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Conservation laws in super8uorescence
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Conservation laws for Maxwell-Bloch equations applied to describe superAuorescence are studied.
Modifications due to the initial boundary conditions are discussed. For initial polarization in the form
of a constant tipping angle, conservation laws are integrated to give exact dependence of all field mo-
ments on the propagation length. Three regions of propagation are distinguished: the linear region,
where the field energy is negligibly small, the region of rapid exponential growth, and the saturation re-

gion. The characteristic distance, where maximum radiation occurs, is explicitly evaluated; it defines the
threshold length for superfluoresence. A small chirping, proportional to the square of the tipping angle,
is found. The change of the pulse width with propagation length is estimated.

PACS number(s): 42.50.Fx, 42.50.Rh

I. INTRGDUCTION

Superfiuorescence (SF) is one of the collective phenom-
ena of quantum optics. It can be described rather simply.
A cylindrical sample filled with a large number of two-
level atoms, all initially excited, radiates spontaneously
one or several pulses of intense electromagnetic (e.m. ) ra-
diation. The radiation is characterized by several param-
eters, such as, e.g., the delay of its first maximum, width
of the pulse, and energy. Since its prediction by Dicke [1]
in 1954 SF has been the subject of several experiments [2]
and of a large number of theoretical papers, see e.g. , [3].

According to the present theory, SF proceeds in two
stages [4,5]. At the early stage, spontaneous emission
takes place and a small polarization is built from quan-
tum fluctuations. In this process quantum character of
the field is essential, but equations may be linearized.
The e6'ect of quantum fluctuations leads to random initial
polarization with Gaussian probability distribution.

During the second stage the e.m. field evolves and is
amplified to form a strong pulse of radiation. This pro-
cess is semiclassical and causal. It is described by the sys-
tem of Maxwell-Bloch (MB) equations. Nonlinearity and
inhomogeneous broadening of the atomic line are essen-
tial at this stage. The present paper deals only with the
second part of the problem. Statistical properties of the
field will not be considered.

In the majority of papers propagation has been treated
in an approximate way. Equations were linearized and
(or) sharp-line approximation was used. In the sharp-line
limit exact self-similar solutions were studied [6]. Some
information on SF pulses such as, e.g. , the statistics of the
delay time have been found on the basis of the linear
theory [5]. A satisfactory description of pulse formation
and its shape can, however, be given only by nonlinear
equations.

Maxwell-Bloch equations belong to the class of equa-
tions integrable by the inverse-scattering method (ISM)
[7,8]. This method describes perfectly propagation of
e.m. pulses in absorbing media [9—11]. Its application to
SF [12,13] is not straightforward because the initial
boundary conditions here are different. In the case of SF

the initial values for scattering data are trivial. Their
evolution with distance along the sample is essential. Ga-
bitov, Zakharov, and Mikhailov [14] generalized the evo-
lution equations for the MB system to the case of SF.
They considered pulses on the whole time axis. Steudel
[15] modified these equations for the scattering on the
half-time axis. These equations are basic for the SF pro-
cess. When the scattering data are known it remains to
solve the inverse problem. This is difficult because of the
presence of a continuous spectrum together with the
discrete spectrum. Steudel [15] solved the problem
asymptotically for large time and distance of propaga-
tion. This solution is based on the linearized scattering
problem and basically applies to the sharp-line case. In-
homogeneous broadening appears as a small correction.
These approximations are the reason for the self-similar
character of the solution which has the form of a secant
hyperbolic with delay time related to random initial po-
larization. It resembles the solution found from the sine-
Gordon equation by Gabitov, Zakharov, and Mikhailov

Self-similar solutions predict that the shape of the
pulse is independent of the sample length. The ISM can
give information on the field evolution inside the sample
and, consequently, more precise description of SF pulses.
As a first step of such a study I consider, in this paper,
the conservation laws for the MB equations applied to
SF. Under the assumption of a constant tipping angle as
initial condition, the exact form of the dependence of
field energy and higher moments on the distance of prop-
agation is found. It is shown that there are three stages
of amplification: (1) very slow linear growth, proportion-
al to initial polarization (2) rapid exponential growth
becoming independent of init!al conditions, and (3) linear
growth due to saturation. The change from first to
second stage is abrupt and the corresponding value of x
may be interpreted as the threshold value for the sample
length.

In Sec. II the problem is formulated and evolution
equations are derived. This section is based on the work
of Gabitov, Zakharov, and Mikhailov [14] and Steudel
[15]. In Sec. IIIA conservation laws for SF are derived
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and modifications introduced by initial conditions are dis-
cussed. In Sec. III B they are integrated to give the exact
expression for pulse energy and first spectral moment.
Finally, in Sec. III C the contribution of discrete, soliton-
like eigenvalues to the radiation is discussed.

In conclusion, the validity of certain approximations
used in SF theory is discussed on the basis of the results
for energy propagation.

II. MAXWELL-BLOCH EQUATIONS
AND THE INVERSE-SCATTERING PROBLEM

Consider a cylindrical sample of length 1.and diameter
d filled with two-level atoms of density n. The wave-
length of the atomic transition is iL=c/to0. In the one-
dimensional model of SF it is assumed that the Fresnel
number I =d /I. k is close to 1. Therefore L is related to
the total number of atoms JV=nAL . In the following,
arbitrary L (or JV) will be considered and a fixed value of
n. Interaction of the e.m. field with two-level atoms in
the slowly varying envelope approximation is described
by the MB equations. These equations depend on one
characteristic frequency v, =[2nnP F00/f.i]'i, where P
denotes the transition matrix element. In dimensionless
notation, MB equations take the form

l 1
V p(a )g(a )da, p=¹T3+Air ~ +A,trca

U„V,—+ [U,V]=0, (2.12)

which is equivalent to Eqs. (2.1)—(2.3). Matrices U and V
are the Lax pair for MB equations.

The scattering problem on the time axis is given by Eq.
(2.8) where E is the "potential. " Following Steudel [15]
let us define the Jost functions on the half t axis as solu-
tions of (2.8), satisfying

y(t =0)=I, y+~exp( igcr3—t) as taboo . (2.13)

The scattering matrix S(x,g} is defined by the relation

x+8=x'
S may be written in the form

(2. 14)

(2.11)

C denotes the contour of integration from a= —00 to
a=+ oo indenting under the pole a=/, cr;(i =1,2, 3) are
Pauli matrices, and o+= , (c—r, ia2) T. he compatibility
condition of Eqs. (2.8) and (2.9) requires that

E„=(X),
A, , = —2i coi, +NE,

N, = —
—,'(EA, '+E'A, ),

(2.1)

(2.2)

(2.3)

b a

where aa+bb =1. At x =0, E =0, hence

a(x =0,()=1, b(x=O, ()=0.

(2.15)

(2.16)

where t is the retarded time, E(t,x), A(t, x, to), and
X(t,x, co) denote, respectively, the field envelope, coin-
plex polarization, and population inversion in the medi-
um. All quantities are dimensionless, scaled by v —v, '

or c~, . Angle brackets denote average over the inhomo-
geneously broadened atomic line

(A, ) = f A(to)g(to)dco (2.4)

Function % which satisfies (2.8} and (2.9) can be writ-
ten as a superposition of the Jost functions

S y+(y0) —I (2.18)

(2.17)

where P and P+ are matrix functions of x and g. The S
matrix can now be written as

with the Gaussian distribution

T c02 T2—e
7r

(2.5)

p —+exp( i go 3t )p+ ex—p( intr 3t ), (2.19)

To find the x dependence of S one uses Eq. (2.9) at t =0
and t~ oo. As taboo, A, ~A, +exp( 2igt), w—hile

where p+ is independent of time. Multiplying Eq. (2.9)
by exp(io gt ) and taking the limit t ~ oo one gets

(2.6)E(t,O) =E(O,x ) =0,
A, (O, x, co) =A, , X(O,x, to) =X

P+ =R+P+ (2.20)
(2.7)

where

where 2' is the difference between the atomic frequency
and coo. The initial boundary conditions for SF read

In general A. depends on x and co and it is a random func-
tion.

In the ISM a system of equations equivalent to Eqs.
(2.1)—(2.3) is used. Let e denote a 2X2 matrix function
of t, x, and g satisfying the equations

R =—lim exp[ —i o 3(a —g) t ]
l 1

4t~~ cg a

Xp+exp[itr3(a —g)t]g(a)da ' .
%, +U% =0,
%„+V%=0,

where

(2.8)

(2.9)
From Eq. (2.21) one finds

(2.21)

U =i ga, + ,' (Eo + E"cr ),——(2.10)
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At t=0,
yo —

Rodeo

where

R =— p ag ado. .o i 1

4 cg—a
From Eqs. (2.18), (2.20), and (2.22) it follows that

S =R+S—SR

(2.22)

(2.23)

(2.24)

agation length. In the case of SF analogous conservation
laws can be derived. Modifications appear which are due
to the initial condition at t=0 instead of at t = —Oo, and
the fact that discrete, x-dependent eigenvalues do not
correspond to stable soliton solutions.

A. General form of conservation laws

Consider the first pair of Eq. (2.8),
In particular,

a„=a(N+ N) —bX *—
,

b„=aX +b(N +N+),

where operation —is defined by

(2.25)

(2.26)

0') I, t = i (%—') )
—2E%'p),

0'~„t =i pP2, +—2E'0»,
and define

@=in(e'&'eii/pic) .

(3.1)

(3.2)

(3.3)

f=—J f(a)g(a)da .
4 cg—a (2.27)

Equations (2.25) and (2.26) form a closed system of
equations for a(x, g) and b(x, g) with analytical
coefficients in the upper half plane (UHP) of g. The
scattering amplitude c =b la satisfies the following equa-
tion [15]:

p(t =0)=0,
@~in[a(1 cf )) as—t~ co,

where

(3.4)

Using Eqs. (2.17) and (2.18) one finds the limiting values

of@,

c =A, +2cN —c A, *, (2.28) (3.5)

where the coefficients depend only on the initial condi-
tions. Note that in the sharp-line limit this equation be-
comes singular.

The system (2.25) and (2.26) is highly nonlinear. This
can be seen when N+ and A,

+ are expressed in terms of a
and b. Let us observe that Eqs. (2.2) and (2.3) may be
written as 2i gp, =p', „'

I
E I'+ ,'E—-— (3.6)

is uniquely defined by Eq. (2.22) (see Appendixes A and
B).

By elimination of 42, from Eqs. (3.1) and (3.2) a Ricatti
equation for p, is found:

P iUP]

where

(2.29) Following the Zakharov and Shabat method [20] it can
be shown that asymptotically, for large g,

p=%p 4 (2.30)

p
+ SpoS } (2.31)

This relation shows that the scattering problem (2.8) con-
stitutes a part of MB dynamics. Making use of (2.20) and
(2.30) one obtains

oo C

(2g)n+ 1
(3.7)

where C depend only on the field and are determined by
a recurrence formula resulting from Eq. (3.6). For n =0
and 1 one gets

provided [p,g ]=0. In particular,

N+ =N (aa bb) —abide* ——abk

+ =2ag~ +a

(2.32)

(2.33)

Co=-,'IEI', C, = 'EE,* . —

On the other hand, from the first pair of Eq. (2.9),

% }} =%% }}+A,P2}

(3.8)

(3.9)

In the next section N+ will be expressed in terms of c and
explicitly evaluated.

III. CONSERVATION LAWS

%» „——A, *%»—N%»,

by elimination of %'2}, one obtains

B,(p, ) =B,(N 2Ap, IE) . —

(3.10)

(3.11)

An infinite set of conservation laws for MB equations
has been derived by Lamb [7] and applied to self-induced
transparency [16—19]. It has been shown that solitons
are responsible for lossless propagation. In the conserva-
tion laws constant discrete values related to solitons con-
tribute to the field spectral moments. The continuous
spectrum plays a minor role decaying with growing prop-

r), F„=(M„—M„+ )
—A„,

where

(3.12)

F„= C„dt (3.13)

Integrating this equation over t, one finds, asymptotically
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M„(x,t)= f a"(t,x,a)g(a)da, (3.14)

taken, respectively, at t =0 and + 00. A„denote the con-
tribution from the second term of Eq. (3.11),

—,'limXp, /E=A .
t~p

From the definition (3.4) of iM one gets

(3.15)

denote the field "moments. " M„and M„+ are moments
of the population inversion N,

N N—+ = [2 cos6lc I
+sin8(c+c*)](1+Ic I )

(3.26}

Np N+ 2g e 1

1+y 1+ye~
where

(3.27)

By introducing Eq. (3.22) into (3.26) one obtains, after
some manipulation,

Q=2ReW=n. g(kT) . (3.28)

Asymptotically,

A„
(2g)n+1

(3.16)

(3.17)

N —N+ has the meaning of energy transmitted to the
field per unit length. Note that its dependence on Q is
exactly the same as that of c on the complex function 8'.
The point x at which N+ =0 is characterized by max-
imum radiation, A, +(x ) = 1. From (3.26) one finds

B. Exact solution for the field energy

Ricatti equation (2.28} for the scattering amplitude c
can be easily solved when A, is independent of x. Assum-
ing constant initial polarization A, =sine, N =cose one
finds

~p 1
A, =—sin8 f g(a)da= —,

' Wsin6, (3.18)
4 c g

—a
~p 1
N =—cos8 f g(a)da= —,'Wcos8, (3.19)

4 c g—a
where W= ,'&nTw((T—), Imp)0, and w denotes the

probability error function [21]
2

w(z)= —f (3.20)cz —t
dt .

It is worth noticing that the set of moments (3.19) is well

defined only for finite inhomogeneous broadening time T
and Gaussian shape of the atomic line.

x =0 'ln(y ') . (3.29)

sinh 8'x
x

cosh(Wx+5) ' (3.30)

where 5=—,'ln(y '). Introducing (3.30) into (3.16) and

making use of the expansion of the probability error func-
tion for large argument

i 1 1
w(z) = ——1+ +

&rr z 2z'
(3.31)

It corresponds to the half-deexcited state in the Dicke
model of SF [1],and may be interpreted as the threshold
length for SF. In the limit of the sharp atomic line x
tends to zero. Equation (3.27) for k =0 is depicted in
Fig. 1. Figure 2 shows the peak value of N —N+ for
different values of y.

To evaluate A„one has to solve Eq. (2.22). This is easi-

ly done for the constant initial polarization (see Appendix
A). The result is

Equation (2.28) can now be written in the form

c„=—,
' W(sin8+2cos6c —sin6c ) .

Its solution, vanishing at x =0, is

(3.21)

one finds the moments of A:

Ap=0,

Ai= —
—,'(sin6) x .

(3.32)

(3.33)

~ Wx=V'y
1+yew" '

where

I —cose
1+cose

(3.22) Integrating Eq. (3.12) for n =0 over x one finds from
(3.27) the field energy

2.0—

The inversion N+ given by Eq. (2.32) can now be written
in the form

N+ =cos8(la I
—Ib I ) —sin8(ab+a*b') . (3.23)

15-
+

1.0—

0.5—

On the real axis, Ref= k, a =a ", b =b, and

la I' —lb I'=1 —2lc I'( I+ Ic I')-',

ab+a'b*=(c+c')(I+ Ic I'}-' .

Finally, Eq. (3.23) takes the form

(3.24)

(3.25)

0.0
0.0 1.0 2.0

x(units of 1 )
C

FIG. 1. Plot of Eq. (3.27) for In(y ')=20 showing atomic
energy transmitted to the field as a function of distance mea-
sured in l, = 5cr, /&mT. .
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1.0—

0.5—

I I I I
]

I I I I
(

I I 1 I
(

I I I I The study of kz as a function of x shows that kz de-

creases in the region 0 &x &x, gets a minimum value
for x =x, and grows in the saturation region to reach
the asyinptotic value kii =(I/i/2)T '. The growth of
kR near saturation corresponds to the pulse narrowing in

time. This effect is due to slower saturation of modes
with large k values.

Equation (3.12) for the first moment reads
1 I i & & I I I I I I I I I

1.0 2.0 3.0
x(units of 1 )

4, 0 (3.38)

Fo =— ln
1+ye "

y Qx dk .
2 —~ 1+y 1+y

(3.34)

The function

FIG. 2. Same as Fig. 1 for different values of y. Curves a, b,
and c correspond to ln(y ') = 10, 20, and 30, respectively. Note
that in the region of maximum growth the shape of N —N+
does not depend on y.

For symmetrical g(k) Ml =0. The first moment is due to
A),

F, =
—,', (sine) x

Writing F, in the form

F, = I ~E ~'q, dr,

(3.39)

(3.40)

where q denotes the phase of the e.m. field one sees that
the field is chirped.

Qx

l2(x, k ) =In — Qx
1+y 1+y

(3.35)

may be interpreted as the spectral density of the field.
Figure 3 shows the peak value of p as a function of x
measured in units l, =5cr, /v'nT. In th.e linear region,
x & l, radiation is negligible. Amplification starts at
xo 2l„ for 2l, & x & 3l, p grows rapidly, and for x ) 31,
the growth is linear. This region corresponds to satura-
tion of N —N+. For the parameters of the cesium ex-
periment [2] l, =10 ' cm and all stages should occur in-

side the sample of length L =2 cm.
The shape of Fo as a function of x is similar to that for

p. This is due to the scaling property

C. Field energy in terms of the scattering data

Fo= f in[1+ ~c~ ]dk+4i g(g,*—
g ),

J
(3.41)

In the theory of pulse propagation in absorbing media
the field moments can be related to lna and written as a
sum of continuous spectrum contribution and discrete ei-
genvalues. In the case of SF, according to Eq. (3.14) Ina
is replaced by In[a(1 cf )]. Th—e function a(1 cf ) has-
no zeros in the UHP. Corrections due to (1 cf ) are, —
however, of the order of g for large g and they do not
contribute to the zero-order moment. The field energy
can be written in the usual form

—k Tp(x, k)=p, (xe "
) . (3.36)

where g, are solutions to

This property may be used to investigate the spectral
width of p. Taking the inverse function y(l2),—k T
y =xe, one may define the spectral width, at
different x, as

a(g, )=0, Imp, )0, j=1,2, . . . .

As shown in Sec. II the amplitudes a and b are analytical
functions in the UHP. The poles g of c are, therefore,
the zeros of a. Writing Eq. (3.22) in the form

kii =T '{In[y(p)/y( —2'p)]]', 0&y &x .

I I I I

i

I I I

(3.37) sinh Wx

cosh( Wx —5)

one can, readily, find the condition for g, ,

W(g )=[f+i(l2j+1) r] i, j=0, 1—,2, . . .
1

x

or, in terms of the probability error function

x Rew((, T)=6,
x Imw(g T ) =+(2j+1)ir,

(3.42)

(3.43)

(3.44)

x(units of 1 )

FIG. 3. Plot of Eq. (3.35) for k =0 showing the peak value of
the energy density p as a function of distance measured in

I, =Sc7, /"1/'m. T; ln(y ') =20.

where x =
—,'1/ mTx.

There are no solutions for g when x is smaller than the
threshold value

(g2+ 2)l/2 (3.45)

This value is close to x given by (3.29). For x )x,h a
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breatherlike pair ((0, —(0) appears and grows with x.
New eigenvalues appear when

For constant initial polarization the matrix R (2.23)
takes the simple form

x,h) [5 +(2j+1) n. ]'~, j=1,2. . . .

They can be evaluated from (3.43) and (3.44) using tables
of the w function [21].

The contribution from discrete eigenvalues is an oscil-
lating function of x. This can be seen from Eq. (3.41),

T

cos6
R =W

sin6
sin6

—cos6

All components of 4 satisfy the equation

=8'4.
XX

(A2)

(A3)

4i g(g' —
g )=F0 —f—ln(1+~c~ )dk,1

J

where, according to (3.22},

(1+y )(1+ye"")1+ c~
(1+ye ")(1+ye *") (3.47)

4021 =4012, 4022=coil
—2 cot64012

Assuming 4»(0) = 1 and 4z&(0) =0 one finds

4„=—,'(1+cos8)e "+—,'(1 —cos8)e

(3.46) From the compatibility condition (2.31) one has

(A4)

(A5)

While Fo is a monotonous function of x, the "soliton"
contribution and the continuous spectrum oscillate. For
large x, in(1+~c~ ) saturates to a constant value and
"soliton" eigenvalues grow linearly in x.

IV. DISCUSSION AND CONCLUSIONS

and

42& =
—,'sin8(e "—e "),

0

(x)= @zt sinh Wx

cosh( Wx+5)

(A6)

(A7)

The results of this paper show that conservation laws
in SF can be derived essentially along the same lines as in
pulse propagation. Significant differences appear, howev-
er. The continuous spectrum plays a dominant role, the
relation of field moments to the scattering data is
different and, in general, field moments are not additive
functions of the continuous and discrete spectra.

Explicit x dependence of the field energy has been
found. It determines the characteristic threshold dis-
tance for the SF process. Contrary to the linear theory or
self-similar solutions, where x and t are interrelated, the
characteristic value of propagation length is found
without any assumptions about the time evolution of the
SF pulse.

The field energy associated with Steudel's solution [15]
grows linearly with x. This indicates that it is a good
solution in the saturation region, x )x, . On the other
hand, this solution has been evaluated using the linear-
ized scattering amplitude c, i.e., for x «x, .

The present approach also shows that a consistent
description of the amplification process by the ISM re-
quires a finite value of the inhomogeneous broadening
time T. Infinitely large T leads to singularities and de-
generacy of the transmitted energy moments M„(3.14).
Finite T seems also to be responsible for pulse narrowing
during amplification.
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APPENDIX A: EVALUATION OF 4 (x)

Matrix function @ satisfies Eq. (2.22),

Co. =Rod 0 .

where fi= —,'ln(y '), y=(1 —cos8)/(1+cos8).

APPENDIX 8: UNIQUENESS OF f (x)

%'=h%,

U'=hUh '+h, h

V'=hVh '+h h

(81)

(82)

(83)

where h =h(x, t). Choosing constant, diagonal h&,

h= —,'(h, +h2)I+ —,'(h, —h2)o3

one has

(84)

4 11=h1411, 4 21 =h2C 21 .

Under this transformation

1 h, 1 h,U'= iso +— —Eo —— E'o3 2 h2
+ 2 hl

(85)

(86)

h, h2V'=cr3N+ A.cr++ A, o.
2 1

which is equivalent to

hi , h2E'= E, E* = E
h,

and

A, .
hi

h2

The values of @ at x =0 are not determined by
boundary conditions (2.6) and (2.7). One may ask if the
conservation laws depend on the choice off(0}.

The MB equations are invariant under the general
transformation
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It fo1lows that p = V, 2%'2&/'tII» is unchanged and, as a
consequence, the form of conservation laws does not de-
pend on f(x =0).

(lna) =N+ N—+ Wsinec .

On the other hand, integrating Eq. (3.12), one gets

[lna(1 cf—)]„=N N—+ Wsinef .

(C 1)

(C2)

APPENDIX C: COMPATIBILITY
OF EQ. (2.25) WITH EQ. (3.11)

Frotn the evolution of the S-matrix elements (2.25) one
finds

From (Cl) and (C2) the compatibility condition follows:

[ln( 1 cf—) ]„=W sine( f +c ) . (C3)

This condition is exactly satisfied by the solutions (3.22)
and (3.30) for c and f, respectively.
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