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Instabilities and nonstatistical behavior in globally coupled systems
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The mean Beld in a globally coupled system of chaotic logistic maps does not obey the standard
rules of statistics, even for systems of very large sizes. This indicates the existence of intrinsic
instabilities in its evolution. Here these instabilities are related to the very nonsmooth behavior of
mean values in a single logistic map, as a function of its parameter. Problems of this kind do not
affect a similar system of coupled tent maps, where good statistical behavior has been found. We
also explore the transition between these two regimes.

PACS number(s): 05.45.+b, 05.90.+m

I. INTRODUCTION II. GLOBALLY COUPLED LOGISTIC MAPS

In recent times there has been a number of efforts to
analyze the interplay between temporal chaos and space
synchronization in globally coupled systems. These are
systems of considerable importance in modeling phenom-
ena as diverse as Josephson-junction arrays, multimode
lasers, vortex dynamics in fluids, and even evolutionary
dynamics, biological information processing, and neuro-
dynamics [1]. There is a great wealth of phenomena in
these systems, originating in the presence of two conflict-
ing trends in their dynamics. On one side, the presence of
a common driving factor, coming from some type of aver-
age over the system, introduces a partial synchronization
in the evolution of its elements. On the other, the chaotic
divergence between the evolution of any two different
elements tends to destroy this coherence. There are,
therefore, two limiting behaviors, one in which a large
coupling forces the synchronization of a set of weakly
chaotic elements, and another in which strongly chaotic
but weakly coupled systems display incoherent behavior.
This last situation is characterized as having exponen-
tial divergence of trajectories not only in time —positive
Lyapunov exponents —but also in space, in the sense that
if at any given time two different elements of the system
have very close magnitudes, those magnitudes will di-
verge from each other exponentially fast. Notice that for
strong coupling it is possible to have all the elements of
the system converge into a single cluster, and at the same
time to have this cluster move chaotically [2].

In fact, at first sight these weakly coupled systems do
not look too different from a simple lattice of uncou-
pled identical chaotic elements, with maybe some shifts
in their parameters. A more careful study reveals, how-

ever, that there is a detectable and nontrivial influence
of the global coupling, which gives rise to some subtle
coherent effects, spoiling the statistical properties of the
system.

Here we consider some of these coherence effects
through the particular example of a globally coupled lat-
tice of logistic maps, obeying the equations

where i is the space index and n is the time index. Here

f(z) is the familiar logistic map, f (x) = 1 —ax, and the
mean field h at time n appears in the last term of the
equation above,

(2)

This is a simple prototype of globally coupled chaotic sys-
tems, and has been exhaustively explored in Refs. [2—4].
For large c and small e the system settles in a "turbu-
lent" regime, where, as mentioned before, all elements

x(i) evolve chaotically, without any obvious mutual syn-

chronization.
In this regime, it is reasonable to expect the mean

field to obey general statistical rules, since it is an av-

erage over quasirandom variables. In particular, it was

expected that h should converge to a fixed value h* as
N —+ oo, with fluctuations around this limiting value

normally distributed (central limit theorem), and with a
dispersion that decays as 1/~N (law of large numbers).
Surprisingly, it was found that this simple system failed
to fulfill these expectations [3, 4). This failure has also

been verified in similar models [5], which suggests that
this is a generic behavior. In particular, it was found that
the dispersion of the mean field did not go to zero, as ex-

pected, but instead saturated to a fixed positive value

for large ¹ broad peaks indicating a quasiperiodic com-

ponent were found in the Fourier spectrum of the time
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sequence for the mean field; and the mutual information
on the lattice also saturated to a nonzero value for large
N.

To understand the relevance of these facts, we should
notice that, if in effect the mean field converged to a fixed
value, the system would decouple. Each and every one
of its elements would behave like a single logistic map of
the form

y„+i = 1 —A(a, e, h")y„

with A = a(1 —e)(1 —e + eh') and y = 2:/(1 —e + eh'),
where the value of h" is obtained self-consistently. In fact,
this assumption of convergence of h to a fixed limit has
been used successfully in the study of a difFerent globally
coupled nonlinear system [6]. For logistic maps, this re-
duction of the dynamics of the (infinite) lattice to that of
a single map does not happen, which clearly implies that
the self-consistency equation for h' is unstable around its
fixed points.

III. STATIC MEAN-FIELD MAPPING

A. Definition

Let us consider h, for the time being, not as a dynam-
ical variable but as a fixed input in the system, and call
it h;„. Taking the N ~ oo limit on a lattice of the type
described by Eq. (1), we can define a system of equations
that gives as a final result a static mean field h „&, in the
following manner:

N

h,„t ——lim —) f(x„(j)), (4)
j=1

x„+i(i)= (1 —e)f(x„(i))+ eh;„. (5)
This gives us a function h „t(h;„;a,e), which we will
call the "static mapping. " In this simplified problem we
can check whether or not the self-consistency equation
h, „& ——h;„has a solution, and explore its stability. Notice
that h«t is invariant because of the existence of an invari-
ant distribution for x [and therefore for f(z)] [7], when
the maps are in the chaotic regime. For cases where the
maps are in some periodic regime (and even when they
are in chaotic motion inside some periodic window, as
in parts of the 3-window), the existence of an invariant
distribution depends on the distribution of initial condi-
tions. We will assume that in these cases all different
phases of the relevant cycle are equally represented, so
that an invariant distribution can be achieved.

It should be clear that this static mapping is not
equivalent to the actual evolution of the mean field,
h„= h„(h„ i, h„2, . . . , a, e), also defined inthe N I oo
limit. This "dynamic mapping" depends in principle on
all previous values of h, although this dependence is neg-
ligible for very old h (i.e. , for h„when m » 1),
and exhibits therefore a much richer behavior. What
is important for us here is that they have the same
fixed points. On the stability of these fixed points we
propose the following hypothesis: the dynamic mapping
h„= h„(h„ i, h„2, . . .) cannot be staMe around its fixed
point h, = h, i = n, n —1, . . ., if the static mapping i s

not. Basically, we are assuming that if the process is
unstable even in the very simplified form given by the
static mapping, the complexities introduced by the de-
pendence on all previous values of h cannot make its sta-
bility anything but worse. The numerical results verify
this statement, as we will see next.

B. Numerxeal results
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FIG. 1. Static mapping h,„q(h;„) from Eq. (1). The line
joins 300 points calculated over equally spaced h; values.
These points were obtained averaging over 1.5 x 10 iterations,
after a transient of 4000 iterations. The straight line is the
diagonal h „q ——h;~. The typical error level is indicated with
the error bar in the upper-right corner. Here a = 1.99, e = 0.1,
and f(x) is the logistic map.

We have evaluated numerically the static mapping in
the range of h;„ that contains the fixed points h«t ——h;„
for the parameters a = 1.99 and e = 0.1. The results
are shown in Fig. 1. Although this is an extremely non-
smooth function, it has to be continuous, since for the
different types of bifurcations present in the logistic map
the average value of x changes continuously [8]. The fixed
points in this graph give h' —0.311, not too difFerent
from the actual average of the mean field ((h) = 0.3063),
but different enough to imply that (h) does not fall on
a fixed point. It is clear from the graph that none of
these fixed points can be stable, since the absolute slopes
~Ah, „t/Ah;„~ obtained numerically are much larger than
1 almost everywhere. We should keep in mind that only
300 points have been calculated to get this figure, and
therefore these slopes are defined only in a coarse-grained
sense. In fact, the function h,„t(h;„) has well-defined
derivatives only inside its periodic windows. Therefore,
even though this function cannot reveal all the complex-
ity of the actual mapping h„= h„(h„ i, h„s, . . .), its
nonsmooth behavior is indicative of why h„does not con-
verge to an invariant value as N ~ oo.
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The presence of the "well" visible in Fig. 1, and of
which an enlarged view is given in Fig. 2, deserves some
comment. The bottom of the well corresponds to a peri-
odic 14-window that, as is common in the logistic map,
begins in a tangent bifurcation and ends in an internal
crisis. The infinite slope at the left end of the periodic
window is due to the fact that at both sides of a tan-
gent bifurcation in the logistic map the average value of
x changes as (x) —(x), = ~a —a,

~

i, where a, is the criti-
cal parameter for the bifurcation. This is also true on the
one-band side of an internal crisis [9],where the probabil-
ity density spreads from the several bands at one side into
the one on the other, also as ~a —a, ~i~2. This explains the
infinite slope at the right end. These two facts, together
with the continuity of (x) in period-doubling bifurcations,
sustain our assertion that h, „t(h;„) is continuous. These
"wells" and their infinite-slope walls should not be iso-
lated instances in the h „t versus h;„graph, since the
periodic windows from where they arise are thought to
be dense in the bifurcation diagram of the logistic map
[7, 10]. This is what makes it impossible for the map to
have a derivative except inside a periodic window.

As pointed out in Ref. [4], all these peculiar phenomena
disappear if we change f(x) in the set of equations (1) to a
tent map, f(x) = 1—a~x~. For this system, the mean field
h„seems to converge to a limit, with fiudtuations that
decay as 1/~N, as expected. A look to the bifurcation
diagram for the tent map shows a complete absence of
periodic windows, tangent bifurcations, or internal crisis,
and suggests a smooth behavior of (x) as a function of
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F1G. 3. Static mapping h,„t(h;„) for the tent map. The
line joins 300 points calculated as in Fig. 1. The straight line
is the diagonal h „t, ——h;, and a typical error bar is given in
the lower-right corner.

a, which of course would imply a smooth behavior in
h«t(h;„). This has been verified numerically, for a =
1.99 and e = 0.1. The results are shown in Fig. 3. The
curve h „t, versus h;„obtained here is extremely smooth,
within our levels of error, and has a very small slope. The
fixed point is h»t, ——ti;„= 0.1787, in perfect agreement
with the calculated value of (h). Therefore, the simplified
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FIG. 2. Enlargement of the "well" visible in Fig. 1. The
bottom corresponds to a periodic 14-window, the left wall is
a tangent bifurcation, and the right wall is an internal crisis.
The line joins 300 points calculated as averages over 7.5 x 10
iterations, after a transient of 4000 iterations. The straight
line is the diagonal h „t ——h;„. All other parameters are as in
Fig. 1. Typical error bars are not significant at the scale of
the figure.
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FIG. 4. Distributions of the values of the mean field h +q
vs h„ in the dynamic mapping, where f(x) is the logistic map.
These results are for a lattice of size N = 200000. Here we

have plotted 10000 points, after a transient of 5000 iterations.
Other parameters are as in Fig. 1.



INSTABILITIES AND NONSTATISTICAL BEHAVIOR IN. . . 7495

static mapping does not suggest instabilities in the more
complex dynamic mapping.

In summary, the strong instability of the static rnap-
ping h«I(h;„) is a good indicator of the lack of conver-
gence of the mean field h to a fixed value as N grows.
The convergence of h towards such a limit in the system
with tent maps is accompanied by a smooth and almost
flat h „t(h;„). However, we should not forget that this
is only a static construction, and cannot represent the
full dynamics of the problem. As a matter of fact, the
plot of h„+q versus h„, obtained for a value of N such
that the fluctuations have reached their saturation level,
shows a very different behavior, as can be seen in Fig. 4.
So we have to keep in mind that the static function tells
us about the impossibility of achieving a fixed value for h
in the N -+ oo limit, but it does not say anything about
the actual evolution of this quantity.
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IV. INTERMEDIATE CASES:
MIXING TENT AND LOGISTIC MAPS

Given the fact that nonstatistical behavior is present
in logistic but not in tent maps, it is natural to ask what
happens for intermediate situations. For this we have
considered a "logistic plus tent" map that interpolates
between quadratic and linear behavior. It is given by

(6)

It has as limits the tent map, when a = 0, and the logistic
map, when n = 1. There are, of course, many other ways
of interpolating between these two limits, a simple one
being the power map f„(x) = 1 —a~@~~, with 1 & p & 2.
For concreteness, we will consider here only the function
given in Eq. (6).

We have explored numerically the behavior of coupled
lattices of these maps. The results for the mean-square
deviation (MSD) of the mean field for n close to 1 show
clear nonstatistical behavior, which seems to disappear
monotonically with decreasing a. (See Fig. 5.) A very
interesting feature here is the slight but consistent recov-
ery of the values of the MSD for values of n less than
1, up to the value of saturation of the MSD. A similar
phenomenon was found in Ref. [4], in a coupled lattice of
logistic maps subject to the influence of static parametric
fluctuations.

A much stronger evidence of coherence is found in the
power spectrum of the mean field. As mentioned be-
fore, one of the signals of nonstatistical behavior in these
systems is the appearance of broad peaks in the power
spectrum, indicating a quasiperiodic component in the
evolution of the system. As can be seen in Fig. 6, this
quasiperiodicity is strongly accentuated in the case of
maps with a small tent component (1 —n = 0.1). The
quasiperiodic behavior is strong enough as to be visible
in the h„+1 versus h plot, as shown in Figs. 7 and 8.
Obviously, as we make a even smaller this trend reverses
and the power spectrum becomes almost flat.

This increase in the quasiperiodicity of the mean field
has been encountered in two other cases: in the pres-
ence of a very small additive noise [11], and when the

mean field is not global but includes only the N/2 near-
est neighbors [12]. These three cases are similar in that
all of them point to a connection between small smoothly
distributed noise and an increase in quasiperiodicity. In
our case, we could roughly consider the tent part of our
map as a perturbation over the logistic part (for a close to
1), since one part is added to the other to obtain the total

I ) I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
I

10 I

0.1 I

0.01

0.001 4-

0.0001
I I I I I I I I l I I I I I I I I I I I

0.1 0.2 0.3 0.4 0.5

Frequency

FIG. 6. Power spectra for the mean field for a = 1 (upper
line), a = 0.9 (middle line), and a = 0.0 (lower line). Here
we are averaging over 100 runs of 1024 iterations each, after
a transient of 5000 iterations. The parameters are a = 1.99
and ~ = 0.1.

10 100 1000 10 i 10 4

Lattice Size

FIG. 5. Mean-square deviation for the mean field vs lat-
tice size for several values of e, in the mixed map. For all
points we have used a total of 102400 iterations, with a tran-
sient of 5000 iterations. The values of a are (5) a = 1.0
(logistic), (&) a = 0.95, (x) a = 0.9, (k) a = 0.75, (b,)
a = 0.0 (tent). As before, a = 1.99 and e = 0.1.
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FIG. 7. Distributions of the values of the mean field h„+q
vs h„ in the dynamic mapping, where f(x) is the mixed "lo-
gistic plus tent" map. Here a = 0.9. All other parameters
are as in Fig. 4.

FEG. 9. Static mapping h,«(h;„) for the mixed "logistic
plus tent" map. The line joins 300 points calculated as in
Fig. 1. The straight line is the diagonal ho t, ——h;, and a
typical error bar is given in the lower-right corner.
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FIG. 8. Distributions of the ~ of thgalue. ' mean field 6 +y
vs h„ in the dynamic mapping. Ef (2;) isotere the logistic map,
as in Fig. 4, but we have added 6 unhormjy distributed noise
of amplitude cr = 0.0045. All other parameters are as in
Fig. 4.

mapping. Obviously, this is a highly correlated pertur-
bation; however, taking into account that the tent map
has a behavior closer to white noise (its invariant dis-
tributions for a & 2.0 are almost flat) than that of the
logistic map, the connection between these two processes
is at least plausible. Notice that here we cannot invoke
the inHuence of some periodic window for this increase

in quasiperiodicity; first because periodic windows are al-
most nonexistent in the bifurcation diagram of fIq(z) for
o. = 0.9, and second because this would make it difficult
to explain why the total strength of the signal decreases,
i.e., why the MSD goes down as we decrease a. A sim-
ilar argument can be made for the semiglobally coupled
map, in the sense that the influence of the elements of the
lattice that are not directly affected by th" now local—
mean field can be roughly considered as a smoothly dis-
tributed small noise.

Finally, we have also checked, for these mixed maps,
the behavior of the static mapping h «(h;„). Result for
o, = 0.9 can be seen in Fig. 9. Since the mixed map
has a negative Schwarzian derivative except at z = 0,
where derivatives are not defined, we expect to find only
one attractor, and therefore a well-defined (x), indepen-
dent of the initial value xp. The behavior of the static
mapping seems smooth and already (for this value of n)
close to that of the tent map. Within our error levels,
the curve still shows some structure. A careful look at
the bifurcation diagram of this map shows that almost
all the periodic windows have disappeared —this is due
to the tent-like behavior of the map at its critical point—
thus eliminating the multiple points of infinite slope in
the h „t versus h;„graph. The coarse-grained slopes
~Ah&&„t/6h;„~ obtained here are much smaller than l.

Therefore, the results for this case indicate that the
stability of the static mapping (at least in the coarse-
grained sense we have considered) is not sufficient to in-

sure the stability of the actual dynamics. Our numerical
results are of course insufficient to describe the behav-
ior of the actual derivative dh«q/dh;„(or, equivalently,

d(x)/da) in these maps, and may still allow for differen-

tiability in the tent map and nondifferentiability in the
mixed cases.



46 INSTABILITIES AND NONSTATISTICAL BEHAVIOR IN. . . 7497

V. CONCLUSIONS

The behavior of the mean field in globally coupled
chaotic systems contains a number of surprises. The
nonstatistical behavior of this quantity indicates the ex-
istence of an intrinsic instability in the evolution of the
system, when we consider its infinite-size limit. Here we
have explored the relationship between this instability
and the corresponding problem in a simplified mapping
for the mean field, which assumes that the dynamics de-
pends only on the last value of this quantity. This is a
very crude approximation, since it assumes an infinitely
fast relaxation of the probability densities of the process,
but it still gives information about its fixed points and
some idea about their stability.

The numerical results obtained here indicate that the
stability of this static mapping may be a necessary but
not sufficient condition for the stability of the actual dy-
namics, i.e., for a normal statistical behavior of the mean
field on the system. This result should be taken only as a
first step in the study of the behavior of this kind of prob-
lem. In principle, a complete program should be carried
out through the analysis of the stability of the eigen-
modes of the Perron-Frobenious equation of the system,
a point that has been mentioned in Ref. [4].

Under the influence of the previously mentioned in-
stabilities, the mean field develops a dynamics that is
weakly quasiperiodic. This is already unexpected, and

gives rise to some as yet unresolved questions, as, for
instance, what is the mechanism that selects the domi-
nant frequencies? Even more remarkable is the fact that
several mechanisms have already been found to strongly
increase this quasiperiodicity, and none of them can be
considered a form of periodic driving. On the contrary,
directly or indirectly all of them can be assimilated into
the addition of a small white noise. Also, this increase
in quasiperiodicity is accompanied by a reduction of the
total strength of the signal.

Finally, we want to mention that there has been recent
evidence showing that the phenomena we have explored
here also appear in locally coupled systems. Periodicity
and quasiperiodicity have been observed in some total-
istic cellular automata in 3, 4, and 5 dimensions [13], in
medium-range coupled one-dimensional lattice maps [12,
14], and in locally coupled high-dimensional lattice maps
[15]. All of this wealth of evidence says that there should
be a common and fairly robust mechanism that extracts
periodic behavior out of coupled chaos. The precise na-
ture of this mechanism is still unknown.

ACKNOWLEDGMENTS

G.P. wants to thank Professor S.-J. Chang for stim-
ulating discussions and for valuable information. We
thank the Istituto Nazionale de Fisica Nucleare (INFN)
for computing facilities.

[1] J. Crutchfield and K. Kaneko, in Directions in Chaos,
edited by B.-L. Hao (World Scientific, Singapore, 1987);
P. Alstrom and R. K. Ritala, Phys. Rev. A 35, 300
(1987); P. Hadley and K. Weisenfeld, Phys. Rev. Lett.
62, 1335 (1989).

[2] K. Kaneko, Phys. Rev. Lett. 6$, 219 (1989); Physica
41D, 137 (1990).

[3] K. Kaneko, Phys. Rev. Lett. 65, 1391 (1990).
[4] K. Kaneko, Physica 55D, 368 (1992).
[5] K. Kaneko, Physics 54D, 5 (1991);G. Perez, C. Pando-

Lambruschini, S. Sinha and H. A. Cerdeira, Phys. Rev.
A 45, 5469 (1992); S. Sinha, D. Biswas, M. Azam, and
S. V. Lawande ibid. 46, 3193 (1992).

[6] Y. Kuramoto and I. ¹shikawa, J. Stat. Phys. 49, 569
(1987); H. Daido, J. Stat. Phys. 60, 753 (1990); S. H.
Strogatz and R. E. Mirollo, J. Stat. Phys. 6$, 613 (1991).

[7] P. Collet and J. P. Eckmann, Iterated Maps on the Inter-

val as Dynamical Systems (Birkhaiiser, Boston, 1980).
[8] S.-J. Chang (private communication).
[9] S.-J. Chang and J. Wright, Phys. Rev. A 2$, 1419 (1981).

[10] J. D. Farmer, Phys. Rev. Lett. 55, 351 (1985).
[11] G. Perez, S. Sinha, and H. Cerdeira, Physica D (to be

published).
[12] S. Sinha, D. Biswas, M. Azam, and S. V. Lawande, Phys.

Rev. A 46, 6242 (1992).
[13] H. Chats and P. Manneville, Europhys. Lett. 14, 409

(1991);J. Hemmingsson (unpublished); J. A. C. Gallas,
P. Grassberger, H. J. Herrmann, and P. Ueberholz, Phys-
ica 180A, 19 (1992); P.-M. Binder, B. Buck, and V. A.
Macaulay, J. Stat. Phys. (to be published).

[14] P.-M. Binder and V. Privman (unpublished).
[15] H. Chath and P. Manneville, Europhys. Lett. 17, 291

(1992).


