed in Figs. 5(c) and 5(d) reveal the
appearance of higher transverse harmonics and the even-
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FIG. 6. Chevron pattern (top) and emerging disclination di-
pole pairs (bottom). Right-pointing cusps in the chevron pat-
tern are connected by a thin line to guide the eye. The
highlighted portion of the bottom photograph contains the me-
dial axis transform [10], or “skeleton,” of the white component
and illustrates the appearance of rhombohedral tiles with
defect-decorated vertices, as discussed in the text [(see also Fig.
8(d)]. The original images were processed by successive applica-
tion of low-pass and high-pass filters. The horizontal dimension
of the field of view is 1.4 mm.
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tual disappearance of intensity in the longitudinal har-
monics of the original lamellar pattern; the final state is
characterized by a set of four off-axis spots with
q,/90==0.71 and thus an angle &=(7—2¢) subtended by
the discontinuity walls where

¢=tan"'(q,/q)~35",

as reported previously [8].

As the modulation period continues to decrease with
increasing temperature, the transverse period of the chev-
ron also undergoes a period adjustment. As illustrated in
Fig. 7, edge dislocations, also referred to as “metadisloca-
tions” [19], appear in the chevron superstructure. Their
expulsion via climb can occasionally be observed: this
process facilitates period adjustment in the chevron su-
perstructure which is possible only in discrete steps, the
stepsize being set by the prevailing transverse period.
That is, the expulsion of edge dislocations in the chevron
pattern serves to decrease the density of ‘“crests,” and
this adjustment essentially leads to local “period dou-
bling.” Remarkably, the transverse modulation wave-
length of the chevron thus tends to increase with decreas-
ing modulation period d of the underlying stripe phase, in
contrast to what would be expected from the dependence

~d derived from linear stability analysis. This obser-
vation is currently not accounted for by theory.

B. Nucleation and unbinding of topological defects
At a threshold of dilative strain,
é=(dy—d)/dy=1—1/[1+(q,/9,)*]"*20.2,

the chevron pattern yields via nucleation of disclination
dipoles emerging from the tips of the pattern. This pro-
cess has been referred to as elementary pinch (“pince-
ment”) in the context of classifying fan-shaped textures in
cholesteric mesophases [58,59]. As the lower panel of
Fig. 6 as well as Fig. 8(d) demonstrate, dipoles are aligned
in the direction of the ridges formed by discontinuity
walls in the chevron pattern, that is, transverse to that of
the original lamellar pattern. Furthermore, as discussed
in detail in a related article [10], topological defects are
essentially equally frequently formed in both bright and
dark components of the patterns, as is apparent in Fig.
8(d). The appearance of disclinations in the chevron gen-
erates a new (approximate) local rotation symmetry, giv-
ing rise to a pseudosixfold diffraction pattern, as shown in
Fig. 5(e). The diffraction spectra reveal that the original
lamellar pattern of period d,=27/q, accommodates
compression, in this instance temperature induced, by a
transverse elastic response. The “buckling” of the pat-
tern is seen to correspond to the addition of a transverse
component ¢, to the modulation wave vector so that
q=(q,q,); in particular, the longitudinal component q
remains unchanged from the value attained at the onset
of the transverse instability: q,;=q,. That is, the distorted
patterns realize the required reduction in the stripe
period d, measured in the direction of the local stripe
normal:

d=2m/(qg5+q%)"?<d,
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FIG. 7. Edge (“meta”) dislocations in the array of discontinuity walls defining a chevron pattern of the type shown in the top panel
of Fig. 6. These defects appear to mediate the period adjustment in the chevron pattern in a manner analogous to the process dis-
cussed in connection with Fig. 3. The horizontal dimension of each field of view is approximately 690 um.

Y
)

/

-

FIG. 8. Transverse (“smectic”) instability of lamellar stripe pattern and nucleation of disclination dipoles, mediated by
temperature-induced dilative strain. This figure represents a summary of the individual steps illustrated in Figs. 4 and 6. For clarity,
only the medial axis transform [10] of the white component of the original image is shown in (b) (lower left), (c) (upper right), and (d)
(lower right). In (d) topological defects in the form of branches and end points are marked by /A, A, and O, @, respectively. The
horizontal dimension of the field of view of each panel is 1.1 mm.
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The sequence of smectic instabilities leading to the for-
mation of topological defects is summarized in Fig. 8.
Two distinct morphological motifs mark the defect-
decorated chevron pattern in the lower panel of Fig. 6
and in Fig. 8(d), reflecting (imperfect) two-dimensionally
periodic arrangements of disclination dipoles of differing
symmetry. The first of these is visible in major portions
of Fig. 6, which are occupied by a two-dimensional tiling
of rhombohedral plaquettes. The plaquettes’ vertices are
marked by point dipoles of disclinations, as shown in Fig.
9: it should be noted in this context that a tightly bound
pair of disclination charges is in fact equivalent to a free
dislocation [37,60]. The configuration is reminiscent of
that of free disclination charges marking the vertices of
“quadrilaterals” or Lehmann clusters [see Fig. 9(b)], ob-
served, for example, in cholesteric mesophases [59] and in
the nematic phase of liquid crystalline polymers [61].
Quadrilaterals generally exist in isolation and display a
shear instability leading to the pairwise annihilation of
the decorating topological charges. This is in contrast to
the periodic rhombohedral tiling observed here.

The formation of plaquettes involves the emergence of
a new length scale set by the spacing of dipole pairs along
the ridges of the parent chevron pattern. This length
scale is identical to one lattice parameter a of each of the
two interpenetrating rectangular sublattices occupied by
point disclination dipoles of opposite orientation in what
is equivalent to antiferromagnetic ordering on a centered
rectangular lattice, as indicated in Figs. 9(c) and 9(d).
The second lattice parameter b is identical to A,. In the
symmetric geometry illustrated in Fig. 9(c), the local
stripe segment orientation within a plaquette is orthogo-
nal to the plaquette’s long diagonal of length L, and one
sees that 2 asin(&/2)=L. The second dimension, i.e.,
the plaquette’s width W, is set by the dimensions of the
parent chevron pattern, as may be ascertained from Fig.
9(c): W=A,/2sin(&/2). Note that requiring the identi-
ty of the lattice parameter a and the modulus of the dis-
placement vector R,, connecting the two rectangular
sublattices decorated by defects and sketched in Fig. 9(c),
in fact implies strictly threefold symmetry and hence
&@=120°, a condition we find to be only approximately
met: As pointed out above, 110°S& < 115°, as sketched
in Fig. 9(d): Figure 8(d) suggests that in this case a ~A),
implying interpenetrating square sublattices.

The second motif realized in the defect-decorated chev-
ron pattern of Fig. 6 is on more prominent display in Fig.
10. Linear arrays, or chains, of interdigitated disclination
dipoles constitute the most striking structural feature in
the arrangement, appearing as ‘“zippered” cracks along
which the original chevron pattern separates. It is ap-
parent from the figure that these chains (or “cracks”) are
themselves ordered, thus forming a second two-
dimensionally periodic defect pattern. Its symmetry,
however, is distinct from and in fact lower than that of
the earlier rhombohedral tiling: Rather than a centered
rectangular, we now encounter an (essentially) rectangu-
lar unit cell, as sketched in Fig. 11. In significant con-
trast to the previous morphology based on point dipoles,
disclination charges in a linear chain have already
separated by a finite amount, forcing local alignment of
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|Rg| = a, &=mn-2¢<120°

FIG. 9. Geometrical aspects of rhombohedral plaquettes, til-
ing stripe patterns which contain point dipoles of disclinations;
this type of pattern is exemplified by Figs. 6 and 8. (a) shows the
rhombohedral tile or plaquette: The relative orientations of
stripes and disclination dipoles are indicated; dipoles are sym-
bolized by a pair of branch and points: “A-0.” For compar-
ison, a Lehman cluster [61], or quadrilateral [58,59] decorated
by disclinations, is sketched in (b). (c) and (d) illustrate the in-
terpenetrating sublattices of disclination dipoles, characterized
by a lattice parameter a and displacement vector R, as well as
the actual tiling; the quantities W, L, a, and A, as well as the
angles ¢ and &, pertinent to the discussion in the text, are also
indicated. (c) illustrates the symmetric case, Ro=a, @=120% (d)
the generally encountered situation in which & < 120°.

the underlying stripe pattern with the linear segments
connecting oppositely charged disclinations: As a result,
a new local orientation emerges which is transverse to
that of the original lamellar pattern of modulation wave
vector g=(q,,0).

As we will discuss in greater detail in II, the elongation
of disclination dipoles represents a mechanism for strain
relief which competes with the nucleation of additional
defects, a process which is similarly strain induced. This
is apparent in Figs. 6, 8(d), and 10, where linear chains of
disclination dipoles are separated from one another by
bands of intact chevron pattern of a characteristic width
of @~2a, where a, as defined in Fig. 9(c), denotes the
spacing of point disclination dipoles along ridges of the
parent chevron pattern. This implies that the density of
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FIG. 10. Linear arrays of interdigitated disclination dipoles, generated from a chevron pattern such as that in the top panel of Fig.
6 or in Fig. 8(c). (a) (upper left) depicts the filtered original, (b) (lower left) the medial axis transform [10] of the white component of
(a). (c) (upper right) contains the output of an algorithm designed to identify topological defects, notably —% and +% disclinations,
in the pattern of (b): these are marked by “A,” “A,” and “0,” “@®,” respectively, open and solid symbols, referring, respectively, to
the medial axis transforms of the white and black components of (a). Also displayed is the straight connecting line between opposite
disclination charges paired into dipoles. (d) (lower right) represents the superposition of (c) and the original pattern, the latter treated
by successive application of low-pass and dilation filters: The different gray shadings render visible regions of ordered, parallel stripe
segments, further discussed in connection with Fig. 11. The horizontal dimension of each field of view is 905 um.

defect pairs in the case of the rhombohedral plaquette til-
ing is significantly higher than in the case of the linear
chain array where the pattern is tiled with essentially rec-
tangular plaquettes. Estimating the respective areas of
the quadrilateral primitive patches, we have, referring to
Fig. 9(c), A=LW=al ~V3a? for the (symmetric)
rhombus and, referring to Fig. 11, 4 =4 2a ~2V'3a? for
the rectangle, suggesting defect densities to differ by a
factor of approximately 2.

The balance between the two strain relief channels just
introduced appears to be set by the rate of approaching
the yield threshold of the chevron pattern, and by possi-
ble local variations in the strain distribution. In general,
linear arrays form more easily and, once formed,
represent the more stable morphology. In either case, a
further increase in imposed strain leads to the ‘“unbind-
ing” of disclination pairs and the emergence of the glo-

bally disordered labyrinthine state. The full description
of this process will be given in II. Intermediate states of
disclination dipole “unbinding” in response to
temperature-induced dilative strain are depicted in Fig.
12. Also shown is the final labyrinthine state, referred to
as “branched” in companion articles focusing on its de-
tailed structural analysis [9,10]. As in the precursor
state, represented by the defect-decorated chevron pat-
tern discussed above in connection with Figs. 8—11, dis-
clinations are symmetrically distributed between bright
and dark components of the labyrinthine pattern.

V. DISCUSSION

In Sec. IV we have addressed the evolution of disor-
dered stripe domain states in ferrimagnetic garnet films,
following an experimental trajectory originating in a
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FIG. 11. Geometrical aspects of quadrilateral, nearly rect-
angular plaquettes, tiling stripe patterns which contain elongat-
ed declination dipoles; this type of pattern is exemplified by por-
tions of Fig. 8(d) and particularly by Fig. 10. The quantities @
and A, pertinent to the discussion in the text, are also indicated.
Note the appearance of a new motif in the form of staggered,
short stripes parallel to the elongated disclination dipoles,
“/A\-0.” The actual tiling is illustrated in the lower sketch.

FIG. 12. Snapshots depicting intermediate states in the course of disclination dipole unbinding in response to temperature-induced
dilative strain, leading to the evolution of a “branched” labyrinthine pattern; H =0 Oe. The top panels show binarized patterns: For
the pattern on the left: 77=134°C (=0.7T,), stripe period, d =13 um,; for the pattern on the right: T=160°C (~0.87.),d =11 um.
The bottom panels exhibit disclinations of opposite sign (“A,” “A”: —1;“0,” “@”: + %) as well as their connecting tethers [9,10],
as extracted from the respective original patterns on top; open and solid symbols mark, respectively, disclinations in the white and
dark components. The horizontal dimension of each field of view is 570 um.
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lamellar initial state, characterized by a given
d=d(T,)=d, and m =0, and coinciding with the H =0
symmetry axis in the mean-field phase diagram. This tra-
jectory is traversed by tuning the modulation period
d=d(H,T) of the pattern via its temperature depen-
dence, as discussed in Sec. III. For the garnets studied
here to maintain the ordered lamellar stripe configuration
of globally minimal free energy requires the equivalent
adjustment in the number of lamellae. That is, the
‘“correct” number of lamellae N; must satisfy the condi-
tion N; ~L,/d, L, denoting the linear sample dimen-
sion. While such a process in the form of “ejection” of
lamellae is in fact observed when increasing the period, as
illustrated in Fig. 3, the analogous “injection” of addi-
tional lamellae, requiring a suitable nucleation event, is
suppressed. That is, downward and upward period ad-
justments are mediated by completely different processes.
The requisite period reduction implied by raising temper-
ature along the H =0 symmetry axis must proceed under
the constraint of maintaining constant the number of
lamellae present, while simultaneously filling the avail-
able area, A,~L} with a stripe pattern of minimal free
energy which exhibits the required period d as well as the
correct stripe width, realizing the correct magnetization
m. The resulting disordered stripe patterns thus
represent the solution to a problem of constrained opti-
mization. Equivalently, they correspond to the minimi-
zation of a Helmholtz rather than a Gibbs free energy.
The initial smectic elastic response to the accumulation
of dilative strain leads to undulation and chevron pat-
terns, exhibiting curvature and discontinuity walls, re-
spectively. The primary transverse instability generating
the undulation pattern appears to conform to the picture
suggested by the effective elastic theory described in Sec.
III [19]. Within the framework of this local theory, the
instability is equivalent to that of a smectic- 4 liquid crys-
tal of N layers confined between parallel glass plates and
subjected to mechanical stress [56,57]. This strongly sug-
gests that, while nonlocal interactions are crucial in set-
ting the modulation period for given magnetic field and
temperature, the response to changes in this optimal
value is well described by a local elastic theory. The
strong resistance to longitudinal layer compression favors
bending, characterized by a transverse period A, a situa-
tion analogous to that encountered with liquid crystals
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and quite probably with related materials such as diblock
copolymers in their lamellar state. Optical diffraction
demonstrates the continuous evolution of the undulation
into the chevron pattern. This evolution results in the
concentration of curvature energy in discontinuity walls.
This evolution, particularly the period doubling observed
within the chevron superstructure, likely representing a
highly nonlinear elastic response, is presently not fully
accounted for by theory, but may have more general
significance. For example, the electron-microscopic in-
vestigation of “‘ripple” phases in certain lamellar lyotrop-
ic liquid crystals reveals the frequent coexistence of two
ripple periods related by a factor of approximately 2 [62].
Significant strain, arising from the downward adjustment
of the lamellar repeat distance, or layer period, required
in response to heating, may accumulate, in a manner re-
lated to what has been presented here.

The chevron pattern eventually becomes unstable with
respect to the formation of disclination dipoles, oriented
perpendicular to the original lamellar pattern: This pro-
cess of nucleating additional lamellae by way of line
branching (‘“‘pincements” [59]) serves as a mechanism of
strain relief. The emerging “tethers” connect disclination
charges of opposite sign. The subsequent topologically
constrained disclination dipole unbinding also constitutes
a form of stripe elongation and we show in II that this
observation suggests a simple scaling argument describ-
ing the dependence of the contour length of the injected
segments on dilative strain.

We have characterized the process of disordering by
focusing explicitly on topological point defects, notably
disclinations. A full discussion of this topic is more suit-
ably undertaken in II on the basis of an additional set of
data on the evolution of labyrinthine patterns in response
to magnetic-field-induced strain.
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FIG. 10. Linear arrays of interdigitated disclination dipoles, generated from a chevron pattern such as that in the top panel of Fig.
6 or in Fig. 8(c). (a) (upper left) depicts the filtered original, (b) (lower left) the medial axis transform [10] of the white component of
(a). (c) (upper right) contains the output of an algorithm designed to identify topological defects, notably —% and +% disclinations,
in the pattern of (b): these are marked by “A,” “A,” and “0,” “‘®,” respectively, open and solid symbols, referring, respectively, to
the medial axis transforms of the white and black components of (a). Also displayed is the straight connecting line between opposite
disclination charges paired into dipoles. (d) (lower right) represents the superposition of (c) and the original pattern, the latter treated
by successive application of low-pass and dilation filters: The different gray shadings render visible regions of ordered, parallel stripe
segments, further discussed in connection with Fig. 11. The horizontal dimension of each field of view is 905 um.
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FIG. 12. Snapshots depicting intermediate states in the course of disclination dipole unbinding in response to temperature-induced
dilative strain, leading to the evolution of a “branched” labyrinthine pattern; H =0 Oe. The top panels show binarized patterns: For
the pattern on the left: T=134°C (=0.7T,), stripe period, d = 13 um; for the pattern on the right: T=160°C (=0.87,),d=11 um.
The bottom panels exhibit disclinations of opposite sign (“A,” “A™: — %; “o,” e + -;-) as well as their connecting tethers [9,10],
as extracted from the respective original patterns on top; open and solid symbols mark, respectively, disclinations in the white and
dark components. The horizontal dimension of each field of view is 570 um.
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FIG. 2. Experimental examples of (spontaneously formed)

r anadenssnsnsacnend

“stripe™ and “bubble” phases, recorded in a ferrimagnetic gar-
net film of the type investigated here and described in Sec. II of

the text.

0 Oe,

0.9T,, respectively, for stripe and

192°C. The horizontal dimension of the

field of view is 570 um in both cases.

Field and temperature settings were H

==

T~0.6T. and H=5Oe, T

bubble patterns; T,

~
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FIG. 3. Snapshot of dislocation climb, observed in the course
of cooling a lamellar stripe pattern along the H =0 axis of the
phase diagram of Fig. 1: This process of “ejecting” stripes en-
ables the pattern to accommodate the increase in the stripe
period induced by lowering the temperature, as discussed in Sec.
IV A of the text. The horizontal dimension of the field of view
is 930 um; the stripe period is 32 pm.
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FIG. 4. Undulation instability of lamellar stripe pattern; the
instability is induced by dilative strain, generated by heating
along the H =0 axis of the phase diagram of Fig. 1(a). The
lamellar initial state is displayed in the top panel. The transient
depicted in the middle panel suggests that amplitude growth
(along each undulating stripe) is continuous. The fully evolved
undulation is shown in the bottom panel. The original images
were processed by successive application of low-pass and high-
pass filters. For clarity the vertical panel on the right-hand side
of each figure depicts a twofold magnified view of the portion
delineated by the rectangular box in the original. The horizon-
tal dimension of the original field of view is 1.2 mm.



FIG. 5. Optical diffraction patterns characterizing transverse instability of lamellar pattern, the resulting undulation and chevron
patterns, and the appearance of disclination dipoles and their subsequent unbinding (see further discussion in the text). The limiting
ratio ¢,/9,=q,/q9,=0.71, realized in the chevron pattern giving rise to the spectrum in D, implies a substantial strain,
e=(dy—d)/dy= 1—1/[1+(q,/q,)*]'/*=0.18. Insets contain resolved recordings of the central portion of the pattern in (b)-(f), as
well as longitudinal (a) and transverse scans (b)-(d), the latter centered at the (10) position.
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FIG. 6. Chevron pattern (to p) and eme g ng disclination di-
pole pairs (b tto m) Right-pointing cusps in the chevron pat-
tern are connected by a thin line to g uide the eye. The
highlighted portion of the bottom photograph contains the me-
dial axis transform [10], or ‘“‘skeleton,” of the white compon
and illustrates the appearance f h mbohedral tiles wth
defect-decorated vertices, as discu n the text [( also Fig.
8(d)]. The original images were pro d by ssive apphca-

tion of low-pass and high-pass ﬁlt Th hor: t 1 dimension
of the field of view is 1.4 mm.
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FIG. 7. Edge (“meta”) dislocations in the array of discontinuity walls defini g a chevron p atter: of the typ how the top panel
of Fig. 6. These defects appear to medi at th e period d_] stment in the h n patter a manner analogous to the process dis-
cussed in connection with Fig. 3. The horizontal dime of each field of view is appr: oximately 690 pm.




FIG. 8. Transverse (“smectic”) instability of lamellar stripe pattern and nucleation of disclination dipoles, mediated by
temperature-induced dilative strain. This figure represents a summary of the individual steps illustrated in Figs. 4 and 6. For clarity,
only the medial axis transform [10] of the white component of the original image is shown in (b) (lower left), (c) (upper right), and (d)
(lower right). In (d) topological defects in the form of branches and end points are marked by /A, A, and O, @, respectively. The
horizontal dimension of the field of view of each panel is 1.1 mm.



