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Exact perturbation theory for quantum-mechanical systems within boxes
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We apply perturbation theory to the Schrddinger equation for a system caged in a one-dimensional
box with impenetrable walls and show how to obtain the perturbation corrections to both the energy ei-
genvalues and eigenfunctions in a systematic exact way when the potential function within the box is a
polynomial. As an illustrative example we consider a linear potential obtaining analytic expressions for
the perturbation corrections in terms of the quantum number.

PACS number(s): 03.65.Ge

I. INTRODUCTION

Quantum-mechanical systems surrounded by impenetr-
able or penetrable walls prove to be simple tractable mod-
els for many physical phenomena in which the walls
simulate the effect of the neighboring atoms or molecules
on the central particle. The dependence of the eigenval-
ues on the magnitude of the box allows a simple
definition of the pressure exerted on the system. For in-
stance, the caged harmonic oscillator has been extensive-
ly used in connection with the following phenomena:
proton-deuteron transformation as a source of energy in
dense stars [1], the state of an electron inside a cold stel-
lar mass [2], the determination of the rate of escape of
stars from galactic and globular clusters [3], the theory of
the specific heats of solids [4,5], and the effect of finite
boundaries on the magnetic properties of a solid [6]. The
hydrogen atom within boxes of different shapes proves
useful to draw theoretical conclusions about isotherm
measurements and the Clausius-Mosotti function at high
pressures [7], in understanding the shift of spectral lines
under pressure [8], in the calculation of magnetic proper-
ties of metals in weak magnetic fields [9], as a model for
partially ionized, partially dissociated plasmas [10], to
study the thermodynamic properties of nonideal gases
[11], to simulate pressure phase transitions in H, and H
to a metallic modification of hydrogen [12], and to calcu-
late the hyperfine splitting of hydrogen trapped in a crys-
tal [13,14]. The combination of a linear and a box poten-
tial models the effect of boundaries on the behavior of
electrons in a crystal in the presence of a uniform electric
field [15] and the emission and absorption in a quantum-
well structure under the influence of a uniform electric
field [16].

In addition to their varied physical applications those
models constitute a useful benchmark for approximate
schemes to solve the Schrodinger equation with boundary
conditions at finite values of the coordinates. Therefore,
there is a vast literature describing many alternative such
methods, part of which is reviewed elsewhere [17]. Here
we are interested in perturbation theory regarding the po-
tential energy function other than the box effect as a per-
turbation; this approach applies to a box of small or
moderate magnitude. For example, Kothari and Auluck
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[18], Auluck [1], and Auluck and Kothari [19] obtained
the first- and second-order corrections to the energy of a
caged one-dimensional harmonic oscillator exactly. Din-
gle [6] derived the exact first-order correction to the ei-
genvalues of a harmonic oscillator within a cylinder.
Aguilera-Navarro et al. [20,21] calculated perturbation
corrections to the lowest-energy levels of several caged
oscillators numerically. The application of perturbation
theory to the bounded hydrogen atom is more difficult
because of the Coulomb interaction. Dingle [9] overcame
this difficulty by the transformation of the Coulomb po-
tential into a harmonic one through an appropriate non-
linear change of variables and obtained the first-order
perturbation correction to the energy. By direct applica-
tion of perturbation theory treating the Coulomb poten-
tial as a perturbation, Aguilera-Navarro, Kloet, and Zi-
merman [22] calculated perturbation corrections to the
energy of the ground state numerically. Lukes, Ring-
wood, and Suprapto [23] derived the exact first- and
second-order perturbation corrections to all the eigenval-
ues for the caged linear potential from the zeros of the
Wronskian.

The main problem in the application of perturbation
theory to caged quantum-mechanical systems is that the
sums in the well-known textbook formulas that give the
perturbation corrections of order larger than the first one
have infinitely many terms and their exact summation is
difficult although possible in some cases [23]. As far as
we know the only efficient systematic method for the cal-
culation of the perturbation corrections to the energy of
such models is provided by an appropriate combination
of the hypervirial and Hellmann-Feynman theorems [17].
This implementation of perturbation theory yields the
perturbation corrections to all the energy levels and to
the moments of the probability density simultaneously in
terms of the zeroth-order energy. They are obtained
from recurrence relations that are easily programmable.
One disadvantage of this method is that it does not pro-
vide the eigenfunctions explicitly.

We have investigated the problem of the application of
Rayleigh-Schrodinger perturbation theory to box mod-
els, finding that the calculation of exact perturbation
corrections to both the energy and the wave function by
the standard formulation of this approach is straightfor-
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ward in certain cases of actual physical interest. We be-
lieve that this fact, which has been overlooked in previ-
ous applications of perturbation theory
[1,6,9,15,18,19-23], may be useful and therefore we dis-
cuss it in this paper. In Sec. II we consider one-
dimensional box models with polynomial potentials and
show how to treat them by perturbation theory. As an il-
lustrative example we obtain exact perturbation correc-
tions in terms of the quantum number for a model for
noninteracting electrons in a one-dimensional empty
crystal in the presence of a uniform electric field
[15,16,23]. Further comments and conclusions are found
in Sec. III.

II. PERTURBATION THEORY FOR BOX MODELS

For the sake of simplicity we only consider one-
dimensional box models but the treatment can be surely
extended to other problems. In fact, the results obtained
below also apply to the s states of central-field systems in
spherical boxes. The Schrodinger equation reads

2
~ W)+ VO =EW(x) M

2m
and the cage effect results in the Dirichlet boundary con-
ditions ¥(0)=W(L)=0, where L is the box length. It is
convenient to define a dimensionless coordinate g =x /L,
energy £=2mL%E /#*, and potential-energy function
Av(q)=2mL*V(Lq)/#*, where A is the perturbation pa-

rameter, that lead to the reduced Schrodinger equation

—P"(g)+Av(q)P(g)=eP(q) , (2)

with the boundary conditions ®(0)=®(1)=0. In other
words, ®(q)<W¥(Lg) and ¢ are, respectively, an eigen-
function and its corresponding eigenvalue of the
differential operator H= —d?*/dq*+ Av. The solutions of
its unperturbed part Hy= —d?/dq? are

2.2

@, ,(¢)=V2sin(nmq) , e, =n’T*, n=12,....

To simplify the notation from now on we omit the sub-
script n and write K =n 7 everywhere.
For A0 we seek a solution of the form

®(q)= A(q)sin(Kq)+B(q)cos(Kq) , (4)

where B(0)=B(1)=0 to satisfy the boundary conditions.
One easily verifies that if 4(q) and B (q) satisfy

A"(q)—2KB'(q)=(lv—Ac)4(q) ,
B"(q)+2K A'(q)=(Av—A€)B(q) ,

(5)

Ae=¢—¢,=e—K? being the energy shift, then (4) is a
solution of the eigenvalue equation (2). Other choices of
A(q) and B(q) are possible but the condition (5) is simple
enough for the present purposes.

When v is a polynomial function of the coordinate g
the equations (5) are by far more tractable than the origi-
nal eigenvalue equation (2) by means of perturbation
theory because the trigonometric functions are complete-
ly factored out. To apply this approach we write

7289

e= 3 g,
=0

Alg)=3 A\, (6)
j=0

B(g)= 3 Bj(@V,
j=0

where £,=K?, 4,(q)=V2, and B,(¢q)=0. The perturba-
tion corrections are solutions of

k
A —2KBy=(v—g)Ay_1— 3 & Adx_j,
j=2

X (7
By +2KA;=(v—e)By_— 3 €;By_; .
j=2
If the potential-energy function v(g) is a polynomial of
degree v,

v

vig)= Y v,q", (8)

m=0

then the functions 4, (g) and B, (q) will be polynomials
of degree k(v+1),

k(v+1) ) k(v+1) i
A @)= 3 a;9', Bilg)= b ;q’ - &)
j=0 j=0
The boundary conditions lead to
kv+1)—1
bo=0, biixo+n=— X by (10)

j=1

The systematic and hierarchical calculation of the
coefficients a, ; (j >0) and b, ; from the differential equa-
tion (7) is straightforward. The perturbation corrections
to the energy are completely determined by the boundary
conditions (10) but it is more efficient to calculate them
from the symmetrized perturbation equations given in
the Appendix. The coefficients a; o which are not deter-
mined by the perturbation equations are obtained from
the selected normalization condition. Here we choose
(®|®)=1, which is convenient for further calculations
of expectation values and matrix elements. To illustrate
the process we consider the simple case V(x)=eFx which
represents the interaction between a particle of charge e
and a uniform electric field of intensity F. This model
proves useful in the study of the behavior of electrons in a
finite crystal in the presence of a uniform electric field
[15,16,23]. In this case we choose A=2mL3eF /#* so that
v(g)=q (v=1,v,,=8,,,).

Although the coefficients @, ; and b, ; are easily ob-
tained by hand, the integrals required in the application
of the symmetrized perturbation equations given in the
Appendix become increasingly cumbersome as the per-
turbation order increases; therefore, we carried out the
calculation with the aid of a standard computer algebra
package. The coefficients of the first three perturbation
corrections to the wave function normalized to unity and
the first six perturbation corrections to the energy in
terms of K=nm are shown in Table I. Although
€5 +1=0 if k >0 because of symmetry we have explicitly
calculated these perturbation corrections to check our
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equations. The present second-order correction to the
energy agrees with previous results [17,23,24]. The
fourth-order correction is in agreement with Eq. (43) of
Ref. [24] but not with Eq. (45) of Ref. [24], which exhibits
an obvious misprint. The sixth-order perturbation
correction to the energy as well as the perturbation
corrections to the wave function showed in Table I have
not been published before as far as we know.

III. FURTHER COMMENTS AND CONCLUSIONS

We have developed a simple and efficient implementa-
tion of perturbation theory for one-dimensional caged
systems with polynomial potentials. It is clear that with
a slight modification the method applies to boundary
conditions other than the Dirichlet one considered above.
The polynomial potential-energy function (8) includes the
harmonic oscillator with an arbitrary center as a particu-
lar case. The method also applies to the s states of
central-field systems in spherical boxes because their radi-
al equations can be reduced to one-dimensional
Schrddinger equations. In the case of the hydrogen atom
it is necessary to carry out a previous transformation of
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the Coulomb potential into a harmonic one [9]. The
treatment of states with nonzero angular momentum is
more complicated and is at present under investigation.

The strategy used above to factor out the tri-
gonometric functions is reminiscent of that followed by
Dalgarno and collaborators long ago (see for instance
[25] and references therein). However, the present ap-
proach is more convenient for the examples discussed in
this paper because the perturbation corrections to the
wave function are not of the form ®, = f; ®,.

As indicated above the perturbation parameter is pro-
portional to the coefficients of the potential-energy func-
tion and to a power of the box length. For instance, in
the particular case considered in the preceding section A
is proportional to L3F so that the perturbation expansion
converges when this product is small enough. According
to the Kato-Rellich theorem [26] the perturbation series
for caged systems have finite convergence radii. Some of
them have been calculated with sufficient accuracy [27].
The convergence radius determines the greatest magni-
tude of the potential parameters and box length for which
the perturbation series converges. From a practical point
of view the range of utility of the perturbation expansion

TABLE 1. Perturbation corretions to the energy levels and eigenfunctions (coefficients g, ; and b, ;)
in terms of K =n for the box model with potential v(g) =gq. Notice that e;=¢;=0.

First order

a,o=—-—‘iz— a”:ﬁ a,,=0, b =2 b - V2 g =1
R 8KZ ' R 4K’ 1,2 ’ 1,1 4K’ 1,2 4K ’ 17— 3
Second order
_ V2(3K2+40) 5v2 _ V2A5—K?) _ V2
207 T gk T T gt 2T T e 0 T ek
L2 _ 52 _ 52 V2
24 32k2 7 ! 96K3 > Pr k3 P 483 7
. K*—15
48K*
Third order
4o —Y20120=31K%) - V2(121K?—120) _ Y2(1K?—135)
0 3072K*® P 1536K® T2 768K°
_ V2(45—14K?) _35V2 _ 12 _
BT geake BT ekt 0T qpakt ) B0
b = V2K —40) _ V2(120—121K?) _ V2(50—K?)
i sk’ 7 1536K’ R 384K° 7
b, .= V23K2—25) __ V2 __Va
4 384> P 128K3 7 7% 384K3

_ K*—210K*+1980
2304K 1°

4

K°®—825K*+46 800K>—382 500

o 3686K 16

Fourth order

Sixth order
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is even smaller because it converges too slowly when A is
close to the convergence radius. The convergence radius
of the perturbation series decreases with v because the
larger the order of the polynomial representing the
potential-energy function the stronger the perturbation
[27].
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APPENDIX

Here we summarize the equations of perturbation
theory used in the calculation of the corrections to the
energy levels of the box model discussed in Sec. II. On
substituting the perturbation expansions for the selected
eigenvalue and eigenfunction into the Schrodinger equa-
tion one has

k
(H0—€0)®k=(51_v)¢k_1+ 2 qu)k—j .
i=

(A1)

If ®, is normalized to unity we obtain the following ex-
pression for the energy:

k
€k=(®0|u_~ell®k—l)— 2 Ej<q)0|q)k—j) )
j=2

(A2)

in which we do not specify the normalization of the per-
turbed eigenfunction. This equation is not the most con-
venient one because it requires ®y, ®,. .., P, _, in order
to obtain g;. It is well known that with a more sym-
metric expression one can calculate up to €,; ;| from the

corrections to the wave function up to &, [25]. For
k =1 and 2 we use (A2) directly but for the next orders it
is convenient to write

£3= (D, |v—g,|®)) —&,({Dy| D) + (D, Dy)) ,

£, =D, v —g,|®,) —&,({ D, | Do) + (D, D,))
—£5({ D P, ) + (D, D)),

e5=(D,v —g,|D,) —&,({ D[ D,) +(D,|D,))
—&5({(®@,|®,) +{( @y D,) +(D,|D,))
—e,({Dy| D)+ (D@, [Dy)) ,

£6=( Dyl — | D) —&,({ D,|D,) + (P, |D3))
—£;({ D, |®,) +(D,[|D, ) + (D[ P;))
—g4({ Do D, + (D, | D) + (D)D) ))

—e5({ Dp| D, ) +(D,|Dy)) . (A3)

If the perturbed eigenfunction is normalized to unity
({®|®)=1) we have an additional equation

(A4)

k

((Dj|q)k—j>:5k0 ’
j=0
which enables us to obtain the coefficients g, ,, defined in
Sec. II, and also to reduce the number of integrals
(®;|®;) in (A3) [25]. However, we have not profited
from the latter fact and have used Egs. (A3) directly,
keeping the coefficients a; o unevaluated because, as the
results have to be independent of them, any mistake in
the calculation is immediately detected.
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