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We analyze the behavior of a damped quantum harmonic oscillator immersed in a heat bath with
a nonlinear coupling. For this purpose, we construct a generalized master equation (GME) for the
reduced density of the oscillator. We specialize the results for a quadratic coupling in the presence of
a bosonic reservoir and an Ohmic dissipation model, analyzing the evolution equation for the mean
value of the oscillator coordinate. In the asymptotic case we obtain a gain-loss master equation
whose transition rates are polynomials in the number of quanta. No explicit solutions other than the
equilibrium one can be written, since the standard methods do not apply. The equilibrium solution
is investigated and the eigenvalues of the corresponding spectral problem are numerically computed
to study the effect of the nonlinearity on the evolution of the system. By means of the Wigner
transformation of the GME, we extract a third-order partial derivative equation that represents the
semiclassical evolution of the damped oscillator. In the classical limit this is a nonlinear Fokker-
Planck equation.

PACS number(s): 05.40.+j, 05.70.Ln, 03.65.Sq

I. INTRODUCTION

In several fields of physics, mostly related to quan-
tum optics, condensed matter, or nuclear theory, one en-
counters harmonic motion perturbed by some stochas-
tic interaction with a macroscopic object. This situa-
tion typically corresponds to the residual coupling be-
tween one or various normal modes of a quantum fiuid
or many-body system to the remaining, i.e. , unresolved,
microscopic degrees of freedom. The usual approaches
to formulate this problem in the frame of statistical rne-

chanics resort to either the quantum Langevin equation
[1] or to a reduction of the Liouville —von Neumann de-
scription of quantum mechanics [2, 3] that gives rise to
irreversible evolution ruled by generalized master equa-
tions (GME's) [4—6] as illustrated in a series of previous
works for different selections of the deterministic cou-
pling to a heat reservoir. In any case, the relaxation dy-
namics is that of the so-called quantal Brownian motion
[3, 7, 8] and one can assert that the damped evolution
of a harmonic oscillator immersed into an arbitrary heat
bath is fairly well understood insofar as the Markovian
limit is concerned. The non-Markovian case has been in-
vestigated as well [9—12] and for various models of the
thermal environment one can set a simple rule to esti-
mate the characteristic decay time. The common feature
to the above-mentioned and other authors' models [1,4,
13—16] of damped quantal harmonic motion —the latter
concerning oscillator reservoirs —resides in the structure
of the dissipative coupling which is, in every case, a lin-
ear function of the decaying coordinate and/or momen-
tum. This choice makes room only for nearest-neighbor
transitions between states in the oscillator spectrum, and
the asymptotic master equation that describes the time

evolution of the level occupation probabilities is the well-

known one-step chain [17] whose spectral problem can
be analytically solved in the Markovian regime [9, 17].
We believe then it is of interest to investigate the kind
of lifetime spectrum associated with multiphonon transi-
tions, in other words, with nonlinear interactions between
the quantum harmonic coordinates and its macroscopic
environment. A typical example that arises from quan-
tum optics is the model of two-photon absorption from a
single-mode field inside a cavity [18, 19].

For the above-stated purpose, in Sec. II we devise a
particular model that generalizes the previous ones for

nonlinear couplings between the system and the reser-
voir. We construct the corresponding generalized master
equation for the reduced density matrix and obtain the
law of motion of the harmonic coordinate. In Sec. III we

specialize the above results for a quadratic coupling and
analyze the Markovian limit and the Ohmic dissipation
model, concentrating most of the discussion on the evo-

lution of averaged observables. In Sec. IV we obtain the
gain-loss master equation that emerges in the asymptotic
limit and discuss its solutions. The semiclassical version

of the model is developed in Sec. V using the Wigner
transformation. A summary of our results is given in

Sec. VI.

II. GENERALIZED QUANTUM MASTER
EQUATIONS

We consider a quantum harmonic oscillator with natu-
ral frequency eo and mass m immersed into an arbitrary
heat bath. The exact motion of the composite system is

described by the Hamiltonian
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H = Hs+HB+HsB (2.1)

where

p2 nuu2P fAldP
Q2s=2 +

2
(2.2)

is the isolated oscillator Hamiltonian and H~ is the iso-
lated reservoir Hamiltonian. The interaction term is as-
sumed to be of the form

Hsg = AF(Q)B (2.3)

where A is a parameter that measures the average
strength of the interaction, F(Q) is an arbitrary function
of the oscillator coordinate, and the operator B belongs
to the operator space of the reservoir and contains in-
finite summations over all particles in the environment.
The structure of this Hamiltonian is an extension of the
"fully coupled oscillator model" [14] where only the har-

monic coordinate and not the momentum is affected by
the interaction with the microscopic degrees of freedom.
However, at this point no reference to an explicit model
for the thermal bath is put forward.

Starting from the Liouville —von Neumann equation of
motion for the total density operator, the use of stan-
dard projection operator techniques complemented by
the usual Born (weak-coupling) aproximation yields a
GME for the reduced density operator p of the oscillator.
If we assume that no correlations between the oscillator
and the heat bath exist at t = 0, and that the latter is
initially in thermal equilibrium, i.e.,

~
—PH~

(2.4)

where p~ is the reduced density of the heat bath and
p = 1/kaT is related to the equilibrium temperature of
the reservoir, the corresponding GME takes the form [20]

A~

p(t) + —[Hs, p(t)] = ——
2 «[F(Q), e ' ~ ~"[F(Q), p(t —r)]e' ~"]Re(C'(r)}

p

d [F(Q), -'""~"[F(Q), (t- )], *""~"]™(O())
0

(2.5)

where [, ] and [, ]+, respectively, denote the commutator
and anticommutator, while Re(4(r)) and Im(O(r)) are
the real and imaginary parts of the correlation function

e(t) = Trgy[B(t)Bpg] (2 6)

for the bath operator B evolving in time by the motion
of the reservoir.

The GME (2.5) contains the reversible and irreversible
contributions that arise from the total Hamiltonian. In
general, this kind of matrix equation is rather difficult
to handle and is not suitable for approximations consis-

tent with the requirements of a master equation. On the
other hand, it contains much more information than that
which is experimentally available. For this reason, it is
much more useful to use a c-number representation of
the matrix equation, like the evolution of the averaged
observables, the asymptotic master equation, or a semi-
classical equation. Later on in this work, we analyze and
discuss these kinds of representation.

Since the mean value of an arbitrary operator A be-
longing to the oscillator space is (A) q

——Try(Ap(t)), from
Eq. (2.5) we get

2 t

(A), ——{[Hs,A]), = ——
z «{[e' ~ ~"[A,F(Q)]e ' ~ ~",F( Q)])q,Re(4( r))

h 0

h 0
«{[e'"""[A,F(Q)]e '""" F(Q)]+)~-r™(C'(r)). (2.7)

Therefore, for any kind of function F(Q), the evolution of the mean values for the oscillator displacement and
momentum is given by

(Q) = —(P) (2 S)

A
{P)~ nuu&{Q)~+ dr([F'(Q( r)) F(Q)])~ ~Re(C(r)) dr{[F (Q( r)) F(Q)]+)~ Im(C'(r))

0 0

(2 9)

where we use the fact that [F(Q), P] = ihF'(Q). Note
that in this model (in contrast to the rotating wave ap-
proximation case [1, 14]) the mean values of momentum
and velocity are proportional to each other. This rela-

I

tio»s also valid from the operators themselves, as one
can easily verify by writing down the Heisenberg equation
of motion for the operator Q from the total Hamiltonian
(2.1).
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III. QUADRATIC COUPLING

We now assume that the coupling between the oscil-
lator and the heat bath is quadratic in the former, i.e. ,
F(q) = Q . From Eqs. (2.8) and (2.9) one obtains that
the mean value of the oscillator displacement obeys the
integro-differential equation

m(Q), = —m~pz(q)g

+ dr»n(~pr)Re{C'(r))(q)e .
fAGdp p

4A'
drcos((upr)1m{4(r))(q ))

0

dr sin((upr)lm{C(r) j({Q,Q ))g

(3.1)

where {,) stands for the symmetrized product and we
use the fact that mq = P. In contrast to the linear cou-
pling case [21], this equation contains the real part of the
bath correlation function that in the case of a bosonic
reservoir, as we will see later, depends on the tempera-
ture. Moreover, Eq. (3.1) includes the higher moments
(Qs) and ({Q,Q )) and the evolution equation for these
moments involves again higher moments. In connection
with this, note that only in the linear coupling model
[21], i.e., F(q) = Q, do Eqs. (2.8) and (2.9) involve the
mean values (Q) and (P) alone, and this makes possible
an analytical approach

p(t —r) = e'H' p(t)e ' ", (3.2)

and the upper limit in the integrals by infinity. In this
case one can verify that

(q) g
= cos((dpr) (q)g-

7YKdp
sin(u)pr) (P)g (3.3)

and

cos(~«)(q')~-. + ' ({Pq'))~-.
mQ)p

'( ) ({pzq))
m ~0

(3 4)

which enable us to write the Markovian version of the
evolution equation (3.1) as

A. Markovian regime

The equation of motion (3.1) is a nonlinear and non-
Markovian integro-differential equation. In this form it
is untractable. To further simplify the problem we make
the Markov assumption [22]. In this approximation one
can replace the density p(t —r) into the integrals of Eq.
(3.1) by

( l4Az

t'

m(Q), = —
~

m~pz- dr sin(2urpr)Re{C'(r))
~ (q)~ —

l
dr cos (cdpr)1m{4(r))

l
(q')~

mldp p )q p )
4A2 ( 4A' f id»n'(~pr)Re{o(r)) 1(Q), + ~ I

d»n(2~pr)lm{C(r))
~ ({q,q'))~

mldp ( p harp I p

4Az f
drsin (u)pr)1m{a(r))

~ ({(q),q))t, .
Fhldp ( p

(3.5)

As expected [23], one can see that the coupling with the macroscopic environment introduces both a mechanism of
dissipation and a renormalization of the original potential of the system.

Taking into account the coefficients that appear in the linear coupling model [21], we can rewrite Eq. (3.5) as

m(Q), = —[nuup + 4b(2u)p)] (Q) g + m[~„(2~p)+ ~, (0)] (Q ) g
—4~(2~p) ({q)Q ))c

+ [&(2~p) —~(0)] (Q), ——,[~,'(2~p) —~,'(0)l ({(Q)' q'))~
map 4)0

(3.6)

where

C(cu) = A dr cos(air)Re{4 (7.))
0

2A
v(cu) = — dr sin(~r)Im{C (7.)),

AGJ 0

(3 7)

(3.8)

2A2
u)„(u))= — dr cos(~r)Im{C (r)}

hm, 0

is a renormalized frequency, and

(3.9)

are, respectively, the diffusion and friction coefficients,

A2
6(~) = — dr si (n~r)Re{ (C)r)

77Kd p
(3.10)

C((u) = coth
i i v(~),h~ (Phu) &

E2) (3.11)

is a correction to the unperturbed stiffness.
From their definitions, one can demonstrate (see the

appendix) that the diffusion and friction coeKcients are
related by the quantum fluctuation-dissipation relation-
ship
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which in the classical limit reduces to the usual form

C(u)) = kgyTv((u) . (3.12)

B. Bosonic reservoir and Ohmic dissipation model

B = ) c~(b~t + t)~), (s.is)

We now consider that the reservoir consists of har-
monic oscillators[1, 7, 14] and the coupling is linear in
every microscopic coordinate. In this case, we choose the
operator B of the coupling Hamiltonian (2.3) as

g( )'(~)= 2,+ .
and therefore [20]

h 2

lm(e(t)) = -~
2

Re(O(t)) = o, cot
~ I

e
np' (p&pl

02)
8~k e—{2ttkt)/{Ph)

~- (Pgp)2 —(2nk)2

(3.16)

(3.17)

where |)t and b~ are, respectively, the creation and an-
nihilation operators for the boson of frequency sr~, and
c~ are real coupling constants. For this model, one can
verify that the correlation function is given by

(3.18)

dtRe(C(t)) =o(kgT,
0

(3.19)

With these expressions, one can demonstrate that

O(t) = 2) cs cosh
~

'
~
cos(ctt) —tsio(~tt))

mph~, '(

)
dt Im(4(t)) = o. —hp

0 2
(3.20)

(s.i4)

Note that the imaginary part of the correlation function
only depends on the reservoir characteristics, while the
real part also includes the reservoir temperature.

As usual, the bath is described in the continuous limit
by its density of states g(u). The Ohmic dissipation
model [15,24] is obtained by setting down

g((d)c (~) (x ~ f,(~/p), (3.15)

where p is essentially the phonon bandwidth of the
heat bath excitations that couple to the oscillator, and
f,((d/p) is a cutoff function such that f,(0) = 1 and sig-
nificantly decreases within a frequency range of order p.
If we choose a Lorentzian cutoff [14—16, 23], we get

which exhibit the link between the reservoir internal cor-
relation and the two sources of energy spread for the
current degrees of freedom, namely, the temperature and
the phonon bandwidth.

From Eqs. (3.17) and (3.18) we observe that the char-
acteristic memory time of the imaginary part is the in-
verse p

~ of the bandwidth, while that corresponding to
the real part depends on the relationship between p
and the thermal relaxation time Ph/(27r). Moreover, it
can be shown [20] using the Langevin formalism that
the real part is connected with the fiuctuations while the
imaginary part yields the dissipation. In this sense, the
above results agree with those obtained in Ref. [14].

Using (3.17) and (3.18), one can integrate expressions
(3.7), (3.8), (3.9), and (3.10) to obtain

v=A o, ,

(d =A o(2=2 'y

fn
'

n (pnp& (8~k) (Phq)'
2m ( 2

~ [(phd) —(2nk) ][(phur()) +(2~k) ]

(3.21)

(3.22)

and C(u) is related to v through the relation (3.11). To obtain the expressions (3.21) to (3.23) we use the fact that
p &) (t)() in the Markovian case. Note that v and u„donot depend on u(). In the classical limit the diffusion coefficient
is also independent of (do, and in addition, one can set tI) = 0.

Therefore, for the Ohmic dissipation model we can write the equation of motion for the position mean value as

m(Q)~ ———[m~() + 46(2(d())] (Q)g + 2nuu„(Q )g —4v ((Q, Q ))t + 2 [C(2(u()) —C(0)] (Q)~, (3.24)

and the Markovian version of the GME (2.5) as

'(t) = —g[B (t)]+ g
"[Q' [Q' p(t)]+] —

g
~[Q' KQ&) p(t)ll —

g
—[Q' [(QP) (t)]+]

—
&

(C( )+C(o))[Q [Q &(t)]]+ &, , (C( o) —C(o))[Q [P (t)]] . (3.25)
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IV. ASYMPTOTIC MASTER EQUATION

It can be shown [25] that the decay time of the nondi-
agonal matrix elements of the reduced density p is lower
than the characteristic evolution time of its diagonal el-
ements. This behavior can be expected in the weak-
coupling limit and is consistent with the adopted Marko-
vian approximation. Consequently, in the near equilib-
rium (asymptotic) regime one can write the density op-
erator as

that Eq. (4.3) can be written as

p=Mp, (4.7)

where p denotes here a vector whose components are the
diagonal matrix elements of the reduced density and M is
a non-Hermitian pentadiagonal infinite matrix that satis-
fies (M)N, N+i = 0. Therefore, by a permutation of rows
and columns it can be cast into the decomposable [1?]
form

p(&) = ):PN(&)~N)(N~ (4.1) M'=
I(0 0) (4.8)

in the corresponding Fock basis ~N) for the oscillator. In
this limit, where only the diagonal terms of p survive,
an algebraic calculation leads us to the asymptotic GME
(3.25) in terms of creation and annihilation operators,

P(&) = 1
2

[t"(2~p) —hu)pv(2~p)]
4m2(up

2 2 2x(r'rt p-2rt pr'+ pr'rt )
1

2
[t"(2~p) + h(upv(2~p)]

4m2(up
2 2 2

x(rt r'p —2I' pI't + pI't I' ), (4.2)

W+ = [n(2~p) + 1],hv

m vp
hv

W =
2 n(2up),

m 4)p

(4.4)

(4.5)

where n(up) denotes the average occupation number for
oscillator quanta with frequency ~p at temperature T.
Likewise, these transition rates satisfy

(4.6)

It is important to notice that the results of this section
are independent of the choice for the heat bath.

The asymptotic master equation (4.3) is a nonlin-
ear one, where the transition probabilities are quadratic
polynomials in the number of quanta of the oscillator.
Moreover, because the transition occurs only between
second neighbors of the oscillator spectrum, the diagonal
elements of the density matrix with even (p, ) and odd

(p, ) index are not linked. It is easy to see that for each of
these subsystems the corresponding master equation de-
scribes a nonlinear one-step process. In connection, note

which can be set in the form of a gain-loss master equa-
tion

P'N = W+(N+1)(N+2)pN+2+ W N(N 1)pN—
—[W+N(N —1) + W (N+1)(N+2)]pN, (4.3)

W+ and W being the microscopic transition rates, re-
spectively, associated with the simultaneous annihilation
(decay processes) and creation (reexcitation processes)
of two quanta. Taking into account the relation (3.11),
these transition rates can be written as

where E and 0 are tridiagonal matrices which, respec-
tively, denote the transition matrices governing the evo-
lution of the "noninteracting" subsystems described by
p, and p, . In this sense, note that M' has two linearly
independent eigenvectors p~

i and p',q with zero eigenval-
ues.

Using the step operator [17] 8 defined as

8f(N) = f(N+1), f(N) = f(N —1),
(4.9)

This equation states that the expression

N(N —1)(w+p'„q—w p'~ )

is independent of N and then

(4.11)

,q
W'

eq
PN ~+ PN —2 (4.12)

Taking into account Eq. (4.6) we may write the equilib-
rium solution (4.12) as

eq eq
Pgr e 2Ph~PN x P—P

P2N+1 py
(4.13)

Consequently, one can assert that the stationary solu-
tion possesses the canonical structure with proper nor-
malization factors. These factors can be obtained from
the initial conditions considering that the probability
must be conserved in each subsystem. Then, using (4.13)
one obtains

eq

) P2N( ) —) P2N
N N

eq

(4.14)

) P2N+i(o) = ) P2N+i = (4.15)
N N

where pN(0) denotes the initial occupations. The total
normalization condition allows us to write

pp +pieq eq y ~
—2Ph~o (4.16)

Therefore, two normalization conditions are needed to
completely determine the stationary solution. On the

one hand, one realizes that if at t = 0 the population is

one can write Eq. (4.3) in the stationary case as

(8 —1)[W+N(N —1) —8 W (N+1)(N+ 2)]pNq ——0 .

(4.10)
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concentrated on just one oscillator state, either even or
odd, conditions (4.14) and (4.15) lead to vanishing of the
odd or even partner, respectively, on the left-hand side of
Eq. (4.16). In such a case, the equilibrium distribution
is canonical on the subset where the initial population
belongs and the complementary subset remains depop-
ulated. On the other hand, if the initial distribution
spreads over at least two states of difFerent parity, the
only condition under which (4.13) is an overall canonical
distribution over the whole oscillator spectrum is

eq eq —PQ~O

In such a case, Eq. (4.16) gives

eq
~

—P5~0
Po — —e )

(4.17)

(4.18)

e(z, t) = ) z"p~
N&0

(4.19)

can be seen to satisfy the second-order partial derivative
equation

which coincides with the canonical partition function. In
general according to (4.14) and (4.15), the ratio p~~/po~ is
determined by the initial odd-even occupation ratio; ac-
cordingly, in the majority of cases the distribution (4.13)
is noncanonical over the complete Fock space.

Notice that the canonical structure of the equilibrium
solution is a consequence of the assumption that the
asymptotic density p is diagonal or, equivalently, of the
weak-coupling hypothesis. In other cases Eq. (4.2) is no
longer valid.

Opposite to what happens in the linear coupling case
[10], it is not posible to obtain an explicit solution of the
master equation (4.3) other than the stationary solution
(4.13), since the standard methods [3, 11, 17, 26] do not
work in this case. For example, the characteristic func-
tion [10] defined as

-mph oe io(N)..=, ,„.„". (4.24)

Note that this expression (and therefore all the equilib-
rium moments) depends on the initial conditions through
the relations (4.14) and (4.15).

We now numerically compute the decay rate of the
harmonic mode. For this purpose, one can express the
oscillator density vector as

+) CV~e "', (4.25)

where V~ and A~ are, respectively, the eigenvector and
eigenvalues of the spectral problem defined by the ma-

trix M'. To simplify the calculation, the matrices E and
O have been symmetrized with the usual procedure [26].
In the course of the computations it has been observed
that as the parameter 8 = k~T/~o increases, the size
of the truncated oscillator spectrum that guarantees the
proper behavior of the eigenvalues must be enlarged. In
particular, for 8 = 100 the truncation at N~« ——1000
is satisfactory. With these prescriptions we have numer-

ically verified that the zero eigenvalue is twofold.
In Fig. 1 we have plotted the six smallest nonvanishing

eigenvalues Az to A7 as a function of the parameter 8.
We can observe that when 8 ( 0.5 these eigenvalues are
given by

example, the evolution of the first moment is given by

(N) = 2(W —W+)(N ) + 2(3W + W+)(N) + 4W

(4.23)

and one can only extract (N ) as a function of (N) in

the equilibrium case. The latter can be computed from
Eqs. (4.21) and (4.13) [and not from Eq. (4.22)], and
reads

ly(z, t) = (I —zz) [(W+ —z W )e(z, t)],
A„=W+n(n —1), n = 0, 1,2. . . (4.26)

(4.20)

and cannot be explicitly integrated.
Moreover, the evolution equations for the moments

This behavior can be understood if we consider that in
this situation, by virtue of Eq. (4.6), the majority of the
microscopic processes are decaying events and one can

(N") = ) N"p~

can be extracted from Eq. (4.3) and read

p

(N") = ) 2"
I
"„i( (N"-"+')[W-+ (-I)"W+].=i

(4.21)
A, /2W+

20

+(N" "+')[3W + (—1)"+'W+]
+(N )7

(4.22)

These nonlinear moment equations constitute a linked
hierarchy in which the motion of the pth moment involves
the higher-order (p+ 1)th one and appropriate trunca-
tion is needed to obtain some approximate solution. For

10

0
0.01 0.1 10 100 e

FIG. 1. The six smallest nonvanishing eigenvalues Aq to
Ay that arise from the spectral problem (4.7).
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set W )) W = 0. With this prescription, Eq. (4.20)
for the characteristic function reads

classical one and the GME description should be given
up.

—4'(z, t) = W+(1 —z'), C(z, t), (4.27) V. WIGNER REPRESENTATION

which can be analytically solved in terms of the Jacobi
polynomials [27]. Thus one can verify that the eigenval-
ues take the form (4.26).

When 0 ) 0.5 the eigenvalues decrease with temper-
ature and tend to form a continuum where A & W+.
Thus, the truncation at finite N,

„
is not a valid pro-

cedure; indeed, for larger values of 0, the system is a
I

In this section we derive the semiclassical counterpart
of Eq. (3.25) according to the Wigner representation [28,
29]. For this purpose we make use of the same prescrip-
tions given in Ref. [12]. From the GME (3.25), and
after some algebra, the corresponding equation for the
evolution of the Wigner quasiprobability function of the
oscillator is

8 8 P 8—pw(Q, P t) = — —+
~

(mLIJpQ+4I5(2(dp)Q —2mtd„Q ) + 4 QP—+ z [C(0) —C(2(dp)]P
~

l3
m mao r

I
4~(2~o)Q'+, , [C(o) —C(2~o)]P

I

8' f, 2

8 8P( m vo
82

+ (44(2dp)QP + 2IQ(II) + Q(2tdtl)]Q —2 —
)

(5 1)

Opposite to what happens in the linear coupling case
[21], this equation is not a Fokker-Planck one because it
contains third-order partial derivatives. Now, Pawula s
lemma [30, 31] asserts that the solution for an arbitrary
positive initial condition is only positive if the evolution
equation is at most a second-order one, or of infinite
order. Therefore, in this case the distribution may as-
sume negative values. This is not a contradiction because
pw (Q, P, t) is by construction a quasiprobability function

[29]
It is interesting to note that the traditional derivation

of the Fokker-Planck equation assumes the existence of
infinitely small jumps [17], and in the quantum system
this hypothesis is clearly not true. In this sense, note
that the coeKcients of the third-order derivatives are pro-
portional to 5 . Consequently, in the classical limit we
obtain the following nonlinear Fokker-Planck equation:

8 8P 8(—pw(Q, P, t) = — —+ mu)pQ —2m'„Q

In the asymptotic regime, Eq. (5.1) can be expressed
in angle-action variable representation as

8 v 2 8 2 5 urp2 C(2(up)—pwH, t =—

8 C(2~p)
+8 2

H —5 ~oH

8 Kld+ s H pw(H t),

(5.3)

where the missing angle is thoroughly related to the mis-

sing off-diagonal matrix density elements of the asymp-
totic representation (4.1). Equation (5.3) also can be
obtained starting from the asymptotic GME (4.2).

It is easy to see that the equilibrium distribution of
(5.3) is

+4 QP ~— eq 2 v v
w =

tt Q(2tdo)
"

Q~2~0) ) (5.4)

82
+ ~4tkTQ Ipw(Q, P, I)I,

(5.2)

which corresponds to a classical canonical distribution for
an oscillator in equilibrium at an effective temperature
T,g = C(2up)/v. The structure of this distribution is

the same as the one obtained in the linear coupling case

[12], and both coincide in the classical limit.

where we use the fact that in that limit C(0) = C =
vkIBT and b = 0. This equation coincides with the one
obtained in Ref. [32] for the classical system. The fact
that the diffusion coefBcient depends on the oscillator
coordinate is associated with the presence of multiplica-
tive fluctuations [20], a characteristic of nonlinear sys-
tems [17,33].

VI. SUMMARY AND CONCLUSIONS

In this work we have established a generalized master
equation for a quantum harmonic oscillator that interacts
with an arbitrary reservoir through a separable coupling,
however nonlinear in the oscillator coordinate. The mas-
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ter equation allows one to set down the corresponding
Newton-like equation for the mean value of the coordi-
nate. If a quadratic coupling is chosen, several details
may be specifically worked out and one finds that New-
ton's equation contains a temperature-dependent kernel
proportional to the real part of the heat-bath correla-
tion, in addition to the third-order moments involving
position and velocity. Furthermore, in the Markovian
limit the parameters of the GME can be identified as the
diffusion and friction coefficients, as well as the correc-
tions to the free-oscillator frequency and stiffness. The
fluctuation-dissipation ralationship can then be demon-
strated on very general grounds; however, the individual
coefficients can only be computed in the frame of a spe-
cific model for the heat-bath reservoir. This has been
illustrated for an oscillator bath with Ohmic dissipation.

The asymptotic regime of the master equation and
mean values is especially interesting, since many general
features can be indicated without resorting to numerical
solutions. One finds that in spite of nonlinearity that
affects the master equation, its moment hierarchy, New-
ton's law, and the evolution rule for the characteristic
function, the equilibrium distribution density matrix can
be extracted. Furthermore, the conditions under which
it is a canonical distribution may be established. On
the other hand, when the spectral problem of the master
equation generator is numerically solved, one is able to
verify to high accuracy an analytical approximation that
holds in the low-temperature limit.

Finally, we have investigated the semiclassical repre-
sentation of the GME and its classical limit. The evo-
lution equation for the Wigner quasiprobability distri-
bution in oscillator phase space is a non-Fokker-Planck,
third-order partial derivative equation. However, its clas-
sical limit is a Fokker-Planck one with nonlinear diffu-
sion.

1
C [0] = — dt e-'"'e(t), (A3)

which satisfies

O[-n] = e«"e[n], (A4)

the integrals that appear in Eqs. (Al) and (A2) can be
written as

c [0]dr e ' 'O(~) = n C'[cu] + iP dA
0 0 —w

dr e' C (~) = ~e " C [~]
0

+iP one~"" . (A6)
C lnl

0+a)

In Eqs. (A5) and (A6) we use the formula

dze+' * = m6(b, ) kiP
k~)

(A7)

where P stands for the Cauchy principal part of the in-

tegral.
Inserting (A5) and (A6) into (Al) we obtain the diffu-

sion and friction coefficients in the form

A~
C(u)) = —7r@[(u](1+e~" ),

2
(AS)

Fuss u) l
l

cm~ v6(u) + " = A Im d~e+' O(~) .

(A2)

Considering the Fourier transform of the correlation
function
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hu) A2

2 2
v((u) = —7rc [ur](e~ "—1),

and then

C(~) = coth
i i v(u))

h(u & Phu) l

(A9)

(A10)

APPENDIX

From definitions (3.7) to (3.10) one can easily demon-
strate the following relations:

h~
C(u) + v(u) = A Re d7 e+' O(w), (Al)

2 0
hm(u„(~) =A P d„(,pan,

)
[ ]

0 —(u

is the quantum fluctuation-dissipation relation.
Similary, one can demonstrate that

00 C [0]
2rruu6((u) =A P dA(1+e~" ) 0 —~ ' (A11)

(A12)
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