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General theorem on the Schrodinger equation
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Two discrete energy spectra of a particle moving in two different potential wells are compared. We
find a general property: If one potential well Vl(r) is less than or equal to the other potential well V2(r)
everywhere in space, i.e., Vl(r) V2(r) for all r, then the nth eigenvalue of the particle in the first well,

V„ is always not greater than the nth eigenvalue of the particle in the second well, V2.

PACS number(s): 03.65.Ge, 02.10.+w, 02.90.+p

It is unnecessary, nowadays, to point out the impor-
tance of the Schrodinger equation to disciplines of sci-
ence and technology. In principle, one can understand
any natural phenomenon if one can solve the correspond-
ing Schrodinger equations. Unfortunately, the
Schrodinger equation can only be analytically solved in a
few special cases. Therefore, it is very important to know
the properties of the equation.

There are many theorems and properties [1,2] which
help us to understand various aspects of the Schrodinger
equation. One of them concerns the ground state of a
particle in two different potential wells: It is well known
that if one well V, is less than or equal to the second well

V2 everywhere in space, the ground-state energy in the
well V, will not always be higher than that in the well
V2. This property can be easily shown using the varia-
tional theorem, i.e., energy expectation of a trial state is
always greater than or equal to the ground state of the
system. However, to the best of our knowledge, there is
nothing in the literature comparing levels other than the
ground state. It is the purpose of this letter to show that
a similar property is also true for the excited states.

Let us consider the energy spectrum of a particle mov-
ing in a potential well, V(r). According to quantum
mechanics, the spectrum well be governed by the time-
independent Schrodinger equation

&P(r) =sf(r),

with proper boundary conditions; here, &=T+ V(r) is
called the Hamiltonian, and f' is the kinetic-energy
operator which is defined as T= —(R/2m)V, where rn is
the mass of the particle. It is well known that & is Her-
mitian, its eigenvalues are all real, and its eigenstates can
be chosen to be orthogonal. In this letter, we will study
the energy spectra of a particle moving in two different
potential wells, Vi (r) and V2(r). We will show that there
exists the following theorem.

Theorem. For two Hamiltonians H, =T+ V, and
Hz = T+ V2 describing a particle in real potentials V, (r)
and V2(r), respectively, let us denote by Ei „and Ez „
their nth eigenvalues; then e, „(s2„ if Vi(r) (V2(r) for
all r.

Let us denote P, „(r) and $2 „(r) as the nth eigenstate

and

~202, (r) s2, 02,

For any n, if we show that we can always find a trial wave
function p(r) such that it is orthogonal to the first n —1

eigenstates of &i,

&p(r)~P, J(r) & =0 for j=0, . . . , n —1,
and satisfies the inequality

& q(r)ia, lq(r) &

&q(r)~q(r) &

then, according to the variational principle, the theorem
is proved.

If we suppose that the wave function

a subspace spanned by P2 o, P~ „.. . , $2 „, it is obvious
that

&q(r)I~, Iq(r) & &q(r)l&, iq(r) &

& q (r) ~y(r) & &q(r) ~q(r) &

if V, (r)( V2(r) for any r. Therefore, in order to prove
the theorem, it will be suScient to show that the follow-
ing statement is true.

Statement Suppose P. , „(r) and Pz „(r) are the nth
eigenstates of Hamiltonian %, and &2, respectively, it is
always possible to find a set of numbers, Co, C, , . . . , C„,
which will not all be zeros, such that

y(r}= g C, P, , (r}

will be orthogonal to pi .(r), for j=0, 1, . . . , n —l.
Without losing generality [1],we will assume

&y. ,(r) ly. ,(r}& =fi, ,
Before proving the statement for arbitrary n, let us first
look at the case when n= 1. One only needs to show that
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it is possible to find a wave function which is the linear
combination of (b~ p(r) and (bz &(r) such that the wave
function will be orthogonal to (b, o(r). This is obviously
true if

&((„(.)Iy„(r) & =0

or

Qpp

Q) p

Qp )

Q) )

ap, n

ai, n

Cp

Ci
=0,

n —],p n —], ] Cn

(r) ~(b, (r) & =0 .

It is also quite clear that

t(r) =4&,o(r) ( & (()~,ol(()p, p & ~& (t'~, pl(()p, ~ & )(b2, 1(r),

i.e., Cp=1 and

&(bi, o~(t'z, o& ~&(()t,o~(t'z, i &

will satisfy the requirement if

&y„(r)~y„(r) &~0

and

& y, ,(r) I((), ,(r)»0 .

Therefore, the statement is correct for n=1. There is a
simple geometry analogy in a finite d-dimensional space
for the case. It is the statement that the intersection of a
(d —1)-dimensional object and a two-dimensional object
in d-dimensional space is always nonzero. To be more
accurate, the intersection is no less than
(d —1)+2—d= 1 dimension.

For a general n, it is easy to see that the question is the
existence of a nonzero solution of the linear equations:

where

a, ,
= &((, ,(r}~((, , (r) & .

Since the matrix is n X(n +1) order, according to the
linear algebra theory [3], it will have nonzero solutions.
Therefore, the statement is correct, and the theorem is
proved. The geometry analogy of the general case is that
the intersection of n (d —1)-dimensional objects and one
(n + 1)-ditnensional object in a d-dimensional space is not
zero.

In the proof above, we did not assume that there are no
degenerate energy levels, or that the spectra are discrete
or continued. We only required that the energy spectrum
can be ordered in such a way that c, „~c if n (m,
where a = 1 or 2. Therefore, the result and proof will not
be changed if a degeneracy occurs at a certain eigenvalue,
or if the spectra are continued. There is no need to as-
sume that the quantum index n is finite in the proof. One
should expect that the result holds when n goes to
infinity. In conclusion, we have compared the spectra of
a particle in two potential wells, V, (r) and Vz(r), respec-
tively, in the case where V, (r) ~ Vz(r) for all r. We find
that the nth eigenvalue of the particle in the potential V,
is always less than or equal to the nth eigenvalue of the
particle in the potential Vz.
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