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Faddeev calculation of the dtp mesic molecule
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An improved version of our previously developed method [C.-Y. Hu, A. A. Kvitsinsky, and S. P. Mer-

kuriev, Phys. Rev. A 45, 2723 (1992)] of solving the Faddeev equations in the total angular momentum

representation is applied to calculate the dtp ground and excited S-state energies with an accuracy of
10-'.

PACS number(s): 11.80.Jy, 31.20.—d, 36.10.—k

Recently [1,2] we developed a method of solving the
three-dimensional Faddeev equations in the total angular
momentum representation [3,4] for the three-body
Coulomb bound-state problem. The numerical part of
the method is based on the triquintic spline expansion of
the Faddeev components. Previous applications of the
method to the ground states of the e e e+ and ppp
systems [1,2] demonstrated that it performs very
efficiently and allows one to get high-accuracy results at a
relatively low cost.

In this Brief Report, we apply an improved version of
the method to calculate the S states of the dtp mesic
molecule. Being composed of particles of very different
masses, this system provides one of the most difficult tests
of the efficiency of the Faddeev approach.

A full survey of our method and comparison with oth-
er approaches is given in Ref. [2]. That is why we omit
many details and mostly restrict ourselves with
modifications made in the present work and the final re-
sults.

The equations to be solved are the Faddeev equations
at zero total angular momentum in the three-dimensional
internal space parametrized via the hyperradius p and hy-
perangles 8,y [1—3],

(Ho+ V —E)+a(P,y, 8 }=—V g alp(P, yp, 8p),
P(&a)

where the index a=1,2, 3 labels pairs of the particles; V
is the Coulomb potential in the pair a and Ho denotes a
second-order partial differential operator. We introduce

renormalized Faddeev components

4 =p ~ sin(y ) sin(8a)% (2)

and rewrite Eq. (1) for 4 using a mapping of the hyper-
radius p E [0, 0e )~r C [0, 1) proposed initially in Ref. [4],

r=1 —e
—A, (3)

with a parameter A. to be optimized in calculations.
Next, the components 4 as functions of r,y, 8 are

expanded in a spline basis,

L M N

4 (r, y, 8)= g g g f i „s,(8)s (r)s„(g),
I=1 m =In =1

(4)

where s; are the quintic Hermite polynomial splines
(piecewise polynomials of fifth degree} that have continu-
ous first and second derivatives. Upon using the expan-
sion (4) and a collocation procedure, the Faddeev equa-
tions are reduced to a matrix-eigenvalue problem.

If the domain of a variable is divided on E intervals,
the total cardinal basis of the quintic splines consists of
3E + 3 functions. In our previous calculations [1,2], we
exploited the orthogonal collocation procedure with
two-point Gauss quadrature points per interval, which
yields only 2E equations. Thus one must drop a set of
K+1 splines out of the total basis to match the number
of unknowns and equations (two more splines can be ex-
cluded due to zero boundary conditions at the end points
[2]). By doing so, one breaks the continuity of the second
derivative within the interior region. Apparently, this
deteriorates the convergence of the spline expansion and

TABLE I. dt p ground-state calculations. The modified atomic units (m.a.u. ) are used:
6=m„=e =1.

Quantity

—E (m.a.u. )

A-1

12 X 12 X 12

0.499 279
0.115

—8X10

0.538 595 7
0.13056
2x10-'

0.538 594 2
0.135 26

—2X 10

MXNXL
15X15X15 18X15X15 18x15x18

0.538 5947
0.135 259
—1x10-'

Ref. [7]

0.538 594 8
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TABLE II. dtp excited S-state calculations. The modified atomic units (m.a.u. ) are used:
A= m„=e'= 1.

Quantity

—E (m.a.u. )

A —1

12X9X9

0.386 711
0.117

—2X10-'

0.454 526
0.081 5

—1X10-'

0.488 063
0.13744

—1X10 '

MxNxL
12 X 12 X 12 15 X 15 X 15 18X 15 X 15

0.488 067 0
0.143 21
1X10-'

Ref. [6]

0.488 065 1

is somewhat unstable for systems with unequal masses.
That is why in the present work we propose to give up

the orthogonal collocation procedure. Instead, for the
collocation points we take the three-point Gauss quadra-
ture points on each interval. This collocation procedure
yields 3E equations. To incorporate boundary condi-
tions, we exclude three splines (out of 3K +3) that are
nonzero either for their values or first derivatives in the
end points. In this way, the numbers of equation and un-
knowns are matched and one preserves continuity of first
and second derivatives within interior. The number of
splines involved in the resulting expansion (4) is three
times that of intervals in each variable.

The above collocation procedure reduces the Faddeev
equations to an algebraic eigenvalue problem,

(A+EB)f =Cf,

where A, B, and C are matrices of the rank 3LMN with
elements given in Refs. [1,2]. Equation (5) is solved as de-
scribed in Ref. [2], by means of the Lanczos algorithm [5]
dealing with a generalized eigenvalue problem,

In our dtp S-state calculations we use uniform grids
of natural knots in all three variables. For a given grid,
the mapping parameter A, of Eq. (3) and the trial energy
Eo are adjusted until the eigenvalue A=1 of Eq. (6) is
reproduced with an accuracy 10 . The results are given
in Tables I and II for the ground and excited S states, re-
spectively. References [6,7] are high-accuracy variational
calculations.

Compared to our previous calculations [1,2], the im-

proved version of the triquintic spline expansion per-
forms much better for unequal masses. For instance, four
right digits of the ppp binding energy were obtained in
Ref. [2] with 20X20X18 spline expansion, whereas for
the more complicated case of dt p we get five correct di-
gits already with 15 X 15 X 15 expansion.

Clearly, the method converges amazingly fast and en-
ables one to reach easily an accuracy of 10 that is far
beyond what one is accustomed to expect from a Faddeev
calculation. We believe our numerical procedure brings
the Faddeev approach up to a level where it is quite com-
petitive even with variational calculations, especially
since it can provide very high local accuracy of wave
functions.

( A+EoB)f =ACf, (6)

where one fits trial energy Eo to get the eigenvalue A= l.
As before, we use the so-called tensor method [4,2] to in-

vert explicitly the matrix A +EOB to do the Lanczos
iteration procedure.
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