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We study the classical motion of a relativistic two-body system, in 1+1 dimensions, with interaction
described by a relativistic generalization of the well-known Duffing potential. The equations of motion
are separable in hyperbolic coordinates and are solved in quadrature. The radial equation (in the invari-

ant variable corresponding to the spacelike distance between the particles) has an effective potential de-

pending on the separation constant for the hyperbolic "angular momentum, " and analytic solutions are
obtained for the separatrix motion. In the presence of weak driving and damping forces, the Melnikov

criterion for the existence of homoclinic instability is applied, and it is shown that chaotic behavior is

predicted for sufficiently strong driving forces (bounds are given).

PACS number(s): 05.45.+b, 03.30.+p

I. INTRODUCTION

It has been well known since the work of Poincare [1]
that under perturbation, the stable and unstable mani-
folds emanating from a hyperbolic fixed point are not
identical. There may be an infinite number of transverse
intersections. The motion then becomes complicated and
very sensitive to initial conditions; it is characterized as
chaotic. Smale and Moser [2] state that the presence of
such orbits implies that some iterate of the Pioncare map
has an invariant hyperbolic set (a Smale horseshoe) con-
taining a countable infinity of unstable periodic orbits, an
uncountable set of nonperiodic, or chaotic, motions, and
a dense orbit. This set can exert a strong inhuence on the
behavior of orbits that pass close to the hyperbolic point.
They display a very sensitive dependence upon initial
conditions. A simple theoretical test function due to
Melnikov [3—5) may be used to determine the presence of
homoclinic instability. This method has recently been ex-
ploited for the study of the behavior of the rf supercon-
ducting quantum interference device [6] and in systems
perturbed by multiplicative noise [7].

It is known, for instance, that quantum effects tend to
suppress chaotic behavior in many cases [8]. This is pri-
marily due to the fact that independent of the form of the
Hamiltonian, the Schrodinger equation is a linear
differential equation. It is natural to ask whether the
effects of relativity could also suppress or modify the
character of chaos. Among mechanisms that could be
effective are the space contractions and time dilations
occurring as a result of interaction, as discussed in a rela-
tivistic model of the standard map [9]. Moreover, in a
covariant generalization of Hamiltonian dynamics, the
four-force is given by f"= —t) V/Bx„so that
f'= —t)V/Bx, , but f =+BV/Bt; unless t) V/Bx;t)t=0
there is no Euclidean equivalent potential to represent

the forces in such a way that the shape of the potential
surface peaks and valleys make it possible to recognize
stable and unstable fixed points. One might, therefore,
expect a significant modification of the behavior of a
chaotic system due to relativistic effects. There is a new

topological dimension, time, which has great
significance.

We have recently studied numerically the relativistic
classical mechanics of a damped Duffing-like driven sys-
tem in 1+1 dimensions [10], which is totally unstable in
the timelike directions. Chaotic behavior was found in
bounded nonperiodic orbits passing through the timelike
regions, as well as evidence for a strange attractor in
spacetime with strong damping. The problem has some
similarity to that studied by Holmes and Marsden [11],in
that it has two degrees of freedom (in this case, space and
time). It differs in an important way due to the hyperbol-
ic structure of the 1+1 Minkowski space.

In this paper, we study this system analytically by
means of separation of variables in hyperbolic coordi-
nates. The problem is somewhat simplified here by tak-
ing an infinite potential in the timelike region, thus ex-
cluding passage to that domain. We are then able to con-
struct the Melnikov function and prove the existence of
homoclinic instability. We shall find, in hyperbolic coor-
dinates, that there is a local minimum in the effective po-
tential as a function of the "radial" variable, after the
separation of the hyperbolic angle. Motion in this locally
stable region corresponds to the motion discussed in Ref.
[10] in the neighborhood of the force-free hyperbola,
which results, in the presence of dissipation, in what we
shall call "limiting hyperbolic motion, " the generaliza-
tion of a limit cycle in the nonrelativistic case. We shall
be studying, therefore, the possibility of homoclinic
crossings of the "stable" orbits associated with this hy-
perbolic motion and the "unstable" orbits associated with

46 743 1992 The American Physical Society



L. P. HORWITZ AND W. C. SCHIEVE

a larger motion bounded by the light cone.
In Sec. II we review briefly the formulation of classical

relativistic mechanics in 1+1 dimensions. We introduce
hyperbolic coordinates, as used previously in the treat-
ment of relativistic quantum-mechanical scattering in
1+ 1 dimensions [12], permitting the separation of vari-
ables in the equations of motion; the separation constant
is the generalized "angular momentum" corresponding to
the Lorentz boost function [13]. The relativistic-
harmonic-oscillator problem is worked out both in rec-
tangular and hyperbolic coordinates to illustrate the role
of these variables.

In Sec. III we study the relativistic Duffing-like prob-
lem with motion restricted (by taking the potential
V~ co in the timelike region) to the spacelike sector. We
give conditions for the existence of a separatrix deter-
mined by the value of the separation constant and study
motion in the inner and outer wells. Solutions are ob-
tained in closed form by quadratures. Motion in the
outer well is not affected by conditions on the light cone
and corresponds to some of the orbits found computa-
tionally in Ref. [10]. Motion in the inner well replaces
the possibility explored in Ref. [10] of motion traversing
the light cone to the second spacelike region, but the in-
stability that exists in the neighborhood of the separatrix
is of the same type.

In the presence of damping, the angular momentum
goes to zero exponentially (independently of the driving
force in the form that we shall consider). In this limit,
the two equations describing the motion in space and
time coalesce to a single equation that is identical to that
of the one-dimensional nonrelativistic DuSng oscillator.
In general the motion is completely stable or completely
unstable, depending upon initial conditions and the
damping coefficient (with our choice of infinite potential
in the timelike region, the unstable configuration cannot
occur). The existence of a strange attractor in the nonre-
lativistic case therefore implies the existence of a similar
phenomenon in the relativistic case and was indeed found
in our computer study [10]. The analytic investigation of
this phenomenon will be discussed elsewhere.

In Sec. IV we discuss the introduction of driving and
dissipative forces, and in Sec. V we compute the Melni-
kov functions, proving the existence of chaotic orbits
analytically. Section VI contains a summary and discus-
sion.

We recognize that the relativistic action-at-a-distance
potential models we use have, at present, no direct basis
as a low-energy limit of some more fundamental local
theory (this is not to say there is not a proper nonrela-
tivistic limit to our results). This question is under inves-
tigation. We use these models, however, which lend
themselves easily to computation (as for the nonrelativis-
tic theories), in order to study the properties of
Poincare-invariant dynamical structures that could, in
principle, correspond to such a limit.

II. CLASSICAL RELATIVISTIC MECHANICS
IN 1+1DIMENSIONS

To achieve a manifestly covariant, consistent Hamil-
tonian form of classical relativistic dynamics, we follow

aZ dp," ate

Bp~ d 1 Bx~

In the case of a set of free particles, the choice

(2.1)

Pl Plp

2M;
(2.2)

results in

dx,I" p,~

dw M,

so that

dx]

dt;

p)

dp,~ =0
d7

(2.3)

(2.4)

in agreement with the usual Einstein kinematics. The
variables (E;,p;) are assumed to be independent of each
other; the masses squared m, =E; —

p; are to be deter-
mined as solutions of the dynamical problem. Note that

T

dx,I" ds] m]

dr M;

dx]

d7
(2.5)

and is unity only for the "mass-shell" value m; =M;.
Hence ~ corresponds to the proper time of ideal free
clocks on their respective mass shells.

On mass shell, the time component of Eq. (2.3) is

dt, E; E;
dr M~ QE~ —p~ Q 1 —v~

so that dt, is precisely the time interval measured in the
laboratory between two signals emitted by a source, trav-
eling with velocity v, , with interval dv, according to the
Lorentz transformation. If the emitter is not on shell,
there is a factor m;/M;. The observed time interval is
therefore infiuenced by forces [15] that move the energy
momentum off shell.

We shall study a model for the two-body interacting
system for which the generator of the motion has the
Poincare invariant form

P iP il P zp2I

2M, 2M2

where p =(x, —x~) —(t, t2) . —
Since, according to (2.3),

dt, E,
d~ M,

(2.6)

the procedure of Stueckelberg [14] in defining a 2N (in
1+1 dimensions) dimensional phase space consisting of
the spacetime coordinates and energy momenta associat-
ed with the state of the system at each value of the invari-
ant universal time ~. The motion of the system is gen-
erated by an invariant function I( on this phase space, by
means of the covariant Hamilton equations (we use
metric —+ for the time and space components, respec-
tively)
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M)x ) +M2x2X"= x"=x"—x"
M +M1 2

(2.7)

and we shall call M =M, +M2, m =M&M2/(M&+M2).
Then Eq. (2.6) becomes

(approximately) on shell, E, ~M, in the nonrelativistic
limit, and dt; /dr —+1 for every particle. All of the t, can
then be taken equal to ~, which then becomes the univer-
sal Newtonian time. The potential V(p )~ V(x ), since
t, = t2. We shall use this as a correspondence principle to
construct the relativistic potential.

Since the Hamiltonian is quadratic in the energy mo-
menta, we may separate the center-of-mass motion with a
transformation of the same form as that used in nonrela-
tivistic mechanics:

M~~ —M,p~

M +M1 2

dx2 dt2=0, =1.
di- ' dv.

The relative momentum is p"=p"„so that

x —xi, p =pi

E=Ei

The velocity of particle 1 is, therefore, in this case

xl x
Ui

dry r+1

(2.13)

(2.14)

I+. x =kpcoshP, t= psi nhP,

II+. x =p' sinhP', t =+p' coshP',
(2.15)

In order to obtain solutions of the equations of motion
in quadrature, we introduce hyperbolic variables in the
sectors I+, II+ (Fig. 1) according to

p"pZ= "+P P +V(p')
2M 2m Then, in the four sectors2.8

(2.16)

where now p =x —t . The total energy momentum of
the two-body system is then a constant of the motion,
determined by initial conditions, and we may therefore
consider the reduced problem for the relative motion
determined by

p "pI
K„,= "+V(p ) .

I+. x =k(p sinhPP+ coshPp },
t =p co'shPP+ sinhPp;

II+. x =p' coshP'P'+ sinhP'p',

t =k(p' 'sinhP'P'+ coshP'p');

and it follows from (2.10) that in

(2.17)

(2.18)

We remark that the function

M =t]p& —x&E~ +t2p2 —x2E

I+. A, = gamp P,
II~. A, = + mp' P' .

(2.19)

which generates the Lorentz boost (by a Poisson bracket),
also decomposes to a sum over center of mass and rela-
tive parts

It is clear from Eq. (2.19}and Fig. 1 that a counterclock-
wise motion can occur for A, )0.

The second-order equations are

We shall call

+M" .c.m. rel I&. X =+[(pP +P )coshP+ (pP+ 2pP)sinhP],
t'= (pP +P )sinhP+ (pP+ 2pP)coshP

(2.20)

M„'~ =&p xE=m (tx xt )=———
A, ,

'
(2.10)

where we have used the canonical equations (for
x"=dx "/dr),

aZ„, , M E
Bp m

' BE m
(2.11)

The solution of the reduced motion problem can be con-
sidered a description of a two-body problem when the
center-of-mass motion is accounted for, or as the solution
of the problem of a single particle moving in an external
potential (with origin moving up the t axis with r) when
M2~ ~ in such a way that e2=E2 —m2 is finite. In this
approximate mass-shell limit,

p2 E2 p2 —(e2™—2)' M2

2M 2 2M2 2M 2 2

so that

(2.12} FIG. 1. The four sectors of the (x, t) plane, disjoint under
proper Lorentz transformation. The sense of increasing hyper-
bolic angle is shown in each sector.
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and

II+. x =(p'P ' +p')sinhP'+ (p'P'+2p'P')coshP',

(2.21)

t'=+ [(p'P' +p' }coshP'+ (p'P'+2p'P')sinhP'] .

According to the second set of equations (2.1),

1 BV .. 1 BV
X = t=+-

m Bx
'

m Bt
(2.22)

, av,
pf3 +p+ — sinhP+ (pP+ 2pP)coshP =0

m Bp

%e may choose V independently in the four sectors VI

V», since no Lorentz transformation connects them.

Using Bp/Bx =+coshP, Bp/Bt = —sinhP in I+ and
Bp'/Bx = —sinhP', Bp'/Bt=+coshP' in II+, we obtain
the equations of motion

, av,
I+ pP +P+— coshP+ (pP+ 2pP)sinhP =0,

m Bp
(2.23)

from the change in potential going across the light cone.
These conditions are summarized in the Appendix for
completeness.

%e see from these equations that the form of the po-
tential in I+ and II+ have a different meaning for p and
p', due essentially to the difference in signature between
the space and time components. In the separation vari-
ables p, P, however, one can interpret V, and —V» as

potentials in the usual sense, e.g. , in reading off minima
as stable points and maxima as unstable points with
respect to motion in p and p'. This is not possible for the
interpretation of Vin any sector, even locally, for the rec-
tangular coordinates. The Euclidean curl of the forces
represented by (2.22) is 2d V—/Bx Bt, in general nonzero,
and hence there is no corresponding potential functions
for which the stable and unstable fixed points can be seen
in the usual way [10]. The interpretation of the potential
is made much simpler, as we see, in the separation vari-
ables, which yield equations very similar in form to the
nonrelativistic problem (the attractive nature of the cen-
tripetal terms is due to the simple hyperbolic structure of
1+1 dimensions; see Ref. [16] for a discussion of the
3+1 problem in a classical context, and Ref. [17] in a
quantum-mechanical context).

In terms of the hyperbolic variables, the Hamiltonian
takes the form

p'&'+p'
m Bp

sinhP'

+ (p'P'+2p'P. ')coshP'=0,

(2.24)

I+: K„i=—(p —pP )+V, (p ),

II K =—
(
—p' +p'P' )+V (p' )

(2.28)

(2.29)

1
aVI

P+pP = ——,pP+2pP=O .
m Bp

(2.25)

The second of Eqs. (2.25) corresponds to the constant of
motion A, in I+. In the timelike sectors,

av»
p'P' +p' ——,coshP'

l?l Bp

+ (p'P'+ 2p'P'}sinhP' =0 .

Eliminating the hyperbolic trigonometric functions in
these pairs of equations, we obtain the separated equa-
tions

Using the conservation laws (2.19), these are

2

I+: K„i=—
p

— + V„(p ),
2mp

k2
II+: K„t=——p' +, + V„(p' ) .

mp

(2.30)

These formulas and (2.19) enable us to solve for p(r), p(r)
in quadrature,

—1/2
2I+. r=(+)&m/2 fdp K„&+ 2

—
V& (p )

2mp

(2.31)

1II+: p'+pg =—
m

V»+
p'P '+2p'P'=0 . (2.26) +J k dr

m p
(2.32)

The second of Eqs. (2.26) corresponds to the constant A,

in the timelike regions. With the help of Eqs. (2.19),
these become

1
avI

I+: p+
p m Bp

3V»
II+.. p'+

m p ~ ~p

(2.27}

In principle, these equations can be solved in each sector,
and the solutions must be continued from I+ to II+ con-
tinuously in x, t and with conditions on x, t' that follow

X2
II+.. r=(+)&m /2 Idp' K„)+-

2l71 p
' 1/2

+ V»~(p') (2.33)

f k dr
m p

(2.34}

where the signs (+) are uncorrelated with the sector
designations. They must be assigned according to initial
conditions and the occurrence of turning points (such
that d~) 0 along the motion).
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We note that since —
A, =Moi, =m(tx x—t')= A men= —mp P . (2.44)

A,
20'= —[Vn (p'}—&,.i]+

Pl p

motion in the timelike region is forbidden for

1
p Itri Vn (p'} (2.35)

Finally, although the relative coordinates pass through
the light cone, for M2~ ao, according to Eq. (2.14), there
is a range Ace&1/'i/2 for which U, &1. In this range,
the amplitude and frequency are sufficiently low, so that
the upward motion of the whole system along the t axis
prevents a transition of the motion of particle 1 through
the light cone (with origin on t =r)

For A,AO, there is no choice of Vii that prevents some

penetration into the timelike region except for
V»+ = —00. We shall make this simplifying assumption
in the later sections.

To conclude this section with an illustrative example,
we study the harmonic oscillator in 1+1 dimensions in
order to acquire some familiarity with the hyperbolic
coordinates. For the oscillator, we take (in all sectors)

III. RELATIVISTIC DUFFING-LIKE PROBLEM

We shall now study the Duffing-like potential, with

V, (p )=—p ——p (a, b &0)

and

(3.1)

V(p )=—,'mco~p~ . (2.36)
Vn (P')= —". (3.2)

The canonical equations in rectangular coordinates are

x+co x=0, t+co t=O, (2.37)

and hence we may take solutions, for simplicity, of the
form

x(r)= A costs, t(r)= A since' . (2.38)

In the sector I+, these are, in hyperbolic coordinates,

A costs =pcoshP, A sinror =psinhP,

so that

(2.39)

p = A cos2cor, tanhP=tanco~ . (2.40)

In I+, cor is bounded by kn/4, so ~tanhP~ &1, i.e., the
mapping is well defined. We now demonstrate that p, P
defined by (2.40} satisfy the equations of motion (2.25).
By direct computation,

The motion is entirely confined to region I+ for &%0.
For A, =O, the trajectory can pass between I+ and I . In
this case, it follows from Eq. (2.10) that

t =ax (3.3)

p+ +bp —ap=O .3

m p
(3.4)

The first integral is given by the reduced motion Hamil-
tonian

for some constant a ( 1 in I+. As we have pointed out in
Ref. [10], the relativistic equations (2.22) then coincide
and become identical to the nonrelativistic Duffing oscil-
lator (for both x and t). We shall return to this point
when we introduce driving and dissipation. Dissipation
implies convergence to such a line.

In I+, for A, =mp PXO, Eq. (2.25) becomes

P
AN

(1+cos 2cor) .
(cos2c07)

(2.41)
+. i= 2P+Vff(P )

where

(3.5)

using the relation
—tan cor) ', it follows that

cosh P=(1—tanh P) '=(1

CO

cos2$7
(2.42}

Differentiating Eq. (2.40) with respect to r, one obtains

cosh P—
CO

cos 607

A,
2

4 2 2mp
(3.6)

The existence of neighboring stable and unstable orbits,
a necessary condition for the existence of homoclinic
crossings associated with the possible onset of chaos in
the perturbed motion (horseshoes) is assured by the pres-
ence of a local minimum in the function (in the following,
wetakep =()

well defined in I+ (these solutions can be continued to the
other quadrants; see the Appendix). Then,

b 2 a A,

4 2 2m/
(3.7)

for g&0. The condition f'(g) =0 is
(2.43)p

A co

(cos2cor)
A,

2

g ——g+ =0.
b mb

(3.8)

Following the standard procedure for obtaining the roots
of a cubic equation [18], we have the condition for three
real roots (the alternative is for one real root and two

The addition of PP to p cancels the first term of Eq.
(2.41), and we obtain the first of Eq. (2.25). Both P and
PP are singular at cor~kn/4 (on the light cone). These
singularities cancel. For the generalized angular momen-
tum, we see that



748 L. P. HORWITZ AND W. C. SCHIEVE 46

complex roots, which we cannot accept)
3

&2 4m a
27 b2

(3.9)

For a, bAO and A, sufficiently small, we are assured the
existence of a dip in the function V,tr(p ) [for b =0, Eq.
(3.8) degenerates to a quadratic with a single root for
g&0].

The effective potential then appears as in Fig. 2; p, is
the position of the local maximum. We designate the
second turning point at the separatrix p2.

According to Eq. (2.31),

~= (+ )&m /2 f dp

A,
2

4 2 2mp

1/2

(3.10)
FIG. 3. A representative trajectory for A. )0 in the exterior

well of Fig. 2 (for a choice of type K&).

=(+)Tt&m/2 f ' 1/2

gK ——
g +—

g +b, a,
4 2 2m

(3.1 1)

For K„~=Ez, there are three real roots for the function

K„,t ——
g +—g+ =0 .

b 2 a
4 2 2m/

(3.12)

In the exterior well, the motion oscillates between the
two turning points (p=O) (Fig. 3). In the interior well, it
runs between a turning point and the light cone where p
changes (bounces) abruptly (Fig. 4). For K„t=K„ the
separatrix value, the motion in the exterior well is be-
tween a turning point and an asymptotic approach to the
local maximum at p, (Fig. 5). In the interior well (Fig. 6)

K, —V(p, ),tr=0, (3.13)

and the conditions for a local maximum are

V(p').
trip

=0,d

dp
(3.14)

it goes between a bounce on the light cone to an asymp-
totic approach to the local maximum at p, . In all of
these cases, since A, =m p P is constant, and positive, P & 0
and the trajectories must move so that a radial line to the
system point rotates counterclockwise.

The construction of the Melnikov function [3] requires
an analytic solution at the separatrix value I(,

&

=K ~ At
the separatrix, the turning point condition at p, (true at

p2 also) is

2 V(P ) trip (0 . (3.15)

K~

A

FIG. 2. The effective potential, including hyperbolic angular
momentum contribution for the relativistic Duffing-like prob-
lem. K, is the value (mass) of the relative Hamiltonian at the
separatrix; the unstable fixed point is at p„and turning point at

p&. The value K& has two separated regions of allowed motion,
and K& just one, between a hyperbolic curve where V,&=K&
and p =0 (the light cone).

FIG. 4. A representative trajectory for A, )0 in the inner well

of Fig. 2 (for a choice of type K& or K&).
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The turning point condition (3.13) is

b a
K, ——g+ —g, + =0;

4 ' 2 ' 2m(,
(3.19)

with Eq. (3.17},this is

3A2E=——' a(+s 4 1 & ——3bg, (3.20}

where the inequality follows from Eq. (3.18).
We now consider the denominator of Eq. (3.11) at

E„&=E,. We now de6ne

FIG. 5. A representative trajectory for A, &0 for motion on
the separatrix in the exterior well. Note that the curve ap-
proaches p& only asymptotically.

For pz=g, d/dp=2v'gd/dg and d /dp =2d/dg
+4' /dg, so that (at g& =pf)

i2f(k) =W, 0'—+-4'+—
4 2 2m

Using Eq. (3.19), this becomes

f(()=—,'(g —g)) — +bg A,

mg

The turning point at g2=pz is the other zero off(g)

= 2A'

mba

Therefore,

(3.21)

(3.22)

(3.23)

d b 2 a

dg 4 2 2m( gg,
=0,

(3.16)

d d b 2 o+dg =0.
dg d(2 4 2 2m/

These are

f(k) =
4 (k—ki)'(k2 —4) .b

(3.24)

For the external well, g, & g &
g2, f (g) & 0. We define r to

be the historical time necessary for the system to move
from gz to an arbitrary g in the interval (g&, gz). From
Eq. (3.11),

r= ——v'm /2
1 dg'

(3.25)
&2 (g' g, )v'b/4(g, —g')'~'—

and

b g a/+ —=0 (3.17} This integral can be evaluated by elementary means [19].
We obtain, after inverting the function r(g), the separa-
trix solution (recall g, =p, )

3bg) ag, —3 —&0 .2 (3.18) p'=fi+
cosh (rv bb, /2m )

(3.26)

where 6=$2—g, .
For the inner well, we calculate the historical time for

the system to move from a point on the light cone to
some position in 0&pz & g, . According to Eq. (3.11), this
is, on the separatrix

X

r=+ —,'+m/2 f dg'
' 1/2

fE, ——g' +—
g '+

(3.27)

Again, using Eq. (3.24) for the denominator function, but
noting that g &

g „we obtain

FRs. 6. A representative trajectory for A, &0 for motion on
the separatrix in the interior well. The curve approaches p&

only asymptotically.

(3.28)

Again, using the formulas of Ref. [19),we find

r= —,'&m/2 d~'
o (g, g')&b/4(g, f—)'"—
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where

sinh —=—q6

sinh (r&bb, /2m +5/2)
(3.29)

(3.30)

(pP +p )coshP+ (pP+ 2pP )sinhP

(pP +p }sinhP+ (pP+ 2pP)coshP

1aV coshP+ f"sincor,
m Bp

(4.4)

We have computed this result for ~~0. For ~&0, the
equation corresponding to (3.28) can be obtained by in-

tegrating dr from —
~r~ to 0 and from g to 0 over the cor-

responding differential expression in p. One obtains Eq.
(3.29) with r replaced by +

~
r ~, and hence the emotion

p( r ) is even in r even in the presence of the term 5%0.

IV. DRIVING AND DISSIPATIVE FORCES

Forces, as for nonrelativistic dynamics, are defined as
associated with acceleration with respect to the invariant
world time. This identification results in the notion of
conservative (or nonconservative) systems consistent with
the structure of the Hamilton equations, e.g. , for one par-
ticle with an external potential V(x"),

dx" p" dp" 8 V

d~ M d~ Bx„

so that

F"=Mx"=—av
Bx

defines a "force." The integral (in this case)
B
Fpdxp= —V x —V xpA

is clearly independent of the path. We therefore add an
external driving force to the equations of motion for the
two particles we are studying here in the form

Hence

1 aV.
sinhP+ f 'sinter .

m Bp

pP +p+ — = (+f"coshP —f 'sinhP)simor,
~
2 .. 1 Bv

m Bp

pp+2pp=(f'coshp+ f"sinhp)since' .

The last of (4.5) is

d
(pP )=(f'coshP+ f"sinhP)simor .

d7-

(4.5)

(4.6}

Since the form of the driving force is at our disposal,
we may choose (for simplicity in the later calculations)
f", =M, x",f, f~2 =M2x2f; it then follows that

f'=+fp coshP, f '=fp sinhP

of the form of a Lorentz transformation, for each P, from
the vector f"=fx, f'=0 in the original frame. Then
d/dr(pp )=0, i.e., the angular momentum is conserved
by the driving forces, and

~
p 1 Bv

p+pP +— =fpsincor .
m 3p

(4.7)

For dissipation, we assume a friction force that damps
only the relative motion of the system, e.g. , as for a
damping due to dipole radiation of two charged particles.
We take this damping force to be proportional to the rel-
ative velocity x" in the system, and hence the equation of
motion is modified to

M~g~ =—

av +f", si con

Bx)

av +fz sinter .
Bxp

(4.1)

1 BVx"=—— —kx" .
m Bx~

(4.8)

As above, we then obtain in I+, in hyperbolic coordinates
[see Eqs. (2.23)], the equations

x"=— av
M) Bx)

av
M2 Bx2

Dividing the first equation by M
&

and the second by M2,
we obtain

(pP +p)coshP+(pP+2pP)sinhP

coshP —k (p/3 sinh/3+ p coshP),
1 BV

m Bp
(4.9)

(pP +p)sinhP+(pP+2pP)coshP

+ fl' — f" sincor .1 1

M ' M
(4.2)

so that

sinhP —k (pP coshP+ p sinhP),1 aV.
m Bp

Since c)V/Bxz = —c)V/c}x, = —c}V/Bx„, Eq. (4.2) be-

comes
p+pp = ——~ 2 1 Bv

m Bp

pP+2pP+kpP=O .

(4.10)

(4.11)
av +f"sinter,

m Bx
(4.3) The first is a dissipative "radial equation. " The second

corresponds to nonconservation of p P

where we have defined f"=1/M, f", —1/M, f", . Using
Eq. (2.20), one obtains, in I+,

(p P)= —kp P,
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and thus

p P=+—e2 ~ —k~

Pl
(4.12)

where we have chosen the constant according to the ini-
tial condition A, =+mp P (at r=O). The result (4.15) im-
plies that for k+0, M '~0 exponentially for r~ 00. In
this limit the system must, therefore, approach a motion
for which t =cxx for some constant a & 1 (if the emotion
is restricted to I+), as pointed out in Sec. III.

V. THE MELNIKOV FUNCTIONS

As discussed in Refs. [3], [5], [6], and [7], the Melnikov
function, measuring the signed area in phase space be-
tween the stable and unstable manifolds as a function of
the phase of the driving forces, is a powerful tool for
detecting homoclinic crossings and the existence of a
Cantor set produced by mappings in the Smale horseshoe
configuration [2,5] (chaotic behavior). We shall calculate
(we use the notation of Ref. [6])

where

(N cosd)%de
(1p) =fcot coscor o

cosh y~
(5.8)

y =&b5/2m (5.9)

p p P — A co cos2cor,

is finite (zero in this case). This result is quite general;
from the quadrature formula (for potentials with finite
limit for p~O),

~ 2 2 A' A'p'-—
m2~p ~p

But, P=A, /rn p, so that p P exactly cancels this singular-
ity. Note, that for A, =0, p is regular for p ~0 (as point-
ed out above, in this case the trajectory follows a path
t =ax through the light cone, and for a (1, the problem
is equivalent to that of the nonrelativistic Duffing oscilla-
tor).

First, for the exterior well, we obtain from Eq. (3.26)

for

b, (ro)=h (rO)+5k, (5.1) and we have discarded the (averaged) contribution of the
constant g(.

Using the formula [20]
b,„(to)=—f F (r)"x„dr,

b, k
= —fFk ( r )"x„dr,

where

F„(r)"=f"sinco(r ro)—

(5.2)

(5.3)

(5.4)

and

f cosco~ 1
& 1+ tee

cosh ys

I (1+z)l (1—z)= 7TZ

sin~z '

(5.10)

(5.11)

and
we obtain

Fk(r)"= —kx" . (5.5)
5~(1.0)= 6 COSCO7.0

CO N7T/2p

y sinhcon /2y
(5.12)

The Melnikov criterion applies to the phase space of
the reduced motion. With the choice leading to Eq. (4.7),
f"x„=fpp= ,'f dp /dr, an—d x"x„=p —

p P; further-

more, for both interior and exterior wells, p(r) [from Eqs.
(3.26) and (3.29)] is even. Hence,

For the interior well, again discarding the constant term,
we have from Eq. (3.29)

COSA)'7 d vb' (ro) = fcd coscoro-
sinh (ye+5/2)

(5.13)

6„(ro)=fco coscoro f p coscor dr
0

(5.6)
To evaluate this integral, we use the series expansion

and

6k=2k f (p pP )dr, — (5.7)

1
4 y (k + 1)

—(2yv+sNk+1(

sinh (yr+5/2) k =0
(5.14)

where we have added the dissipation of the v forward and
reversed contributions to b,k, utilizing the symmetry of
the solutions found in Sec. III.

We remark that both p and p P are singular for p~O,
but p

—
p P is finite. For the oscillator example treated

above, for the unperturbed motion,

and obtain directly the convergent expansion

(k+1)
b '

(ro) = —8yfcod coscoro g
k =p 4y (k +1) +co

—2y(k + 1)Xe (5.15)

and

co A sin 2c07p'=
cos2co7

2 2
CO

cos2cov

Hence, p and p P are separately singular on the light
cone, where co~~+~/4, but the difference,

%e now turn to the dissipative contributions. In the
presence of dissipation, as pointed out, . in Eq. (4.15), P~O
as ~~ ~. Neglect of this effect would result in a diver-
gence of the contribution of the p P term in Eq. (5.7),
since p P is constant in the unperturbed problem. We
are, however, testing for homoclinic points in the p,p sec-
tor of phase space, and hence we may treat the angular
momentum nonperturbatively in coupling it to the
motion in p, i.e., we shall use the precise form of Eq.
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oo 1
6k =2k d~

b, +(Icosh y~
y 6 sinh y~

cosh yT

(4.12). It then follows, for the exterior well, that the presence of dissipation, since then the factor
e "'~1. We see that, in Eq. (5.20), the denominator
vanishes, but the numerator becomes

cosh y7 e
m

(5.16)

y RI 1+—
kl m fl

which vanishes for

bm gg2=2X

(5.23)

where we have used Eq. (3.26) to obtain

yb sinhy~

cosh y~Qh+g, cosh y~
(5.17)

this is, in fact, the condition (3.23) determining the turn-
ing point (2.

Letting g =sinhy, and taking k =y /2 as above, we ob-
tain

For simplicity in obtaining an estimate of 6k, we take
k =y/2, a small quantity. Letting g=coshyr, Eq. (5.16}
becomes

i2

m

where we have defined the indefinite integrals

A.
2

y b, I', (g) — e I'(g)
I m

where we define the indefinite integrals

, (( y
dg /+1

g2 d2

d

(5.24)

(5.25)

(5.19)
g2 +d 2

and d =Qh/g, . For the interior well using, from Eq.
(3.29),

I'(g)=y "~ ~ ' ~ +' ~' . (5.26)
Q(2 g2 d2

The integrals (5.19), (5.20) and (5.25), (5.26) are elementa-
ry (after some transformation the formulas can be found
in Ref. [20]}. The solutions are

yh cosh/

sinh P+g, sinh P
—b,

where P =y~+ 5/2, we obtain

hk =2k d~
g, sinh P

—5

(5.21)
1I I (g) =

d4
Qg2 1 d2(g2 1)3/2

+
3(3

+ }/1+d . I d +1+ I111 SII1 . /d

(5.27)

2 cosh $X y 5
sinh P

2 —2k 7.
sinh Pe

m

d 3/g —1 —i 3/1+ d

(5.22)

We have started the integration at light cone at ~=0. At
this point the divergences in p and p P cancel, even in

1

d
1

g id-
2l g+ td

and (obtained essentially by taking grig)

(5.28}

I&(g)=
(g2+ 1 )3/2

3g3

1//2

d +1
2d

d +1
d

.
h ) d +1

g —2 (+d (5.29)

d 3/g +1—1/1+d
ln

2&1+d2 &&2+1+&1+d2I 2 ( j)=( 1/g + 1+—ln-d g —d
2 (+d (5.30)

At the limits for the exterior well

Il (1)=0,
, V'1 —d', d0=tan ', /=tan

&1+d2I, (~)= 1+ sinh 'd
d4 3 d

To evaluate I2, define

(5.31)
Then

1/g —1 —i+I+d
ln

'}/g —1+i3/1 —d

—i', g= 1

0, (=co,
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—2i tan 'd, g= I
ln (+id

Hence,

—4k 6
d4 2m

For d « I (with k =y/2),
k—ib

(5.35)

Iz(1)=—I+ —d tan d,d27r —1

2&1+d'
(5.32)

For the interior well, the lower limit is somewhat deli-

cate; the singularities in I
&

and I2 cancel due to the rela-
tion (5.33). Using the relations

p~p (I+I )

m2 d6

Then,

(5.33)

I~( oo )=0 .

In evaluation 6k and 6k we use the fact that the expres-

sion (5.23) vanishes, i.e., that

sinh ' -ln2(d + I )
—In(g —d),, d'+1

g
—d

In(+g + I —+I+d )-In(g —d)+ln +I+1~
for g-d, and

4kb d
k

I+d
d

+I+d
scnh 'd

d2
I — +d tan 'd

2 I+d
(5.34)

1Ii(oo )= I+
d4

I~( oo )=0,
we obtain

+d +I
sinh 'd

4h'6 1 d'
d d 3

1 —d—+ +sin 'd ——'sinh ' —In+2(1+ d )
d 3 3

' 2' 2d

—'t/I+d ln[2d(d++I+d )]' —(d++I+d )In
2(1+d )

1/2

(5.36)

5 (~0)= (1.104) 6 cosco~o .2
7T

(5.37)

Hence, for the exterior well separatrix motion, the Melni-
kov integral has an infinite number of zeros, at this max-
imizing frequency, for

(1.104)'f &
'"'

.
d4

(5.38)

At sufficiently large (o, for kAO, b, (ro)-0(co e " r),
so the Melnikov integral has no zero, and hence there is
no chaotic behavior.

At very small (o (con. /2y « I ) the condition for the ex-
istence of zeros is

f )4k
CO ~

d
(5.39)

and for any given f there is sufficiently small (o such that
chaotic behavior does not occur.

We now turn to the bounds for the interior well, where
6„'(wo) is given by Eq. (5.15). We investigate the bounds
for small and large co.

For m (&Zy, the sum is approximated by

For small d, the estimate for 6'k is equal to that of 5k.
The coefficient of cosco~o in the driving force contribu-

tion [Eq. (5.12)] to the Melnikov integral has a maximum
at co =2y/m (1.914), for which

—25(k+1)e
4y 4y

1
(5.40)

16y d

where we have used 5 =2d for small d in the last relation.
The coefficient of cos(oro in Eq. (5.15) is therefore

greater than the estimate (5.35) for hk if

fee ) 8k

y d' (5.41)

fy ) 16k
CO

(5.42)

For sufficiently large co this condition cannot be satisfied.

For sufficiently small co, this condition cannot be satisfied.
For co large, we note that the contribution from the

series from terms k +1 ~ co/2y are of the order

—2S(k+1)
4X' r2r 4y2 25

We thus estimate a lower bound for the series as

1 "l2r
(k + 1)2

—25(k+1)

k=O co 32d

using again that 6-=2d for small d. Hence, for large co,

the coefficient of cosset in Eq. (5.15) is greater than the
estimate (5.35) for b,k if
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We remark that for both large and small co, the condi-
tions for chaotic behavior are somewhat easier to satisfy
for the interior well.

For intermediate, finite values of co, the criterion for
the existence of a horseshoe can always be satisfied with
sufficiently large (but still perturbative) driving force. We
have therefore analytically demonstrated the existence of
relativistic chaotic motion for the system we have stud-
1ed.

VI. SUMMARY AND DISCUSSION

We have studied the nonlinear classical dynamics of a
relativistic two-body system in 1+ 1 dimensions with in-
teraction described by a relativistic generalization of the
well-known Duffing potential. The framework we have
used is based on the canonical relativistic dynamics of
Stueckelberg [14], in which the time of occurrence of an
event, as well as its position are considered to be dynami-
cal variables. The time of occurrence, or detection of an
event, is subject to variation due to the action of forces
{as for the gravitational redshift) as well as the usual
effect of the relative motion of the detector through the
Lorentz transformation [15].

The dynamical equations for the relative coordinates
x (r ), t (r ) are separable in hyperbolic coordinates. We
have solved these equations in quadrature; the Hamiltoni-
an of the system provides a first integral. Closed expres-
sions were found for the "radial" variable

p (r) =x(r) —t(r) for the unperturbed problem. The
hyperbolic angle P= tanh 't /x is then determined by
conservation of the angular momentum M ', correspond-
ing to the generator of Lorentz boosts. Guided by the
structure of the expression for the accelerations
x=d x/d~, t=d t/d~, we introduced driving and
damping forces as quantities which affect the accelera-
tions linearly. The periodic driving forces were chosen so
that M ' remains conserved, but dissipative forces result
in an exponential decrease of this quantity. In the limit
in which M '~0, x(r) and t(r) become proportional,
and the two coupled equations of motion reduce to a sin-

gle one, identical to the nonrelativistic Duffing oscillator
(stable if the proportionately constant is such that the rel-
ative motion is spacelike). This equation is known to
have chaotic behavior near the separatrix, under weak
driving and damping, and a strange attractor for stronger
perturbation. This would imply that similar behavior
should occur in the relativistic generalization of the
Duffing problem and was indeed observed in the comput-
er solutions for the motion reported in Ref. [10]. Using
the exact solutions for the separatrix orbit, we have
shown where that the Melnikov criterion for the ex-
istence of chaotic behavior under small driving and
damping perturbation demonstrates analytically the ex-
istence of chaotic behavior (in this work, we confined the
motion to the spacelike region by using an infinite poten-
tial in the timelike sector).

The existence of chaos in spacetime has important
consequences for our perception of the structure of
matter and its evolution. The simpler picture of a
smoothly developing world line must, in this case, be re-

placed by a more complicated, stochastic structure, i.e.,
initially nearby orbits may follow very different paths, so
that the manifold generated by the motion is not smooth.

As an example of the application of this result, the test
of reversible motion is in choosing a set of initial condi-
tions that have all velocities reversed and to check wheth-
er the ensuring motion retraces the path followed in
reaching those conditions at this initial time. In Galilean
mechanics, there is no question of principle in achieving
this with sufficiently accurate measurements of position,
since the time at which the position is observed is that of
the laboratory clock, which also serves as the parameter
of motion in the equations.

In the relativistic case, the time at which observations
are made is, in the same way, the time of the laboratory,
but is not identical (as it would be in the Galilean case) to
the invariant time parameter governing the motion.
Hence, the determination of the ~ associated with each t
requires a sufficient number of observations in the labora-
tory to fit the functions of x "(r) known from the solution
of the equations of motion. For sufficiently smooth
motion and accurate observation of x, t, this determina-
tion can be made in principle. Under conditions of
chaotic motion, however, it becomes difficult, if not im-
possible, to relate observations in the laboratory to the
functions x "(r) with sufficient accuracy to determine the
a posteriori correspondence of the set of events observed
with the parameter of the motion ~. There is then no way
of choosing a set of initial conditions which would result
in a motion that retraces the path of arrival at these con-
ditions.
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.2 A
2

p'=cr, &2/m Kr i+ Vii (p }+
2mp

' 1/2

(A2) x'-+ —,e ~+ (E„i+V„)e~
mp 2A,

(A 10)
~here we have taken into account the possibility of in-
variantly choosing different potential functions in each
region. In the neighborhood of the light cone,
p(p')~O, p(p')~+~, we cannot a priori neglect the
small terms e ~ (e ~ ), since they may occur multiplied
by 1/p(1/p') [e.g., in the formula (2.17), e ~p cannot be
neglected for p~ oo, since p diverges with 1/p]. Expand-
ing the square roots for small p(p') and using the rela-
tions (2.17), (2.18), one obtains in I+,

x — sinhP+cr, — + (K„,—V, ) coshP,+
mp

'
pm

(A3)

t —+ '
coshp+ cr,— + (K„i—V, ) sinhp

A, +
mp pm /k[

"' '+

(A4}

, e ~+ P
( —K„i+V» )e~

mp' 2k,

and for P'~ —ao,

x'-+ — e '~+ ( K—+V )e~

(A 1 1)
~ ] e ~~ + ( K—+ V, }e~~~

rel I ~

Let us designate the four branches of the 1+ 1 light cones
as (i) on the boundary I+, II+, (ii) on II+, I, (iii) on I
II, and (iv) on II, I+.

The spacetime coordinates must be continuous in pass-
ing these boundaries, so that at

) )

(i) x —+e~= ~e~ t —+e~= ~e~
2 2

'
2 2

and in II+

~ =—X =+ , coshP'
mp'

+o, , + (
—K„i+V» ) sinhP',

p'
(A5)

)

(11) x e e
2 2

I

(iii) x- —&e-t'= —~e-t"
2 2

eP 2.e —t)-2' 2'
(A12)

, sinhP'
mp'

ko, , + +( E„i+Vi, —
) coshP .

p'
(A6}

I I

(iv) x —+e ~=~e~, t- —+e ~= —~e~ .
2 2

'
2 2

It then follows from (AS)—(All) that the velocities x, t
must change on these boundaries according to [we as-
sume Vi, V„have finite limits as p(p') ~0]+

Since dr~0, O,*dp~O, o,+—dp~O (dp can change sign
only at turning points). For p(p') ~0, p(p') —+ ~, x, t and
x', t' must be bounded. Hence from (A3) —(A6), we have
the sign correlations

X
(i) x —x = —(V —V )IIg Ig g II~

(A13)

tr,*=+ sgnp sgnA. , cr,—+ =+sgnp'sgnA, . (A7) (ii) xii —x, = ——( Vii —Vi ),

X
mp

e ~— (K„,—V,„)e~,

t' —+ e i —P (K —V )e~
rel

mp

It then follows in I+ that for p —++ m

(A8)

t t =—(V ——V ).II+ I g II+

(iii) xi, —xi =—( V, i
—V, );

t„t, =—(V„——V, );

(A14)

(A15)

and for P~ —ao,

x — e '~'+ P (K —V )e '~,~ A

rel I~mp
(A9)

(iv) x„—x, = ——( V„—V, ),X

t t =—(V ——V ).II I~ g II I~

(A16}

t —+ e I@I P (K —V )erel I
mp

In II+, for P'~ + Do,

With these conditions, the motion can, in principle, be in-
tegrated through the light cone from the quadrature solu-
tion with general potential function in all sectors.
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