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We analyze the spectral properties of the Perron-Frobenius operator U, associated with some simple

highly chaotic maps. We obtain a spectral decomposition of U in terms of generalized eigenfunctions of
U and its adjoint. The corresponding eigenvalues are related to the decay rates of correlation functions

and have magnitude less than one, so that physically measurable quantities manifestly approach equilib-

rium. To obtain decaying eigenstates of unitary and isometric operators it is necessary to extend the

Hilbert-space formulation of dynamical systems. We describe and illustrate a method to obtain the

decomposition explicitly.

PACS number(s): 05.45.+b, 05.20.Dd

I. INTRODUCTION

One of the oldest and most important problems in the
field of nonequilibrium statistical mechanics is the deriva-
tion of the thermodynamic approach to equilibrium from
the basic laws of dynamics. This problem has been stud-
ied for some years by Prigogine and his co-workers, who
argue that irreversibility arises from dynamics, rejecting
explanations based on extradynamical considerations [1].
His group has recently developed a "complex spectral
theory" of unstable physical systems in which irreversi-
bility is seen as a spectral property of the generator of
time evolution [2,3]. The characteristic quantities of ir-
reversible behavior, such as lifetimes, decay rates, and
transport coeScients, appear as eigenvalues in a general-
ized spectral decomposition.

For the so-called "large Poincare systems" —a large
class of systems with continuous spectrum —they con-
struct a spectral representation of the Hamiltonian or
Liouvillian operator which includes generalized decaying
eigenstates. The corresponding eigenvalues are related to
lifetimes and cross sections. Their method, which is
based on a time-ordering rule for the analytic continua-
tion of a perturbation series [4,5], has been applied to
quantum systems involving unstable particles and scatter-
ing, and is applicable to more general problems involving
interacting fields [6—8].

In this paper, we obtain analogous results for highly
chaotic maps. The analysis is not perturbative, so our
method appears different from the method used to ana-
lyze large Poincare systems. In particular, we do not en-
counter small denominators and therefore do not need an
analytic continuation based on a time-ordering rule.
Nevertheless, the two methods produce very similar
mathematical structures. We believe our method is valid
for highly chaotic systems such as Anosov
diffeomorphisms and strong perturbations of integrable
systems where the Kol'mogorov-Arnol'd-Moser (KAM)
tori have been destroyed by resonances.

Chaotic maps can display at least three types of "ther-

modynamic" behavior usually associated with large or
many-body systems. First, if a map is mixing, probability
densities "approach equilibrium" in the sense that they
eventually appear uniform according to any finite-
precision measurement. Second, correlation functions
can decay exponentially, sometimes with long-time tails.
Third, trajectories can diffuse in phase space.

The simplest systems which display thermodynamic
behavior in the sense described above are piecewise linear
chaotic maps, which are mixing and for which correla-
tion functions decay exponentially. Through an analysis
of two such systems —the Bernoulli map and the baker
transformation —we will show that irreversibility is asso-
ciated with generalized decaying eigenstates of the time-
evolution operator.

It is generally accepted that the Liouville theorem is a
strong obstacle to a derivation of irreversibility from fun-
damental principles. The theorem means that distribu-
tion functions always retain complete memory of their in-
itial state, or, mathematically, that time evolution is
given by a group of unitary operators acting on a Hilbert
space. For area-preserving maps, the unitary Perron-
Frobenius operator U governs the time evolution of a
probability distribution describing an ensemble of trajec-
tories. The appropriate Hilbert space is the space of Le-
besgue square-integrable functions on phase space. Spec-
tral values of unitary operators lie on the unit circle
~z~

= l, implying that the time evolution is just a mixing
of phases. These eigenvalues contain no time scales relat-
ed to the approach to equilibrium, such as Lyapunov ex-
ponents and decay rates. For an approach to equilibri-
um, there apparently must be eigenvalues with magnitude
ized & l.

We will show that, for systems which display an ap-
proach to equilibrium, one can construct a natural exten-
sion of the Hilbert space which contains generalized de-
caying eigenstates whose eigenvalues lie inside the unit
circle. The eigenvalues are related to decay rates of
correlation functions and therefore give information
about the approach to equilibrium. We refer to the spec-
tral decomposition of U in terms of these eigenstates as
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the "physical" spectral representation. This representa-
tion introduces time symmetry breaking and thermo-
dynamic behavior into the description of the system at a
fundamental level.

The generalized decaying eigenstates are Schwartz dis-
tributions (continuous linear functionals) defined on a set
of test functions T, which is dense in the Hilbert space.
The subspace T contains only smooth (infinitely
differentiable) functions and can be given a topology in
which it is complete. To calculate correlation functions
and expectation values using the physical spectral repre-
sentation, distribution functions ("states") and observ-
ables must be restricted to 'T. The mathematical frame-
work is the rigged Hilbert space which has been used to
describe quantum resonance phenomena [9].

By requiring that distribution functions and observ-
ables be elements of a space of test functions, one ac-
knowledges that not all states approach equilibrium. For
instance, the Dirac 5 distribution, which describes a tra-
jectory, is not in the space of test functions. (The 5 func-
tion is not in the original Hilbert space, either, but the
domain of the Perron-Frobenius operator can easily be
extended from the Hilbert space to 5 functions, while the
domain of the physical representation cannot be extend-
ed. ) The theory determines what kinds of functions can
be observed if one accepts the second law of thermo-
dynamics. Alternatively, if one takes the (philosophical)
point of view that nature is smooth or that, even if not,
lack of infinite-precision measurements make it appear
smooth, then the restriction to smooth test functions is a
rejection of unphysical or unobservable quantities. We
note that T is dense in the original space and therefore
the restriction is not a coarse-graining.

We will present a method, based on the subdynamics
approach of Prigogine and co-workers, for constructing
the physical spectral representation. The method is
based on an analysis of the resolvent R (z) = I/(z —U) of
the time-evolution operator U. Poles of the resolvent are
located at eigenvalues of U. (By a "pole" of an operator-
valued function, we mean that a matrix element, which is
an ordinary function of z, has a pole. ) The "residues" are
related to the corresponding eigenfunctions. In our
method, we evaluate matrix elements of the resolvent for
~z~ ) 1 and analytically continue them inside the unit cir-
cle, where we locate the poles and evaluate the residues.
For the unitary operator U of Sec. IV, which has an abso-
lutely continuous spectrum on the circle ~z~ =1, matrix
elements of R (z) are analytic in the entire complex plane
except at ~z~= 1, where they are discontinuous. To re-
store analyticity, we define these matrix elements on a
two-sheeted Riemann surface with a cut on the unit cir-
cle. The matrix elements are analytic on the first sheet
(the "physical" sheet —corresponding to the original
complex plane), but have poles on the second, which we

find by analytic continuation through the cut. We will

show that the second-sheet poles can be associated with
generalized decaying eigenvectors which lie outside the
Hilbert space. If a pole is not simple, the eigenvalue is

degenerate and we construct a generalized eigenspace.
There is a close relation between the second-sheet poles
discussed here and second-sheet resonance poles of the S

matrix of scattering theory.
We will illustrate the method with an analysis of two

paradigm systems —the Bernoulli map and the baker
transformation. The baker transformation is a well-
known example of a highly unstable E system. Its associ-
ated time-evolution operator is unitary and has continu-
ous spectrum on the unit circle. The Bernouli map is a
one-dimensional projection of the baker. Its time-
evolution operator is not unitary, but the adjoint operator
is isometric, so that the system shares many mathemati-
cal features with the baker case. We start with the Ber-
noulli map because it is simpler, so that a complete and
thorough analysis is possible. We will find a spectral rep-
resentation of the Perron-Frobenius operator in terms of
a set of exponentially decaying left and right eigenstates
and will show how to decompose the time evolution of
expectation values and correlation functions in terms of
these eigenstates. We will then analyze the baker trans-
formation, showing that because its symmetries cause the
eigenvalues to be degenerate, an eigenspace, rather than
an eigenstate, is associated with each resonance. This
fact leads to power-law corrections to exponential decay.
In the two examples here, our method gives exact results.
It also gives an exact solution for the so-called "multi-
Bernoulli" map [10] and the Arnold cat map [11]. It has
been applied perturbatively to the standard map to dis-
cuss diffusion [12,13]. Work on nonlinear perturbations
of the maps discussed in this paper is in progress.

The work we present here is closely related to results
obtained via the "thermodynamic formalism" (involving

equilibrium statistical mechanics) of Ruelle [14]. The de-
caying eigenvalues we discuss are the same as the reso-
nances introduced by Ruelle [15] and others to describe
the power spectra of correlation functions, and are relat-
ed to the poles of dynamical g functions (see Appendix
E). The essential difference is that their results are ex-
istence proofs while our method gives an explicit con-
struction of the generalized eigenstates. Our point of
view is quite different since we see the results as being of
fundamental importance to nonequi1ibrium statistical
mechanics. In the Ruelle approach, this is obscured by
the emphasis on formal equivalence to mathematical
structures in equilibrium statistical mechanics.

In our work, the emphasis is on the construction of
generalized eigenstates and on the spectral decomposition
of U. Many papers discuss how to calculate the positions
of the resonances [16,17]. Mori et al. [18] have made
some preliminary attempts to find the eigenstates them-
selves. Dorfle [19] has done a thorough analysis of the
spectrum and eigenfunctions of the Perron-Frobenius
operator associated with the tent map, but does not con-
sider generalized eigenstates not in L2. Misra, Prigogine,
and Courbage [20) constructed the unitary representation
of the Perron-Frobenius operator. Moreover, they have
shown that for K systems a nonunitary transformation
leads to a Markov process. We show the existence of
more than one representation for the original, un-

transformed distribution function. We have recovered
the nonunitary transformations through a different ap-
proach. We have given a preliminary description of our
results in two previous Letters [21,22].
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II. RESOLVENT FORMALISM

I-t( l
f y I

(2.1)

The sum is over the inverse branches of the possibly
many-to-one map f.

To analyze (2.1), it is usually sufftcient to study the ma-
trix elements (i~ U"~i'} of U" with respect to some ortho-
normal basis [ ~

i) ]. An orthonormal basis I ~ i)] for

In this section we introduce some basic notation and
give a broad outline of the method. The details will be
clarified in specific examples. We start with a dynamical
system defined by a map f: M~M for some space M
(which in our two examples will be the interval [0,1] of
the real line and the unit square [0, 1]X [0, 1] in I ). We
will study the evolution of ensembles of trajectories de-
scribed by a probability distribution p(x). Since p(x) is a
probability density, it should be integrable, i.e., it should
belong to the function space L, (M). We will instead fol-

low the usual approach [23] and restrict p(x) to the Hil-
bert space L2(M) of square-integrable functions, where
there is a rich mathematical structure. Most of the re-
sults from L2 can easily be extended to L &.

We use a bra-ket notation [24], representing the distri-
bution function p by the ket ~ p). The expectation value of
an observable A is denoted by the inner product ( A~p).
For convenience, we sometimes use the notation
(xlp)=(plx)':—p(x) for x EM. Using this notation, we
can evaluate inner products by writing

(Alp)= f dx(Alx)(xlp)= f dx A*(x)p(x) .
xEM M

In this paper we will usually consider real-valued func-
tions, but the formalism is valid for complex-valued func-
tions, where ( A ~8) = (8~ A )'.

The time evolution of p is governed by the Perron-
Frobenius operator U, which is defined by

p„+,(x}=Up„(x)

=f dy5(x —f(y)}p„(y)
M

=g (x~i)(i~ U"~i')(i'~po) . (2.2)

If the system is ergodic (with uniform invariant distribu-
tion), then the matrix elements (i~ U"~i'), which contain
an integral over phase space, are equivalent to time corre-
lation functions, containing an integral over time, be-
tween "observables" (x~i} and (x~i') measured n time
steps apart.

We start by rewriting the matrix elements in terms of
the resolvent of U, R (z)=1/(z —U):

(i~ U"~i') = fcdz(i ~

1

27Tl z —U' (2.3)

where the contour C is taken counterclockwise just out-
side the circle ~z~ =1. [The notation we use in this paper
is different from that used in Refs. [21,22]. There we
defined a resolvent 1/(e "—U) so that everything would
be consistent with the continuous time case [1]. In this
paper, e"has been replaced by z and the integration is on
a circle in the complex plane rather than on the real axis. ]
Equation (2.3) is valid for n ~ 0 if the spectrum of U is in-
side or on the unit circle. The proof is given in Appendix
A.

Now we deform the contour C by shrinking it (see Fig.
1), and assume (demonstrating in specific examples) that
the matrix elements of the resolvent contain isolated
poles (i.e., there is a neighborhood of each pole that does
not contain any other poles) in the region ~z~

~ l. Each
time the contour passes a pole of the resolvent, we get a
counterclockwise contour around that pole. We label the
poles by an integer m and define e (Rey )0) to be
the position of the mth pole. After passing a finite num-
ber of poles, the contour is expressed as a finite number of
contours around isolated poles, plus a "background" in-
tegral:

Lz(M) satisfies 1 =g; ~i)(i~ and (i~i'}=5, ,' .Inserting the
identity operator twice into (2.1), the time evolution of p
can be written in terms of the matrix elements by

p„(x)= U"po(x)

Re(z)
' LA

Im(z) Im(z)

FIG. l. &he left-hand side shows the contour just outside ~z~
= 1 in Eq. (2.3). poles of the matrix element are shown at z = 1, —', —', —'

(which is appropriate for the Bernoulli map). On the right-hand side, the contour has been deformed by shrinking it past the erst two
poles, so that it is in the form in Eq. (2.4).
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(if U" /i')=
??l

rm
e

—,dz(il
'

~i')
2~i z =e

1 n

+ .
~ ~

rdz(il
2mi lzl =e z —U

(2.4)

In our two examples each matrix element contains a finite
number of poles so that we can enclose all of them and
eliminate the background integral. Equation (2.4) then
becomes

II' '=Ir. )(r. I (2.10)

where ~y ) and (y ~
are generalized left and right eigen-

states of U satisfying

From (2.9), one is tempted to write a completeness rela-
tion g II' ' = 1, but this leads to problems of the
definition of the domain of II' ', which can be avoided by
always looking at matrix elements.

If the resolvent has a simple pole at z =e, thenr?n

[from (2.8)] UII' '=e II' '. In this case, II' I can be
written

n

(i~U" i')=g f, dz(i
~

~i') .2' z=e ™z U
(2.5)

(2.11)

( )
1

2mi z ——e ™z —U
(2.6)

Since U commutes with its resolvent, UII' '=O' 'U. In
Appendix B we show that these operators are orthogonal
and idempotent, i.e.,

The procedure described above appears straightfor-
ward but there are some subtle issues. We will be in-
terested in situations where U has a continuous spectrum
on or inside the unit circle. The resolvent operator itself
becomes singular at ~z~ =1 but in our examples its matrix
elements with respect to the basis [ ~i) ] are well behaved.

Consider the baker map, which we will discuss in detail
in Sec. IV, where U is unitary and has continuous spec-
trum on ~z~ =1. Matrix elements of I/(z —U) are analyt-
ic in the entire complex z plane (including infinity) but are
discontinuous at ~z~= 1. They remain finite as ~z~ ap-
proaches 1 because there are no eigenfunctions in Hilbert
space corresponding to the (generalized) eigenvalues
making up the continuous spectrum. We can therefore
define the matrix elements to be functions on a two-
sheeted Riemann surface with a cut on the unit circle. In
deforming the contour as described above we avoid the
discontinuity by performing an analytic continuation
onto the second sheet. It is well known that a function
that is analytic in the entire complex plane (including
infinity) is a constant, so there must be singularities on
the second Riemann sheet. In the case of the baker map,
there are poles, and we will show that these poles corre-
spond to generalized decaying eigendistributions which
are not in the Hilbert space.

Equation (2.5) can be understood in terms of a set of
"projection" operators II' ', formally (we will usually
consider matrix elements, not the operator itself) defined

by

IU=e '
(y

Equation (2.11) will be proven when we discuss the Ber-
noulli map.

For unitary operators U, such as the Perron-Frobenius
operator of the baker map (see Sec. IV), eigenstates whose
eigenvalues have magnitudes less than 1 cannot be states
in Lz. For example, because U is unitary,

(y. lU U y. )=(r. ~y ). But from (2.11),

(y ~
U U y ) =e (y ~y ). This is a contradiction

2r:
unless (y ~y ) is zero or infinite. In our case, it turns
out to be infinite. Therefore ~y ) is not in L2. The same
argument holds for the left eigenstate, (y ~. We will

show that when ~y ) or (y ~

is not in L2, it can be inter-
preted as continuous linear functional on a dense subset
of L2, i.e., as Schwartz distributions. A related statement
holds for eigenstates of isometric operators, such as the
adjoint of the Perron-Frobenius operator for the Bernoul-
li map (see Sec. III C).

III. THE BERNOULLI MAP

In this section we illustrate the formalism with a dis-
cussion of the Bernoulli map. We derive a physical spec-
tral representation of the Perron-Frobenius operator in
terms of its left and right eigenstates.

A. General discussion

The dyadic Bernoulli map takes the interval [0,1] into
itself according to the rule f(x)=2x (modl). It is the
simplest example of a chaotic map. One can also define

an asymmetric Bernoulli map. The analysis is essentially
the same and has been outlined in a separate Letter [21].

The Perron-Frobenius operator associated with f
[defined by (2.1)] is given by

II 'II'~'= II"6
a, P &

and that

(2.7) Up„(x) =—p„(—)+p„(—+—)
1 x x 1

(3.1)

Un( '=, dz
'

(2.&)
z=e ™z —U

As we shall see, however, they are not Hermitian and in

general can map functions outside the Hilbert space.
In terms of these operators, (2.5) can be written

U "p(x)=p(f(x)) . (3.2)

Because f is not one-to-one, U is not unitary. We have

placed a bar over it to emphasize this point. One can
show (see Appendix C) that the adjoint operator U acts
according to

(i~ U"~i') =y (i~ U"II' '~i'} . (2.9)
Although Uis not unitary, U is isometric (U U =1 but
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U UA1). This fact gives the Bernoulli system much in
common with unitary systems.

For the reasons presented in Sec. II, we assume that
distribution functions and observables live in the Hilbert
space L2(0, 1) of Lebesque square-integrable functions on

[0,1]. We introduce a basis j ~i )] for L2(0, 1) consisting
of modified Legendre polynomials. A polynomial basis is
in some sense natural because U, which is essentially a
scale transformation, leaves the order of a polynomial un-

changed. The modified Legendre polynomials P;(x) are
defined by (x~i)=P;(x)=&2i+1P;(1—2x), where P;(x)
is the ith Legendre polynomial. Orthonormality and
completeness are expressed in our notation by

and

(i)i') =5, ,' (3.3)

1= g ji)(i~ .
i=0

(3.4)

(i~U~i')= J dx P;(x}UP;.(x)

,' [I;; + (——1 )'+' I;; ],
where

(3.5)

The matrix elements of U in this basis are (see Appendix
D)

I;; = Jdx—P; (x )P,'(x /2)

[(2i+1)(2i'+1)]' " ', ! (i'+i+i).
l

2l !—0 (i i I)!(2i+ l + 1)!l!
0, i)i' (3.6)

The matrix elements (3.5) obey the "nonrecurrence"
property:

operator into an "unperturbed" part given by the diago-
nal elements in the Legendre basis, and a "perturbation"
composed of the off-diagonal elements:

(i~ U
"~i')(i'~ U'~i)=0, k, l ~ 1, i%i' . (3.7)

U= Uo+5U,

n

(i~U "~i')= . fcdz(i~ ~i') .
2~i (3.8)

To evaluate (3.8), we decompose the Perron-Frobenius

We say that (i~U~i')%0 contains a transition from the
state ~i') to the state ~i). Equation (3.7) says that a transi-
tion ~i)~~i') can never be followed by a transition
~i') ~ ~i); once the system leaves a state, it never returns.
In this case, nonrecurrence follows from the fact that J;;,
and therefore (i~ U~i '), is upper triangular.

The nonrecurrence property is essential for the rest of
the calculation because it allows us to use the techniques
of perturbation theory. In ordinary perturbation theory,
one decomposes a system into a known (diagonal} part
plus a perturbation characterized by a small parameter.
The exact solution involves an infinite series in powers of
the parameter. If the parameter is small enough, one can
make a good approximation by truncating at a finite or-
der. In our case, we do not have a small parameter, but
the nonrecurrence condition (3.7) guarantees that the per-
turbation series will terminate at some finite order, so
that arbitrary truncation is not needed. To use our
method to examine systems in which one cannot find a
nonrecurrent basis, it may be possible to obtain results
using ordinary perturbation theory by expressing the sys-
tem as a small perturbation from one in which (3.7)
holds.

Following the procedure of Sec. II, we write matrix ele-
ments of U" as an integral over the resolvent:

U—:y /!)(i/ U/i)(i[

(3.9)

5U—:g ~i)(i~ U~i')(i'~ .

Note that there is no degeneracy —the diagonal elements
of Uo are distinct.

We will use extensively the operator expansion

1 1
"

~ 1

z —A —8 z —A z —Ak=0
(3.10)

~here A and 8 are operators and z is a complex number.
Equation (3.10) converges only for "small" 8, i.e.,
~(8/(z —

A)~( & 1. We will use (3.10) to calculate matrix
elements of the resolvent 1/(z —U —5U) for ~z~ ) 1. Be-
cause of the nonrecurrence condition, the resulting for-
mulas for matrix elements converge for all z (except for
isolated poles) and thus effectively define an analytic con-
tinuation of the operator to ~z

~
& 1.

Substituting the decomposition (3.9) into (3.8} and ex-
panding the resolvent operator in powers of 5U using
(3.10) we obtain
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(il U "li')= cdzz "(il li')~
—„., 1 „. 1

27rl z —U

1
. fcdzz" g (il 5U

27Tl .
o z —U z —Uo

(3.11)

1
5U

z —Uo

1 — — 15U . 5U li')
z —Uo z —Uo

, (il5Uit, )

11,12, . . . , 1. z —e ~l
z —e

x(i) i5Uli2) . (ij 15Uli')
yz —e

(3.12)

Matrix elements in (3.11) always have the form

To evaluate (3.13) we use a projective decomposition of
the resolvent in conjunction with the perturbation expan-
sion (3.10). [In principle, one can evaluate (3.13) directly
using (3.10). We introduce the projective decomposition
because the elements of the decomposition are useful for
defining the generalized eigenstates and because it
simplifies the description of more complicated systems
such as the baker transformation discussed in the next
section. ] The decomposition isolates a pole of the resol-
vent by expressing the resolvent roughly in the form
1/(z —U)=S(z)/(z —e ) where S(z) is an operator
which is regular at e . With the resolvent in this
form, the Cauchy residue theorem can be used directly to
evaluate the integrals (3.13). We now take a small detour
to discuss the projective decomposition.

A projection operator P' ' satisfies (P' ') =P' '. [We
include the superscript (m) because it will be needed
later. At this point, it is not relevant to the argument. ]
We define its complement Q' '=1—P' ' where 1 is the
identity operator. For any such operator, one can prove
the following identity [1,25]:

where the nonrecurrence property requires that
i (l, (I2 (I &i'. If j &i' —i, this condition cannot
be satisfied and (3.12) vanishes. Therefore although the
terms in expansion (3.11)are not characterized by a small
parameter, the series terminates because of the nonre-
currence property.

Since the expansion becomes a finite series, there is no
renormalization of the positions of the poles of the resol-
vent. The matrix elements (il U" li') therefore have sim-

ple poles at z =e for i m ~i' and no other singular-~m

ities. We show in Appendix E that the positions of the
poles of the resolvent are the same as the resonances de-
scribed by Ruelle [15] which can be calculated by stan-
dard methods [16,17].

Now we deform the contour in (3.8) as described in
Sec. II. At each step, the matrix element is expressed as
the sum of a finite number of contour integrals, each en-

closing a separate pole e, plus a background integral~m

containing all the rest. Since each matrix element has a
finite number of poles, we can enclose all of them and ob-
tain

1 —[p( )+.C)( )(z)] [p( )+g)( )( )]
1

z —U z —e( '(z)

+P '(z), (3.14)

)p(m)( ) p(m)Up(m)

+p(m) UQ(m) Q(m) Up(m)
Q(m) UQ(m)

(p(m)( )
1 Q(m) Up(m)

Q( )UQ( )

g)(m)( ) p(m) UQ(m) 1

z Q(m) UQ(m)

(3.15)

P(m)(z) Q(m) Q(m)1

zQ(m)UQ()m

where the operators C' '(z), 2)™(z),P )(z), and )II'

are defined by

z —U
(3.13)

As we have seen, the fact that matrix elements in the
Legendre basis involve a finite number of poles can be
traced to the nonrecurrence condition. Matrix elements
with respect to an arbitrary basis not satisfying this con-
dition will in general contain an infinite number of poles
which accumulate at z =0. In this case the background
integral cannot be eliminated. The spaces of test func-
tions we will define in Sec. III D are essentially the sets of
functions for which the background integral can be elim-
inated or vanishes in the limit I ~~.

)II( m )
( )

)' m p ( m ) (3.16)

and that the other operators C' '(z), 2)( '(z), and P '(z)
~mare not singular at z =e . We are free to decompose

the resolvent using a difFerent projection operator at each
resonance, and use the operator P' ' to decompose the

~mresolvent near the point z =e . This gives

For a proof, see, for example, [26].
To evaluate the integrals in (3.13), we isolate the eff'ect

of the pole by introducing a projection operator
P' '= lm)(ml and decompose

—the resolvent operator ac-
cording to Eq. (3.14). We show below that )p( '(z) is in-

dependent of z and is given by
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(ilU "li')=g .f, dz(il[P' '+C' '(z)]1

2' g=g ™ [P' '+2)' '(z) ]+P '(z)
l
i') .

rmz —e
(3.17)

Using Cauchy's theorem to evaluate the integrals, and ex-
plicitly writing out the factor P' '= lm)(ml in the center,
(3.17}becomes

I

Equation (3.20) is essentially a spectral representation of
the operator U. The eigenstates satisfy

(ilU "li')=(ilg [P )+C( '(e )]lm)e
Ul y )=e '

1 y ),

(y IU=e '
(y (3.21)

X(ml[P' )+2)' '(e )]li') . (3.18)

ly )—= II' 'lm)=[p™+C™(e )]lm)

(y l
=(m lII(m) =(m

l
[P(m)+$(m'(e )]

Eq. (3.18) can be rewritten

(ilU "li')=g (ily )e (y li') .

(3.19)

(3.20)

Equation (3.18) can be reinterpreted in terms of left and
right eigenstates of U: ly ) and (y l. Defining these
states by

Equations (3.21) follow from the definition (3.19} and
(2.8), using the fact that the resolvent has a simple pole at
z =e . Before discussing the eigenstates, we discussrm

how to evaluate the operators defined in (3.15)~

The result (3.16) is derived in the following way. Using
the definition of P ' ', the first term in the definition of

'(z) in (3.15) can be written l m)(m l Ul m)(m l, which is

just e P' '. We then use the expansion (3.10) applied
to the resolvent of Q' 'Ug' '. This gives, for the second
term,

' k

p(m)Ug(m) 1 g(m)$U g(m) 1 g(m)Up(m)
g(m)U g(m) z —Q( 'U Q'

(3.22)

From the completeness relation (3.4), Q' )=g & lm')(m'l. Using this form for Q' ' it is clear that (3.22) vanishes
because of the nonrecurrence property (3.7). Therefore we obtain (3.16).

Matrix elements of C( '(z) can be derived from the definition (3.15)~ Because of the factor P' ' on the right, the only
nonzero matrix elements will be (ilC( '(z)lm ). Because U contains transitions m ~m' for m ~ m', only matrix ele-
ments of the form (m —k l

C( '(z) lm }(k a non-negative integer) will be nonzero. Furthermore, because of the factor of
Q' ' on the left-hand side, we cannot have k =0.

From the definition,

(m —k lC' '(z)lm )=(m —k
l

Q™Ulm)
g( ) Ug(

z e m —kr (m —k l(z —g' 'U()g' '} g' 'Ulm }
z —g( )Ug( )

z e m —ky
( —k l(

—Q™UQ' '+Q' '5U Q' ') Q' 'Ul )
z Q(m) Ug( )m

m —ky
(m —k lUlm)+(m —k lBU Q' ' Q' 'Ulm )

g( )Ug( )
(3.23)

where we assumed zPe and used Uo = U —5U from (3.9). Substituting

Q' '= g lm —k')(m —k'l,
k'WO

using the definition of C( )(z), and using the nonrecurrence condition, we obtain a recursion relation for matrix ele-
ments of C' '(z):

(m —klC' '(z)lm)=
m —kr

k —1

(m —klUlm)+ g (m —klmUlm —k')(m —k'IC' '(z)lm) (3.24)

It is clear from (3.24) that the matrix elements of C' '(z) are not singular at z =e ™,although they do have»ngu»ri-
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ties at z =e for m' & m.
~m'

A similar recursion relation exists for the matrix elements of Xl' '(z) and the matrix elements for P' '(z). These are
summarized in Appendix F. The derivations are very similar.

B. Right eigenstates

The right eigenstates ~y ) defined in (3.19) can be written in terms of Legendre polynomials using the matrix ele-
ments of C™(z)given in Eq. (3.24).

m —1

(y )=[m)+ g (i)(i)C' '(e )fm)
i=0

= ~m) —
~
m —2)&(2m + 1)(2m —3) +

~
m —4)&(2m +1)(2m —7)

m 2 (m —4)(2m —1)(7m —15) + 0 ~ ~

3 90

(3.25)

The eigenstate ~y ) is therefore a polynomial of degree
m. Explicit forms for the first seven eigenstates calculat-
ed from (3.24) and (3.25) are

sin2n. x and cos2m.x asymptotically, i.e.,

( —1)
lim — (xly2 +~)&=sin2nx,

m ~ 00

(xiyo)=1,

(x~y, )=&3(1—2x),

(x~y2)=&5(1 —6x+6x ),
(xly, )=&7(—10x +30x —20x ),
(xly4)=3( —', +70x 140x +70x ),
(xly5) =&11(42x —420x +630x4 —252x ~),

(3.26)

1)m+1
(xly2 )~=cos2~x .

m ~ oa

(3.28)

Moreover, one can construct sequences which approach
cos2n mx or sin2n m.x for any integer n ) 1. For example,

1)m+1
lim — (x

~ [ ~y2 +2)z+ ~ y2 )~]N =cos4mx .
m~~ 2

(3.29)

(x ~y6) =&13(22—462x +2310x —2772x5+924x6),

(x i y7) =P15( —572x +4004x —12 012x

+12012x —3432x ) .

Direct computation using the explicit form of the
Perron-Frobenius operator given in (3.1) shows that these

trtare indeed eigenstates with eigenvalues e . It has re-
cently been pointed out that the eigenstates (3.25) are re-
lated to the well-known Bernoulli polynomials B (x) by
[27,28]

(x~y )=( —1) &2m +1(2m)!/(m!) B (x) . (3.27)

Properties of the Bernoulli polynomials are summarized
in Appendix I. The Bernoulli polynomials satisfy the im-
portant property dB (x)dx =mB, (x).

We define ~a)~= ~a)/&(a~a) to be the normalized state
~a). The first seven eigenstates ~y, )z are plotted in Fig.
2.

The right eigenstates have a property we call "ex-
ponential degeneracy. " Successive eigenstates ~y )z and

~y +z)~ become close exponentially with m. This is true
in both the uniform and the L2 norms. Thus there are
states that are very similar but decay with exponents that
are very different. This fact becomes important when ap-
proximating certain functions using a large but finite
number of the right eigenstates. The coefficients of high-
m eigenstates can depend very strongly on the degree of
the approximation. In this case it is not very meaningful
to treat the high-degree modes separately.

We show in Appendix I that the eigenstates approach

It is natural to ask what space is spanned by the right
eigenstates ~y ). We will denote this space by V. It will

be defined precisely in Sec. III D. For now we state only
that T contains only analytic functions, that it is dense in

L2, and that it can be given a topology in which it is com-
plete.

C. Left eigenstates

We now discuss the left eigenstates in detail. We have
called (y ~

a "left eigenstate" of U. More precisely it is
an eigenstate of the adjoint operator U, defined on L2
by (A(U(B)=(U A[B) for all (A), (B)EL&. As men-
tioned earlier, U is isometric. We showed after (2.11)
that an eigenstate in L2 of a unitary operator has an ei-
genvalue with magnitude 1. The same argument holds
for an isometric operator. Therefore (y ~

cannot be an

FIG. 2. The first seven right eigenstates y j~ for the Ber-
noulli map.
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r function in Hilbert space. We will show that

subspace o 2 wf I. which is spanned by the right eigen-
s and therefore belongs to the dual spacestates, an

d if we can specify its ac-A distribution is well defined i we
f f nctions. By definition, for any J xtion on a space o unc i

in %we can write

Th s another way to calculate the left eigenstatesere is
'ch ives us a visual picture and an easier w ya to com-

the Legendre polynomials in terms o e

(3.34)

From the biorthogonality condition & .'
n (3.21)

(3.30)

(3.31)

As usual, (3.34) makes mathematical sense ose for individual
f taking its inner product with (il.components, i.e., a ter a in

Operating wit e
'

h ( U )" on both sides we get

&(m)—U te )"lm)=(U te )" Iy )+ g a; y +;
i=1

. In Sec. III D we will introduce a topology for
us. ( I

therefore defines aT in which (y I
is continuous. y

distribution on
f 1 since theis in some sense orma,This argument
nd in ractice arem

'
t & are usually not known an in pracoemcien s &~

ructive in-computed from (3 31). We now give two construct'
terpretations of the left eigenstates.

an explicit formula for the left eigenstates (m ~
' 1/2

2m +41+1
+11=0

(2m +2l —1)!
(

(2m —1)!(2l+ 1)!
(3.32)

ansion row as forThe coefficients in this expansion grow as fo
l Certainly the sum does not converge. is islarge . e

t is a distribu-consisten wi
'

t t ith our interpretation t a y
ular distributions are characterized ybtion, since singu ar is r'

the Dirac 5series ex ansions. For instance, e
ed in a basis of trigonometric

ex ansion coefficients are constant so a
fh 5ft converge. Derivatives o e

have even worse convergenc p pe ro erties. e ex
er inte ration, however. We note t a amake sense under in g

d' t 'b t'on onlydiverging series can be inte per reted as a is ri u i
For in-when

'
en it is an expansion

'
en

' '
p 'on in orthogonal functions. or in-

nce a Ta lor series outsiue its ra
''d '

dius of convergence
distribution in a straightfor-cannot be interpreted as a is ri u i

ward way.
a 1 in ittoE uation (3.32) can be given meanmg by app y' g

'

. U
'

the completeness relation (3.4) wea test function. sing e c
have

(m) "~& +=ly )+pa, ' 'e - ' y„+,

As n ~ 00, t e seco, th cond term vanishes, leaving

)= lim (Ute )"lm) .

(3.35)

(3.36)

(y lf)= lim g f dx 2 "P(2"x +x
k=0

(3.37)

If f is analytic at, ik/2" it can be expanded in a Taylor
series. Letting y =2"x gives

6447

n (3.36) describes a function that contam 2

I0 I] which are scaled by a height 2™see Fig. . vi-
—+ ao but its innerous y it is no't '

ot a function in the limit n —+

product wit smoo u
'

h th functions can still be defined.
) byE uation (3.36) can be used to calculate (y lf

co
' ' '

takin the limit at the end ofcomputing it for finite n an a ing
' . 3 as a uide, we divide t e in-the calculation. Using Fig. as a g

'

terva, in1 ~0 1~ 'nto 2" intervals starting at x =
k =0, 1, . . . , 2"—1, and obtain

(y If)=g (y li)(ilf)
i=0

1=0

1/2
2m +4l +1

2m+1

(2 +2l — )!
(m +2ll

(2m —1)!(21+1)!
l2m —3zz

( I
is wellSince the coefficients grow as, y

defined for functions f such that (m +2ll f) "Fourier"
ffi

'
t of f in a Legendre basis) fall off faster thancoef5cients o ~ in a

l + ~ . Functions which contain discon inui
not have this property (for all m). The series 3.30 ter-
minates for all polynomials of finite degree.

-6447

1/4 1/2 3/4

FIG. 3. The function described by Eq.E . 3.33) for n =2 m =3
of the third modified Legendre poly-which contains four copies o e

nomial scaled by a factor
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1 () k
(y If)= lim g g —f"'

j=O k =0

1
( J ) y JP y dyjI O

(3.38)

Since the Legendre polynomial of degree m is orthogonal
to all polynomials of smaller degree, the second integral
vanishes for j &m. Terms with j)m also vanish since
the factor 2"' J' will go to zero in the n~~ limit.
Therefore only the term j =m survives. The integral is
easy to evaluate because (using, for instance, the Rodri-
guez formula for the Legendre polynomials)

( —1) (m!)'
[(2m)!&2m + 1]

where the remaining terms contain lower-order Legendre
polynomials which are orthogonal to P (y). Finally, we
can turn the sum over k into a Riemann integral of f '

and obtain

1)m
(
— If)

m [f(m —1)(1) f (m —lj(0))
&2m+1 (2m)!

(3.39)

Equation (3.39) gives another way of calculating (y If).
Choosing f(x)=P +2, (x) reproduces (3.25). Also,
(y If)=0 for f (x)=sin2mnx or cos2mnx, which is con-
sistent with Eqs. (3.28).

Evidently [since (3.39) was obtained by integrating
f ' '], the criterion for (y I f) to exist is that f must have
at least m derivatives. (For m =0, it must be integrable. )

If we require that (y I f) exist for all m, then f must be
infinitely di6'erentiable. This mill be discussed in more
detail in Sec. III D. Note that analyticity of f is not re-
quired for the final result {3.39). The Taylor series is used
only in an infinitesimal neighborhood so it is really just
an approximation based on the definition of a derivative.

From Eq. (3.39) it is straightforward to show explicitly
that (y I is an eigenstate of U with eigen-

value e =2™.It is sufficient to show

that (U y If)=e (y If) for any f. Letting
c =( —1) m!/[&2m +1(2m!)] and using the definition
of the adjoint operator, we have

(U'y If)=(y IUf)

=(y
I

—[f(—)+f( )])
2 2 2

Cm
[f(m —1)( 1

) f(m —1)(0)+f(m —1)(1) fm —
I( 1 ))

2 2 foal
1 2 2

(3.40)

The distribution (y I
can be written explicitly in two

ways. The first is in terms of derivatives of 5 functions

(3.41)

dm
{y Ix)=c

dx
(3.42)

This also reproduces (3.39). It is more naturally related
to the derivation of (3.39) and can be generalized to an
asymmetric version of the Bernoulli map (where it be-
comes a fractally weighted derivative operator).

In the form (3.42), it is clear why (y I is an eigenstate
of U, since

U d /dx =d /d(2x) =e d /dx

The biorthogonality condition in (3.21) also follows

directly from (3.39) using properties (I7) and (I5) of the

which gives (3.39) immediately if one does not worry
about the interpretation of 5 functions on the boundary
of integration. Equation (3.41) emphasizes the role of the
boundary.

We prefer to think of (y Ix) as a derivative operator
Through a slight abuse of notation, we can write

Bernoulli polynomials.
In summary, we have shown that (y I

is a distribution
on T. We have also shown two equivalent ways [(3.32)
and (3.39)] of evaluating (y If).

D. Spectral decomposition of U

We now discuss the space T, which we have defined as
the space spanned by the right eigenstates I y ). Any
function

If ) E T has the decomposition (3.30) with
coefficients given by (3.31), so the identity operator on T
may be written

{3.43)

From the discussion so far, it is intuitively clear that (i) T
contains all finite polynomials, (ii) T does not contain
periodic functions of period 1 [for which Eq. (3.43) van-

ishes], and (iii) T does not contain functions with com-
pact support in the interior of [0,1] [again, (3.43) van-

ishes].
From the point of view of the physicist, this is all we

need to know. Mathematically, more is required. To be
well defined as a space of test functions, 'T must be en-
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dowed with a topology in which it is complete and nu-
clear. There is no unique choice for 'T. While it seems
reasonable to choose the largest T which makes
mathematical and physical sense, we do not know how to
construct it. We mention here three other possible
choices.

Let P be the set of polynomials defined on [0,1]. Recal-
ling the definition of the normalized eigenstate
I y )iv

=
I y ) /Q(y I y ), we define the normalized

eigendistribution ~(y I by the condition
z(y ly }&=5~ . We then introduce an L2-like norm
on P defined by

(3.44)

for fEP. We then define T to be the completion of P
under this norm. The test space 7 defined in this way
appears to satisfy the three conditions above. In particu-
lar, sequences of polynomials which converge to sin2nmx
in L2 [such as those in (3.28), or truncated Taylor expan-
sions] are not Cauchy sequences in V. The test space
defined in this way is determined by the dynamics
through the left eigenstates.

The choice of the normalized eigendistribution z(y
rather than the original (y I

in (3.44) is crucial If th. e
norm were based on (y I, 5' would include periodic
functions as limits of Cauchy sequences, but they would
have zero norm and thus be identified with zero. Test
spaces with stronger topologies may not include "reason-
able" functions such as sin(2 —e )irx for finite e.

Another choice of topology for P was suggested by
Antoniou and Tasaki [29], who equip P with a very
strong topology (the inductive topology of LF space) for
which 7 =P. The result is mathematically consistent but
to us lacks physical motivation. Also, Gaspard [28] has
shown, using a very different approach, that one can
define V' to be a Frechet space of analytic functions of ex-
ponential type less than 2m.. This space appears to be
quite similar to the one we define above.

Equation (3.20) gives the dependence of the matrix ele-
ments (il U" li') on n, i.e., the time evolution. It is tempt-
ing to generalize this formula and write

used to compute an arbitrarily good approximation by
approximating B with a finite-degree polynomial. A
straightforward way to obtain an approximation is to ex-
pand B in terms of Legendre polynomials and truncate at
finite order, i.e., by defining a polynomial B of order I by

i=0

so that (y IB) in (3.46) is approximated by

(3.47)

I=g (y Ii)(ilB) .
i=0

(3.48)

E. Collapsing functions

In Sec. III B, we showed that sine and cosine functions
could be expressed as large-m limits of combinations of
right eigenstates. In this section, we take a closer look at
these functions and explore their special role.

It is easily verified that sin2mx and cos2mx are "col-
lapsing" states, i.e.,

U sin2mx =0,
Ucos2mx =0 .

(3.49)

For nonanalytic functions and periodic functions (see
Sec. III E), the approximation in (3.48) may depend sensi-
tively on the order of the approximation (3.47). For B
with n continuous derivatives, the first n coefFicients

(y IB ) will be stable with respect to the order of the ap-
proximation while the others will not be. For these func-
tions, the decomposition into decaying modes is not phys-
ically very meaningful, although it will still give accurate
results.

For nonsmooth functions one can give a meaningful
spectral decomposition by considering only the first few
low-order poles of the resolvent and "resurrecting" the
background integral in (2.4). It is then possible to write a
spectral decomposition which contains a finite number of
terms in (3.45) plus a term related to the background in-
tegral. This formulation will be discussed in a forthcom-
ing paper [30).

so that correlation functions ( 3
I
U"IB) become

(3.45}

(3.46)

Similarly, all states sin2nmx and cos2nmx with odd n are
collapsing states. These are eigenstates with eigenvalue
zero, and therefore cannot be expressed as superpositions
of right eigenstates ly ) which decay at a finite (al-
though, for large m, very large} rate. States with even n
are "shifted":

From the preceding discussion, (y I
is only defined on

the subspace V' of L2(0, 1). Therefore Eq. (3.46) has
meaning only if B belongs to this space.

It is important that Y does not include 6 functions.
Furthermore, the domain of (3.45) cannot be extended to
include 5 functions. Therefore trajectories are incompati-
ble with the physical spectral representation.

If we want to calculate a correlation function
(AIU" IB) for an arbitrary (i.e., not necessarily in
function B, the physical spectral representation can be

Usin2~nx =sin2n. (n/2)x, even n . (3.50)

(and similarly for cosine). The norm of such a state stays
constant for a finite number of iterations (equal to the
number of factors of 2 in the prime factorization of n)
and then collapses to zero. It is also not possible to ex-
press this behavior exactly in terms of exponentially de-
caying states.

This verifies our previous statement that sine and
cosine functions are not in "T (although, as we have stated
before, they can be expressed as limits of functions in 'T).
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Since sine and cosine functions form a basis for
L2(0, 1), there is a second, incompatible mathematical
structure for describing the dynamics. It is incompatible
in the sense that it gives a very different physical picture
of the time evolution. Had we started with a Fourier
basis instead of a Legendre basis, we would have found
an essential singularity of matrix elements of the resol-
vent at z=O and the subdynamics would have repro-
duced the shift-collapse picture.

We note finally that Antoniou and Tasaki [29] have
shown that it is possible to construct other spectral repre-
sentations of U using the collapsing functions. These rep-
resentations involve a continuous (and infinitely degen-
erate) set of eigenvalues on a circle of radius A. & l. An
example of an eigenstate appearing in such a representa-
tion is

ikngn 2mi 2"sx

n=0
(3.51)

for odd integer s, k ( 1 and 0 ~ k ~ 2m, which has eigen-
value A,e' . Although these spectral representations are
mathematically correct, the continuous spectrum does
not (except coincidentally) contain any physically
relevant time scales. The exact connection between the
decomposition (3.45) and the "coherent state" representa-
tions involving (3.51) will be discussed in [30].

IV. THE BAKER MAP

Up(x, y)=p(x/2, 2y) if y & —,',
Up(x, y)=p((x+1)/2, 2y —1) if y & —,

' .
(4.1)

U is a unitary operator. Phase-space volume is con-
served, and in this sense the baker map is very similar to
a Hamiltonian system. The Bernoulli map is the projec-
tion of this map obtained by integrating over y.

It is well known [31] that for K systems (which include
the baker transformation), U has a Lebesgue spectrum:
an infinitely degenerate continuous spectrum on the unit
circle plus a point eigenvalue at z =1. The Lebesgue

spectrum does not contain any physically important time
scales, such as decay rates of correlation functions,
Lyapunov exponents, etc. As we mentioned in Sec. II
and will show explicitly in this section, the resolvent
operator is regular in the entire z plane, except on ~z~ =1,
where it is unbounded, while its matrix elements are ana-
lytic everywhere except for a discontinuity at ~z~

= l. We
define the matrix elements on a two-sheeted Riemann
surface, with values on the second sheet defined by ana-
lytic continuation from outside to inside the unit circle

In this section we discuss the physical spectral repre-
sentation of the Perron-Frobenius operator for the baker
map. We will use extensively the results obtained for the
Bernoulli map.

The baker map f is a one-to-one map of the unit square
into itself and is given by the rule f (x,y) =(2x,y/2) for
0&x & —,

' and f (x,y)=(2x —1, (y+1)/2} for —,
' &x &1.

Since f is bijective and its Jacobian is 1, Eq. (2.1) for the
Perron-Frobenius operator reduces to Up(x }

=p(f '(x)). More explicitly this is

(i, j~U~i'j')= —,'[1+(—1)'+'+ + ]I;;IJ'1, (4.2)

where the functions I & are defined in (3.6). Because I is

upper triangular, the matrix elements satisfy a nonre-
currence property similar to (3.7). There exists a transi-
tion from ~i,j) to ~i 5i,j+5j ) —(5i and 5j positive in-

(and vice versa). Important time scales are given by the
positions of singularities on the second Riemann sheet.
In the baker example, matrix elements are meromorphic
on the second sheet, and the positions of the poles give
the decay rates of correlation functions. The second-
sheet poles correspond to generalized decaying eigen-
spaces which are outside the Hilbert space of square-
integrable functions.

The analytic structure of the resolvent operator for
discrete time systems is similar to that of more familiar
continuous time systems. Motion in Hamiltonian sys-
tems is generated by a Hermitian operator H (which inay
be a Hamiltonian or Liouvillian operator). (In the follow-
ing we refer to the resolvent operator itself, but it should
be understood that the statements are strictly true only
for its matrix elements. Analogous statements for the
operator itself require a careful treatment of the domain
and range. ) If H has continuous spectrum, say, on

[0, oo ), its resolvent can be defined on a two-sheeted
Riemann surface with a branch point at z=O and a cut
on the positive real axis (corresponding to the spectrum).
Poles on the second sheet correspond to unstable states.
If there are bound states, they appear as poles on the neg-
ative real axis on the first sheet. In scattering theory, S-
matrix elements have the same analytic structure and the
poles have the same interpretations. The second sheet is
often called "unphysical, " although it contains poles
which give the observed (physical) decay rates.

The time-evolution operator U, is related to the gen-
erator H by U, =e ' '. Under this transformation, the
cut on the real axis for the resolvent of H becomes a cut
on the unit circle for the resolvent of U, . The situation in

the baker map is completely analogous except that the
corresponding generator H has continuous spectrum
from —~ to ~, so that there is a cut but no branch
point. It is therefore not possible to get from one-half of
a Riemann sheet to the other by going around the branch
point, so that each Reimann sheet has two disconnected
parts (inside and outside the circle). (There is an addi-
tional complication that each infinite strip
[2irn, 2m(n + 1)] (

—ao, ~ ) is mapped to the entire com-
plex plane under the transformation z ~e ", resulting in
an infinite-sheeted Riemann surface with another cut on
the real axis. The resolvent of the generator of evolution
for the baker would be periodic with period 2m so that
there are only two Reimann sheets. ) This is closely relat-
ed to the existence of pure exponential decay with no
long tail (power-law behavior for long times).

Following the procedure described in Sec. II, we intro-
duce a basis ~i,j) for L2 on the unit square defined by
(x,y~i j )

=P, (x)P (y) P, (x) is th—e it. h modified Legendre
polynomial which we used for a basis in the Bernoulli sys-
tem. In this basis, the matrix elements of U are (see Ap-
pendix D)
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tegers) but not from li
—5i,j +5j) to li,j ) .

Before proceeding with the subdynamics analysis, we
will illustrate our assertions about the analytic properties
of matrix elements of the resolvent. Consider the matrix
element f (z)=(1, ll(z —U) 'l 1, 1) in the baker map,
which is defined by

poles of the matrix elements of the resolvent are given by
the diagonal elements (ij l Uli,j ) =I;;IJ =.2

ri+j=e '+'. The argument is exactly the same as that used
for the Bernoulli map. For an integer m ~0, there are
m + 1 values of i and j which give the same value 2
The resonances

f(z)= J dx dy Pi(x)Pi(y) Pi(x)Pi(y) . (4.3)
z —U m 2

—mr
(4.6)

Because the spectrum of U is on the unit circle, f (z) is
analytic everywhere except possibly on the unit circle.
Using (3.10) to expand the resolvent in the region lzl & 1,
and the nonrecurrence property, we find that

are therefore (m + 1)-fold degenerate. This degeneracy is
a result of the x-y symmetry of the map. The resonances
are equivalent to the Ruelle resonances calculated in Ap-
pendix D.

We now investigate the matrix elements (i,j l
U li,j )

For the baker transformation, (2.3}becomes

and use (3.10) to obtain

f (z)= 1
Izl & 1 .

lzl & 1 .1

4

For lzl & 1, we can write

(z —U) ' = —U '(1 —2U ')

(4.4)

(4.5)

(4.7)

As discussed above, the matrix elements will be evaluated
at lzl & 1 and analytically continued inside lzl =1 onto
the second sheet, where they contain poles. As in the
Bernoulli case, the integrand of (4.7) will be analytic ex-

cept for a finite number of poles at e . Thereforerm

As claimed, the matrix element is analytic in the entire
complex plane except at lzl = 1, where it is discontinuous.
However, the analytic continuation from the outside to
the inside contains a pole and vice versa. [There is also an
eigendistribution associated with the pole at z =4, but it
does not play a role in our analysis because the contour in

Eq. (2.3) starts outside the unit circle. ] The discontinuity
at lzl = 1 is a property of all matrix elements.

We define the function f (z) on a two-sheeted Riemann
surface. On the first sheet, f(z) is the matrix element
(1, 1 lR (z) l 1, 1 }. On the second, "unphysical"' sheet, it is
the analytic continuation from the first sheet through the
unit circle. Defining f(z) in this way preserves the
analyticity of the function so that we can deform the con-
tour (it cannot be deformed through a nonanalyticity at

Returning to an analysis of the time evolution, we
write the time evolution of matrix elements of U" in
terms of an integral over the resolvent as in (2.3). Be-
cause of the nonrecurrence property, the positions of the

I

(4.8)

P' '= g li, j)(ij l
.

i+j=m
(4.9)

At each pole we decompose the resolvent according to
the projection operator associated with that particular
pole. Expression (4.8), using the decomposition (3.14),
becomes, for the baker transformation,

To evaluate the integrals in (4.8) we again use the pro-
jective decomposition (3.14) to isolate the poles. If we
choose projection operators P"1'= li,j)(ij l

—the decom-
position will not isolate the pole e '+' because theri+j

operators 8" '(z) and 2)"J'(z) will be singular there. In-
stead we must choose projection operators which include
the degeneracy of the pole. Therefore we define

(i j l
U"li',j ')= g f ~ dz(i j l[P(m)+C™(z)] [P' '+2)' '(z)]li',j ') .

o 2'ITl z =e z —q' '(z}
(4.10)

We have dropped the term P' '(z) because it has no

singularity at z =e and therefore does not contributerm

to the integral. Recursion formulas for 8' '(z) and
'(z) are given in Appendix F.

In the Bernoulli map calculation, the resonances were
nondegenerate, so that 4' '(z) was a number and the
analog (3.17) of (4.10) could be evaluated directly by
Cauchy's theorem. In the baker case, the resonance is
degenerate, so that ql' '(z) is a matrix. This introduces

several additional steps, which we now discuss.
'(z) is defined in (3.15). The first term in the

definition, P' 'UP™,is the (m+1)X(m+1) submatrix
of U associated with I'™.Explicitly, it can be written

i+j =mi'+j'=m

We usually think of it as an (m + 1)X ( m + 1 ) matrix and
understand implicitly that it is an operator on the full
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space with nonzero entries only in the P' ' subspace.
P' 'UP' ' is upper triangular (because of the nonre-

currence condition) with e on the diagonal. The~m

second term can be calculated from formula (3.22), which
was used in the Bernoulli map. It is also an upper-
triangular square matrix but has zeros on the diagonal.
Adding these two parts together, 4' ' is an upper-

triangular matrix with e on the diagonal. It is essen-
tially a Jordan block [27].

Denoting by 5( ' the part of the matrix above the di-

agonal, we have

)p(m)(Z) p(m)e &m + i) (m) (4.12)

p(m) m +1 (g(rn)( ) ]ip(m)
z —)Ir™(z);() (z

(4.13)

Equation (4.13) is an exact identity and there is no prob-
lem with convergence because the sum is finite.

Equation (4.10) can now be written

' has the property (b, ( ') + =0 [which is true for
any strictly upper-triangular (zero-diagonal) matrix of di-
mension (m +1)X(m +1)]. This allows us to write

co m+1 n g(m)( )
k

(i j l

U"li', j')= g g (i jf, dz[P' '+C' '(z)] [P™+S('(z)]li', j'),
2')rl

() k () z =e
[

)'m ]k+1
(4.14)

which can be evaluated by the Cauchy residue theorem.
In principle this is straightforward but it leads to an un-
manageable expression. We will use the H operators dis-
cussed above to obtain the compact results (4.23).

Using the operators II' ' defined in (2.6), (4.14) can be
written as

11(m) [p(m)+ C(m)] g (m)[p(m)+D(ml] (4.19)

The explicit forms of the operators (4.18) for the baker
transformation are

Using this relation, the general decomposition (4.17), and
the definitions (4.18), II( ' can be written

(&',jl U"li',j ')=g(i jlU"II' 'li', j') . (4.15)

Setting n =0 in (4.14) and comparing with (4.13) gives
(formally)

m+1
dz[P' '+ C' '(z)]

27Tl k P
z=e ™

(g(m)(z) ]k
X

[
)'m ]k+1

X [P' '+2)' '(z) ] . (4.16)

m
1 dg (m) p(m)+ y [g(m)( )]k

,=, kt dz'
m k

g (m)D(m) —y
k=o k' dz

—
yz=e

X [g(m)( ) ]keg(rn)( )
~mz=e

~mz=e

m
C(m) p (m) —g p(m)(Z)[Z(m)(Z)]k

p kI dzk

(4.20)

+Q (m)11(rn)p(m) +g (m)11(m)g (m) (4.17)

Expression (4.16) is dangerous as an operator expression
(the domain must be carefully specified) but it is well

defined if we consider only its matrix elements.
One can decompose H' ' using the projection operator

P' ', writing

11(m) —p(m)11(m)p(m)+ p(m)11(m)g(m)
where we have defined

e( ) =p(m) Up(m)+ p(m) UC(

Using (4.21), (4.16) can be written

(4.21)

(4.22)

In Appendix B we show that

UnlI(m) [p(m)+C(m)][e(m)]ng (m)[p(m)+D(m)]

p(m)p(m)p(m) —
A (m)

p(m)11(m)g(m) —g (m)D(m)
7 (4.18)

Equation (4.17) holds for any operator since
P' '+ Q' '= 1. We now make the following definitions: (i Jl U" li', j')= y (ij l[P' +C m '[e'm']"

m=0

XA (P +D™]i', j') . (4.23)

g (m)11(m)p(m) —C(m) g (m)

If A( ) is invertible in the P( ) subspace, i.e., if there ex-
ists A ' ' such that A ' 'A ' '= A ' 'A ' '=P' ', then
there is no loss of generality in writing (4.18). This is
shown in Appendix G. We also show there that the com-
ponent Q' 'II' 'Q' ' is not independent from the other
components and can be written

Q(m)11(m)g(m) C(m)g (m)D(m)

Equation (4.23) is our "final" result. Because of the long
derivation of this equation and the layers of definitions, it
is easy to lose sight of its simplicity. Equation (4.23) says
that the correlation function (i,jl U" li', j') can be decom-
posed into independently evolving modes. The operator
P' '+D' ', associated with mode m, maps the function
li',j ') into an (m+1)-dimensional subspace associated
with P' '. Inside that subspace, time evolution is given

by the operator e' ', which is just an (m+1)X(m+1)
matrix. The operator P' '+C' ' essentially does the in-
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verse mapping out of the subspace. The diagonal ele-

ments of e' ' are e, so that the time evolution is ba-~m

sically exponential decay. The other nonzero elements of
e' ' are above the diagonal, so that it is essentially a Jor-
dan block. The modes within the subspace cannot be
decoupled (it is impossible to diagonalize 8' ') and their
interactions produce power-law corrections to exponen-
tial decay.

Although we have derived (4.23) for the baker transfor-
mation, its form is more general. For instance, the Ber-
noulli map is a special case of (4.23) where the dimension
of P' ' is 1. In that case, e' ' is simply a number and
the eigenstate interpretation (3.20) is possible. The
definitions (4.18) reduce to A ' '=P' ', C'
=C' '(e '), etc.

In principle, (4.23) is straightforward to evaluate ex-

plicitly. Although the layers of definitions make manual
calculations quite tedious, it can be evaluated easily by
computer programs which do algebraic manipulation. In
Appendix H, we illustrate (4.23) with the calculation of a
simple correlation function.

A. Test functions and distributions

Until now, we have avoided questions about the
domain of II' ', C' ', and D' 'by looking only at matrix
elements in the Legendre basis, which are always well

defined. Suppose, however, that we want to calculate ar-
bitrary correlation functions

eigenstates Iy ) of Uil, ,„i» for the Bernoulli map, i.e.,

I } m )baker 1 I Ym )Beruou»i (4.27)

The state (4.27) is an eigenstate because the Perron-
Frobenius operator for the baker transformation
preserves uniformity in the x direction and looks like

Ua„„,„i» in the y direction. From (3.42), one can think of
(4.27) as the operator d /dy

Using the operators discussed above, the eigenstate can
be written

Iy ),„,„=(P' '+C' ')Io, m) . (4.28)

Since there are no transitions from IO, m) to Ii,j}for i &0,
Iy )b,k„ is uniform in x. Since the formula (F2) for
(O, m+klC' '(z)IO, m } is essentially the same as formula
(Fl) for matrix elements of 2)' ' in the Bernoulli map and
since only the first terms in lines 1 and 3 of (4.20) are
nonzero, we obtain (4.27). It is easily verified that this is

an eigenstate and eigenvalue e =2
These arguments suggest that the observable A in

(4.24) should be restricted to the space L2(0, 1) V. Simi-

larly, B should be restricted to the space TL2(0, 1}.
These spaces are preserved by U acting to the left and
right, respectively. [The domains can be extended by al-
lowing A to be any element of '7'8 "T and B to be any
element of TNI 'T', although it is not clear what meaning
can be assigned to an observable or distribution in T'
(but not in L2 ).]

(A IU"IB) . (4.24) B. Time reversal

(ij ID' 'Ii', j')(i', j'IB) (4.25)

and

(All' j')(i' j'Ic' 'll j} (4.26)

be finite for all m and i +j=m. This provides an opera-
tional definition of the test spaces to which A and B be-
long. From the nonrecurrence property, (i,jID™Ii',j')
is nonzero only if j'&j and (i', j'IC' 'Ii, j) is nonzero
only if i &i This mean. s that (i,j ID' 'Ix,y) is a finite po-
lynomial of degree j with respect to y and (x,ylC' 'Ii, j)
is one of degree i with respect to x. (i,jlD' 'Ix, y) and
(x,ylC' 'Ii,j) are singular distributions with respect to x
and y, respectively. For (4.25} and (4.26) to be well
defined, it is sufficient that B(x,y) be a finite polynomial
with respect to x and A (x,y) be a finite polynomial with
respect to y.

To get a better idea of what the test spaces are, we note
that e' ', which is essentially a Jordan block, has one
eigenstate, so there should be one eigenstate associated

~mwith each resonance e . The eigenstates are uniform
in the x direction and in the y direction look like the

When is the spectral description (4.23) valid? In the Ber-
noulli map, the condition was essentially that the sum
(3.33) converge. The analog for the baker transformation
is that

Equation (4.23) [which is ultimately based on (4.7)] is
valid only for positive times. To obtain an expression for
negative times one starts with the resolvent of U = U
with n & 0. This leads to a formula identical to (4.23) but
with definitions for the operators —the roles of x and y
are reversed —which gives the correct dynamics for nega-
tive times.

Loschmidt [32] pointed out a "paradox" in any deriva-
tion of irreversibility from time-reversible laws. Starting
from an initial condition po, let the system evolve for n

time steps, after which the system will be described by a
distribution function p„. During this time, we observe
thermodynamic behavior —an approach to equilibrium.
Now consider an initial distribution equal to p„but with
the velocities reversed. Certainly the system will exhibit
antithermodynamic behavior. Although the baker map is
not a Hamiltonian system, we can electively "reverse ve-
locities" by interchanging the x and y dependence of
p„(x,y).

The paradox is avoided in our generalized spectral
decomposition because the velocity-reversed distribution
function p„(y,x) will not be in the domain V L2 The.
xnap preserves smoothness in x but not in y. When veloc-
ities are reversed, the distribution function will not be
smooth in x. Avoidance of the paradox by a discontinui-

ty is special to the baker map. For a Hamiltonian system
we expect a similar situation with a more subtle definition
of the test function space. By analogy with results for the
quantum Friedrichs model [3), we might expect this
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definition to involve analyticity of the spectral density of
p inside or outside the unit circle.

V. CONCLUSION AND REMARKS

Our goal has been to understand the thermodynamic
behavior of dynamical systems —diffusion, decay, trans-
port, and the approach to equilibrium. We have shown
that these phenomena can be introduced at a fundarnen-
tal level into the description of dynamical systems.

In the usual spectral theory in Hilbert space, these
"thermodynamic" systems have an absolutely continuous
spectrum containing no time scales associated with their
instability —Lyapunov exponents, decay rates, or
diffusion coefficients. We have presented a construction
in which decay rates of correlation functions (Ruelle reso-
nances) are obtained as generalized eigenvalues associated
with eigendistributions lying outside the Hilbert space.
These eigenfunctions can be used to write a generalized
spectral decomposition of the Perron-Frobenius operator
if observables and/or distribution functions are restricted
to a space of smooth test functions. The distributions
themselves are in a sense a mathematical tool, having no
physical realization, or even an interpretation in terms of
an ensemble of systems. The eigenvalues, however, are
real and are easily observed. In the piecewise linear maps
discussed in this paper, the Ruelle resonances are the
inverses of generalized Lyapunov exponents, although in
general this is not true [16].

In this paper we have considered systems with uniform
stretching factor. The derivative operator plays a key
role in the thermodynamic description of these systems
since, as we have shown, the left eigenstates in the posi-
tion representation are essentially derivative operators,
and the derivative operator is a shift operator for the
right eigenstates. The derivative operator computes the
change in a function in an infinitesimal neighborhood of a
point, suggesting a connection between our approach and
the usual description in terms of trajectories and
Lyapunov exponents. The appearance of a derivative
operator is closely related to the importance of the
differentiability of observables [30].

The degeneracy of the resonances seen in the baker
map always occurs in conservative systems with uniform
stretching factor. Since the Lyapunov exponents sum to
zero, positive exponents may be expressed as linear com-
binations of negative exponents. Since the Lyapunov ex-
ponents determine the spectrum, it is always degenerate.
For nonlinear systems, the degeneracy is removed.

As presented in this paper, our method appears to rely
on the upper-triangularity of the Perron-Frobenius
operator in some representation (the nonrecurrence con-
dition). Although this simplifies the analysis, it is not
essential. Any method of analytically continuing matrix
elements inside the unit circle will work. Usually this
will be a perturbative method. We have used a perturba-
tive method to explain diffusion in the standard map (for
large values of the kick parameter) in terms of exponen-
tially decaying generalized eigenstates [12]. We believe
that the method can be used perturbatively to discuss
nonlinear perturbations of the maps discussed in this pa-
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APPENDIX A: PROOF OF EQ. (2.3)

Equation (2.3) follows from the operator identity

1
oo—y z

—(n+1)U (Al)

which is valid for ~z~ ) ~~U~~. Equation (Al) is a special
case of (3.10) for A =0.

Because the contour in Eq. (2.3) is outside the spec-
trum of U, we can expand the right-hand side using (Al):

(k+ )) Uk
2mi z —U 2mi k

~ i' in( —i (k +1)/Uk
27Tl 0

=gU"5k „
k

=U" n +0.
In the second line we have used the change of variables
z =(1+e)e '~, where e is infinitesimal. Q.E.D.

APPENDIX B: PROPERTIES OF II'

First we show that the H' ' operators are orthogonal
projectors:

II(m jg(m') g(m)$
m, m' (B1)

Assume first that m Wm '. From the definition (2.6) we

have

per. Christiansen, Paladin, and Rugh [16] have calculat-
ed the Ruelle resonances of a perturbed Bernoulli map
using a monomial basis. For calculation of the reso-
nances and right eigenstates, our method should be
equivalent since we use polynomials. To calculate the left
eigenstates, the calculations are tedious but there does
not seem to be any problem as long as the perturbation is
small enough. The situation in the baker map is less
clear, because a perturbation will mix the x and y direc-
tions. The eigenstates of the baker map are regular with
respect to one direction and singular with respect to the
other. Eigenstates of a perturbed baker map would be
singular with respect to both, so we expect to get a
diverging series (representing a distribution) where before
we had a finite one. Work on these calculations is in pro-
gress [11].
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1 1 1

(2 )2 m m' z —U z —Uy dZ1 y,dZ2

(82)

To show (2.8) we note that

z" '
yd

z" '(z —U)

z ——e m z —U z —U

+gd. '
(84)

Since e and e are different, we can always choose~m ~m'

the two contours smaB enough so that they do not over-
lap. Using a simple identity, (82}can be rewritten

Cd 1 C dz2
(2iri )

where we have added and subtracted the second term.
We are allowed to bring U inside the integral because it
commutes with the number z. The first term has no
singularity, so only the second term remains. The
definition (2.6) can be written

1 1

z —U z —U
1 2

n{ '= . tt} „dz1 zo

2mi = z —U
(85)

(83)

For the first term, we first do the integral over z2, consid-
ering z1 to be held fixed. The z2 dependence of the in-

tegrand is 1/(zz —z, ). Since z, is always outside the zz
contour, the integral is zero by the Cauchy residue
theorem. By changing the order of the z1 and z2 integra-
tions, the second term is also seen to vanish.

For the case m =m ', we can choose the contour in the
z1 integral to be entirely inside the contour in the z2 in-

tegral. As before, for the first term we evaluate the z2 in-
tegral first, holding z, constant. Now there is a simple
pole at z2 =z1 which is inside the contour. After evaluat-
ing the integral, what remains is just O' '. For the
second term, we evaluate the z, integral first, holding z2
constant. Now, however, the pole at z1=z2 is outside the
zi contour, so the integral vanishes. Q.E.D.

Applying U" to (85) and using (84) n times, we obtain
(2.8). Q.E.D.

Derivation of Kq. (4.21)

Starting with (4.19),

11(m) [p(m)+ C(m)] g (m)[p(m)+D(m)]~ (86)

p(m)11(m) —g (m)[p(m)+D(m)] p ~

g(m)fl(m) —C(m) g (m)[p{m)+D(m)]

=C(m)p(m)II(m)

(87)

Using the commutativity with U, the relation
p' '+g' '=1, and the last line of Eqs. (87), we have

and recalling the definitions (4.18) of these operators, we
have immediately

p(m)g(m) p( ) UII(m)Pn+1

p(m) Up( )g( ) +p( ) U~(m)g( )
Pn Pn

=p' 'Up' 'p' 'n' ' +p'm'U~' 'C' 'p' 'rr' '
Pn Pn

[p( m) Up(m) +p(m) Ug (m)C(m) ]p(m)11(m)~

e(m)p(m)g(m)
Pn s

(88)

where we have defined the operator e' ' as in Eq. (4.22).
Applying (88) recursively gives

APPENDIX C: U, U~, UNITARITY,
AND ISOMETRY

p(m)II(m) r e(m) qnp(m)g(m) Po.

From (86}and (87),

g(m)11(m) C(m)p(m)11(m)

=c' '[e'-']"n'-' Po ~

(89)

(810)

In this appendix we review the unitarity properties of
the Perron-Frobenius operator and its adjoint. These re-
sults are well known, but we repeat them here for com-
pleteness. The results are exactly the same for the case of
complex-valued functions. By definition, the adjoint U
of U is the operator that satisfies

Combining (88) and (810) we finally obtain

11( m )+ —[p ( m ) +g ( m ) ]11( m )

—
[p ( m ) +C ( m ) ][e ( m ) ]np {m )11{m )

—[p(m)+ C(m)][e(m) ]ng (m)[p(m)+~(m)]

(& IUI&}=(U &I&)=(&IU'I &}' .

From the definition (2.1)

(~IUIs)= f dx ~*(x) 8 (y)
xe~ {, I f'(y)l

(C 1)

(C2)

Q.E.D.

(811) Since f might be many to one, we divide M into n disjoint
subspaces, M„Mz, M„such that f is one-to-one from
M, into M. Then we define define maps f;: M;~M
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which are one-to-one (but not necessarily onto) by
f;(x)=f(x) for x EM;. Equation (C2) can then be
rewritten

8(f; '(x))
(AI UIB)= g f dx A*(x)

«f;(M;)
I
f'(f, )(x))I

P;(x) =&2i +1P;(1—2x) .

They are given by the Rodriguez formula:

&2i+ 1 d'
P;(x)= . . x'(1 —x)' .

I . dX
(Dl)

n A "(f;(y) )&(y)=gf If y Idy
i=) i

=f & (y) A *(f(y) ) dy
yEM

f &'(y)A(f(y)) dy
y&M

Comparing with (Cl), we make the identification

U p(x)=p(f(x))

(C3)

(C4)

The polynomials satisfy (ijI)=5;
For the Bernoulli map, we use expression (3.1) to com-

pute the matrix elements of the Perron-Frobenius opera-
tor. They are

(iIUIi'}= f dx P, (x)UP;.(x)

= f dx P;(x)—[P;.( —)+P;(—+ —)] .
1 — x — x 1

0
' 2 ' 2 ' 2 2

U is called the Koopman operator. The Perron-
Frobenius operator and the Koopman operator are the
time-evolution operators for states and observables, re-
spectively. Using one or the other corresponds to using
the Schodinger or Heisenberg representation in quantum
mechanics.

If f is bijective and its determinant is 1, then clearly
U =U ' and U is unitary. If these conditions do not
hold, then U has no special properties but U may be
isometric. This follows from

UU p(x)=U[U p](x)

(U p)(y)

f )( )
yI,'( )I

p(f(y))
f-)( )

f y

1

If'(y}ly=f (x)

(D2)

P, (1—x ) = (
—1)'P;(x)

to rewrite the integral as

f 1 1 x
dx —'P (x}(—1)'P ( ———} .

2 2 2

(D3)

(D4}

Then make the change of variable x —+1—x to obtain

f dx —,'P, (1—x)( —1}P,,( —) . (D5)

Finally again use (D3) to get

f dx —,'P, (x)( —1)'+' P, ( —) .

To evaluate the second term in the integral, use the rela-
tion [which can be seen from (Dl)]

for all x, then U U =1, which implies by theorem [33]
that U is isometric (preserves norms}.

APPENDIX D: MATRIX ELEMENTS OF THE
OPERATOR U FOR THE BERNOULLI MAP

AND U FOR THE BAKER MAP

Plugging into (D2) we obtain

(iI UIi') =-,'I, , +-,'( —1)'+"I.. .

where we have de6ned

I;; =f dx P(x)P( ——) .

(D6}

(D7)

The modified Legendre polynomials (xIi)=P, (x) are
defined in terms of the usual Legendre polynomials P, (x)
by

The calculation for the baker map is very similar and
uses (4.1) as a starting point. The result is given in (4.2).

Now we evaluate I;;.. Using formula (Dl), we have

&(2i + 1 )(2k + 1)
I;k

7 i tkt 0
dX , x'(1 —x)'

dX

dk
„(x/2) "[1—(x /2) ]"

d(x /2)

&(2i+1)(2k+1) f )d d'

21;tk t dx'

Integrating by parts i times, we get

k

x "(2—x}"
dX

(D&)
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(2i+1)(2k+1) )d
( 1), ,(1 ),

. d"+'
k(2 )k

2 i!k! 0 d k+1

If i )k, the integral vanishes. Otherwise we use the binomial expansion and the relation

J'!1!
xJ 1 —x'=

0 (i +j+ I)!
to obtain (3.5).

E: CALCULATION OF THE RUELLE RESONANCES

In this section we show that the resonances described by Ruelle are the same as the eigenvalues we calculate.
The Ruelle resonances are the inverses of the zeros of the Fredholm determinant

d (z)—:det[1 —zU] =exp —g(z "/n ) Tr U"

(1—ze ) . (El)

For the baker map, the trace of U" is

TrU"= fdX5(f"(X) X)=f d—xp f dyp5(x„—xp)5(y„—yp)

Bx„py"—1 —1

x fn(x) Gyp

(X)
1= g (m+1)

m=0 2

n

11—
2"

' —2

(E2)

where we have written X—= (x,y) and used the fact that
the baker map has 2" periodic points of period n. The
above calculation of the trace is purely formal.

Therefore the formula for d (z}becomes

This gives a Fredholm determinant

d (z) =+[1—z2 ], (E5)

d (z) =exp —g(z "/n)g(m + 1)2
n m

=+exp —(m+1)g(z"2 " )/n

which leads to the same resonances e =2 but with
single multiplicity.

The trace of U can also be calculated using a basis of
Legendre polynomials: For the baker map,

=+exp[(m +1)ln(1 —z2™)]

g[1 2
—m]m+)

TrU"=g(i, jlU"li,j) .

From the nonrecurrence property,

(E6)

The inverses of the zeros occur at e =2, which are
the same as the eigenvalues we have calculated.

For the Bernoulli map, the trace of U is

x =f"(x)

which gives (E2) immediately.

APPENDIX F: MATRIX ELEMENTS OF X)' '(z),
'(z), AND ')II' '(z)

1 —2
(E4) For the Bernoulli map:

qi(m)(z) e )'mP(m)

(m —kle' '(z)lm)=

(mls)' '(z}lm +k) =

1
[(m —klUlm)+ g (m —klUlm —k')(m —k'l8' '(z)lm)],—k k'=1

1
[(mlUlm +k}+ g (m l2)' '(z}lm+k')(m +k'lUlm +k)] .

z e ~m+k k'=1

(F1)
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For the baker map:

( 1, 1)
(m —j —lj +llqs' '(z)lm j—,m)=(m —j—1j +llUlm j—j)+ g (m —j 1—j +llUlm —j k—',j +1')

(k', I') =0

X(m —j —k',j +1'lC' '(z}lm j—,j ),
(m —j —k,j+ 1 l

C' '(z) lm —j,j }= [(m —j —k,j +ll Ulm —j,j }

(k, I)
+ g (m —j k,j—+ll Ulm —j k',j—+1')

(k', I') =0

X(m —j k',j—+1'I&( '(z}lm jj }—]

(m jj lQ—( '(z) lm —j +kj —1)= [(m j,j I
Ulm —j +k j —1)

~m+k —1

(k, I)

+ g (m —j,jl2) ('(z)lm —j+k',j —1'}
(k', 1')=0

X (m —j +k',j —1'l Ulm —j + k,j —1)] .

(F2)

The summation in the last two equations of (F2) should
be interpreted as

(Ic', I') =0 k'=01'=0
(F3)

In the first equation it is the same except that k' runs
from 0 to l.

A (m) p(m)+gA (m) (G 1)

Because 5A ' ' is upper-triangular with zeros on the diag-
onal,

(gA )m+2 —0

The operator A ' ', defined by

APPENDIX G: DERIVATION OF
Q' 'II' 'Q' '=C' 'A' 'D'

In this section we prove the decomposition (4.19) of
II' ' by showing that A' ' is invertible and that

g(m)11(m)g(m) —C(m) A (m)D(m)

From (4.18) we can write

A (m) p(m)+ y ( 1)s(gA(m))s
s=1

is the inverse of A ' ' on the subspace generate by P'
Equation (G3) is just the series expansion for

1/(P' '+5 A ' '). It converges because, by property
(G2}, it terminates. The fact that (G3) is in fact the in-
verse of A can be verified by direct calculation.

From definition in (4.18) and the fact that
(II' ') =II' ' and P™+g''=1, we have

A (m) p(m)g(m)p(m) p(m)II(m)g(m)p(m)

—p ( m )II ( m )p ( m ) 11( m )p ( m ) +p ( m )II ( m )g ( m ) 11( m )p ( m )

A (m) A (m)+ A (m)D(m)g(m) A (m) (G4)

Multiplication by A ' ' on the left and right gives

) —p( )+D( )C( )

Note that

C(m) A (m)D(m) C(m) A (m) A (m) A (m)D(m)

(G5)

g (m)11(m)g(m) g (m)11(m)g (m)il(m)g (m)

+g(m)il(m)p(m)11(m)g(m)

(g(m)il(m)g(m))2

+C (m) A (m) A (m)D (m)

C(m) A (m)(p(m)+D(m)C(m) }A (m)D(m)

C(m) A (m) A (m)D(m)+( C(m) A (m)D(m) )2

(G6)

Comparing (G6) and (G7), we have

g(m)il(m)g(m)=C™A™D™ (G8)

and that The uniqueness of (G8} can be verified by a series expan-
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sion of (G6) and (G7) obtained by applying the formulas
recursively, and using the nonrecurrence relation.

APPENDIX H: EXAMPLE CALCULATION
FOR THE BAKER MAP

From (4.23), the expression we need to evaluate is

(0,2i U" i2, 0)= g (0,2i[P' '+C"][6'-']"
m=G

X A' '[P' '+D™]~2,0} . (H 1)

In this section we illustrate the application of the for-
malism with an explicit calculation of the correlation
function (0,2iU"i2, 0) for the baker map. The calcula-
tions involve a great amount of straightforward but tedi-
ous algebra and would normally be done with the aid of a
computer program which can do symbolic manipulation,
such as Mathematica. To make the calculation manage-
able by hand, we use some shortcuts which unfortunately
hide the appearance of the Jordan block e' ' in the final
result.

(0,2iU„i2, 0)=(0,2i[6' ']"A' 'i2, 0)

+(0,2IC' '[8' ']"A' 'D' '12,0) .

Inserting all possible intermediate states, we get

(H2)

To simplify the calculation, we make use of the fact [see
(4.2)] that (i —k, j+liUii,j) is nonzero only for @+1
even. The possible intermediate states are therefore i 1, 1)
and i2, 2). Because of this only the m =2 and m =4 sub-
spaces contribute, so that (4.2) can be written

(0,2iU"i2, 0)=(0,2i[8' ')"i0,2)(0,2i A' 'i2, 0)

+(0,2i[8'"]"i2, 0)(2,0i A &"i2, 0)

+(0,2i[8"']"
i 1, 1 }(1,1( A "'i2,0)

+(0,21C"'I2,2)(2, 2I [6'"]"I2, 2)(2, 21 A '"I2,2)(2,2ID'"2, 0) .

We will calculate the first term and most of the second term explicitly, leaving the rest to the reader.

(H3)

1. Calculation of Eq. (H3}, first line

From the definition (4.22) of 8' ' (and the nonrecurrence condition), the diagonal element (0,2i[8' ']"i0,2) is

(0,2iU"i0, 2)=e ' . From the definition (4.20) of A' ', the other matrix element is

1 d
(0,2i [P' '+ [5'2'(z)]+ — [6'2'(z)]2) i2, 0)

dz 2 dz2 yZ=8
(H4)

b, ' ' is a 3 X 3 matrix with entries only above the diagonal. The first term in (H4) is zero, because i2, 0) and i0, 2) are or-
thogonal. From the definition (4.9) of b' ' and the matrix elements of qi' ' [first equation of (F2)], then using (F2) for
the matrix elements of C' '(z), we have

(0,2i 5' '(z)i2, 0)= [(0,2iUi2, 0)+(0,2iUi2, 2)(2, 2iC' '(z)i2, 0}]
dz z

=(0,2i Ui2, 2) (2,2i Ui2, 0)
z z e 4

(0,2i Ui2, 2)(2,2i Ui2, 0) .
(z —e ')'

(H5)

The third term vanishes because the element of [6' '] which is nonzero is independent of z. Combining these results,

(0,2i U" i2, 0)=e (0,21UI2, 2)(2, 21 U12, 0) .
r2 e r4)2

(H6}

2. Calculation of Eq. (H3), second line

We evaluate the first term in the second line of Eq. (H3} by decomposing 6' '=e 'P' '+b,B' ' into diagonal and
off-diagonal parts:

(0,2i[6' ']"i2,0)=(0,2i[e 'P' '+bB' ']"i2,0)

=(0,2ie 'P' '+ne 'bB' '+ e '66' '66' 'i2, 0) .



7422 HIROSHI H. HASEGAWA AND WILLIAM C. SAPHIR 46

The first term is zero because I0,2) and I2, 0) are orthogonal. In the second term, we insert the definition (4.22) of 8'
and in the third term use the definition and the nonrecurrence property to write down the form immediately:

(0 21[6' ]"I»0) = (0 21 U+ UC I»0)+ (»21 Uli, 1)( I, Il UI2, 0) .
2

(H8)

The rest of the calculation proceeds in the same manner, inserting definitions and using the formulas for matrix ele-
ments given in Appendix F.

The final result is

(0,2I U" I2, 0)=e (0,2I UI2, 2)(2,2I UI2, 0)
2 e 4)2

+ne ' (0,2IUI2, 0)+ (0,2I UI2, 2)(2, 2I UI2, 0)
e ~' —e

+ e ' (0,2IUI1 1)(1,1IUI2, o}+
—ny4

(0,21UI2, 2)(2, 21UI2, 0) .
(

)4 i2)2
(H9)

When we substitute explicit forms for matrix elements of
U given by Eq. (4.2) [using (3.6)] it turns out that almost
all the terms in (H9) vanish (since I02 =0), leaving

tt 2

(0,2I U" I2, 0)= — . (H10)
2 64 4

2e xt

e' —1 o

te xt

e' —1

8 (x}d

m!
m —1

d 8 +1(x)

(m +1)!

(I6)

Equation (H10) contains exponential decay with a
power-law correction. Comparing with (Il) we have

8 +,(x)=(m+1)8 (x) .
d

(I7)
APPENDIX I: PROPERTIES OF THE

BERNOULLI POLYNOMIALS

In this section we summarize the properties of the Ber-
noulli polynomials, which are related to the right eigen-
states of the Bernoulli map by Eq. (3.27).

The Bernoulli polynomials 8 (x) are generated by

te xt tm= g 8 (x)e' —1 o m!

To show that the Bernoulli polynomials are eigenstates
of the Perron-Frobenius operator we note that [from
(3.1)]

rn (ext/2+e(x+1)t/2)
UB (x)

m! e'—

( I /2 )e xi /2

e'"—1

so that

80(x)=1,
B,(x)=x —

—,
' .

Also, from (I1) we have

8 (1) 8(0) r(e —1)
m! e' —1m=0

so that

81(1) 8 I (0)= 1, —

8 (1)—8 (0)=0,
for m %1. Taking 8/Bx of (Il), we get

To first order in t, the left-hand side is

1 t
I (1+xt+ )

— 1 ——+
t 2

(I2)

(I3)

(I4)

(I5)

8 (x)
m.

t
2

Therefore

UB (x}=(—,') 8 (x) .

The Fourier coefficients 8' of 8 (x) are defined by

(I9)

( ) y 8 I 2nilx

I = —oo

8 I 8 ( )
—2ttilxdx1

(I 10)

For l =0,

B = dxB x

1 if m=0
Oifm&0 '

where we have used (I5) and (I7). Similarly, one can
show by recursive use of (I7) and repeated integration by
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parts that

I
—m.

(2n.il)
(I12)

cos2~x m even

sin2mx m oddliin B (x)~ ' (I15)

for l %0.
For m WO, we have

(x ) y e2,milxm!
t ~o (27rl'I)

(I13)

lim B (x)~ [e '"+(—1) e '"] .1

m (2mi)'
(I14)

Therefore

As m~00, all terms become negligible compared to
the I =+1 terms, so that

which verifies (3.28). Of course all terms become infinite
in the limit. This argument makes sense only if we con-
sider the normalized states ~B )N.

Equation (3.29) can be verified by examining

(m +2)(m + 1 )

(2n. )
(I16)

The l =+1 terms cancel, so the limit is dominated by
l=+2, which give terms proportional to cos4mx and
sin4srx, respectively. To get the normalizations in (3.29),
we note that ~y )~ = ~B )s, and use the large-m normali-
zation [(B ~B )]' =+2mi/(2n), which can be ob-
tained from (I13).
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