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cw instability and steady-state pulses in a ring laser with intracavity parametric amplification
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A homogeneously broadened two-level ring laser with an intracavity parametric amplifier is studied.
The presence of the parametric amplifier is shown to lead to two distinct nontrivial cw solutions com-
pared to the one in its absence. The conditions for the stability of these cw solutions are obtained. It is
shown that in the context of the resonant modes one cw solution is always phase stable, whereas the oth-
er is always phase unstable. For pump parameters beyond a critical value (the second threshold), both
these cw solutions become amplitude unstable, and self-pulsing can set in. The shape and the velocity of
these pulses are evaluated numerically. It is shown that two distinct types of steady-state pulses beyond
the second laser threshold are possible due to the phase sensitivity introduced by the parametric
amplifier. This is in sharp contrast to the case without the parametric amplifier, where only Risken-
Nummedal pulses [see H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1968)] are possible. It is

shown that the parametric amplifier can lead to the narrowing or broadening of the Risken-Nummedal
pulses. Moreover, it is shown that the ring laser with or without the parametric amplifier allows for a
pulsed solution distinct from the above-mentioned one, which, however, turns out to be unstable.

PACS number(s): 42.60.Mi, 42.65.Re

I. INTRODUCTION

It is well known that in the context of a single-mode
theory the introduction of a phase-sensitive element like a
parametric amplifier (PA) or phase-conjugate mirror can
drastically affect the dynamics of a ring laser [1—3]. In
fact, so far as the regular (chaotic [4]) motion is con-
cerned, the insertion of the phase-sensitive element in the
cavity leads to the birth of additional fixed points (strange
attractors). Moreover, the character of the fixed points
or the strange attractor (in terms of realization in the
long run) depends crucially on the parameters of the
phase-sensitive element. For example, for a PA, it de-
pends on the second-order susceptibility g' ' of the PA
crystal and the strength of its pumping. It is of interest
to investigate the effects, for example, of a PA when one
deviates from the single-mode approximation. A mul-
timode analysis [5] would mean the retention of the spa-
tial dependence of the concerned variables. Risken and
Nummedal (RN) have studied the instabilities [6,7] (here-
after referred to as the RN instability) in a ring laser re-

taining all the modes of the structure. They have shown
that a stable cw solution exists below the second laser
threshold [6]. Above the second threshold the cw solu-

tion becomes unstable and the realized states of the sys-

tem are pulses (hereafter referred to as RN pulses [7])
moving with a characteristic velocity. In this paper we

address the question of how the introduction of the PA
affects the RN instability. In all our calculations we
closely follow Ref. [7]. We show that, like in the single-
mode case the presence of the PA leads to additional
fixed points (cw states) below the second second thresh-
old. In fact there are now two "second thresholds" so far
as the amplitude stability is concerned. Among the pair
of cw states, one becomes amplitude unstable beyond the
first second threshold, whereas both are unstable beyond

the second second threshold. In the regime where the cw
states are unstable one has self-pulsing with two distinct
types of pulses, one narrower and the other broader com-
pared to the RN pulses. Thus one can manipulate the
pulse width with the help of a PA. For fixed system pa-
rameters one of the above two pulsed solutions is stable.
Note that the laser equations allow for nonsteady breath-
ing solutions [8]. However, in this paper we concentrate
only on the steady-state pulses and we do not consider
breathing solutions. Another pertinent question which
we address in this paper is the following: Are the RN
pulses the only steady-state pulsed solutions allowed by
the equations and the boundary conditions? We show
that other steady-state pulsed solutions can exist. How-
ever, they are not physical since they turn out to be un-
stable in the realistic parameter space. Nevertheless, the
existence of such solutions keeps the question of other
types of stable solutions open.

The organization of the paper is as follows. In Sec. II,
we discuss the model and present the basic equations. In
Sec. III, we obtain the cw solutions and present the re-
sults pertaining to the linear stability of these solutions.
In Sec. IV, we study the simplified equations for the
steady-state pulses and numerically integrate them to ob-
tain the pulse shape and the characteristic velocity. In
the same section we comment on the stability of the
pulsed solutions. Finally, in Sec. V, we conclude the pa-
per.

II. THE MODEL AND THE BASIC EQUATIONS

Consider a ring laser with one cavity mode in reso-
nance with the atomic frequency coo. We assume the
presence of a g' ' material in the cavity. The nonlinear
crystal is pumped at twice the atomic frequency. The
nonlinear material will convert the pumping radiation at
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P+yiP =yiEo,

o+yllo rll[A'+1 )(,/2)(E *P+EP*)],

(2.1)

(2.2)

2coo into radiation at coo [1]. The dynamics of the atoms
and the field in the cavity with the PA in the rotating-
wave approximation can be described by the equations

III. cw' SOLUTIONS AND THEIR LINEAR STABILITY

In this section we obtain the cw solutions (for
8/dt =B/Bx =0) for the system of Eqs. (2.7)—(2.11), and
investigate the linear stability of these solutions. In pres-
ence of the PA, there exists a pair of cw solutions (denot-
ed by overbars) given by

c +E+vE =zP+ GE*,BE
Bx

(2.3) o. =1+q—,g
K

(3.1)

where P, o., and E are the polarization, inversion, and the
electric field, respectively; y~~, y~ are the longitudinal and
transverse decay rates; ~ is the cavity decay rate; k is the
pump parameter. Note that the insertion of the PA leads
to an additional term in the equation for the electric field
[the last term in Eq. (2.3)]. The complex parameter 6
( =ge', g and 8 are the modulus and argument of 6) in
Eq. (2.3) is proportional to y' ' of the nonlinear crystal
and the amplitude of radiation pumping the nonlinear
crystal. In Eq. (2.1)—(2.3) the overdot represents a time
derivative and all the variables E, P, and o are norrnal-
ized to the corresponding steady-state values in the ab-
sence of the PA (i.e., when 6 =0).

In a ring cavity Eqs. (2.1)—(2.3) have to be supplement-
ed by periodic boundary conditions which can be written
as follows [7]:

e = [1+(1 o—)/A]/c, r,
p =o [1+(1—o )/)l, ],

(3.2)

(3.3)

where q can take value +1. The values of the phases y
and P corresponding to the cw states are given by

0, for q= —1,
n./2, for q =+1 . (3 4)

Note that for g =0, both these solutions become identical
and one recovers the cw state e =p =cr = 1 and @=f= constant of the ring laser in the absence of the PA. In
order to investigate the linear stability of the solutions
given by Eqs. (3.1)—(3.4) we adopt the standard technique
of perturbations around these cw states [7]. The linear-
ized equations for the perturbations 5p, 5', 5e, 5y, and
5$ can be written as

E(x+L, t }=E(x,t),
P(x +L, t)=P(x, t),
o (x+L, t }=cr(x,t),

(2.4}

where L is the cavity length. We now make use of the
transform ations

5p+ y~5p =y~e5o. +y~o.5e,

5o+r „l5a =r „[ Xe5p— ~p5—e),
a5e+c (5e )+«5e =~5p qg5e- ,Bx

p54=r ieo(5q 50»—

(3.5)

(3.6)

(3.7)

(3.8)

E(x, t) = e(x, t)e' ~""+

p(x t) —p( t) i[/(x, t)+e/2]

(2.5)

(2.6)

p+r~ =rheo cos(g —g), (2.7)

with e, p, tp, and g real in Eqs. (2.1)—(2.3). The resulting
equations do not contain the argument 0 of the non-
linearity parameter 6 and can be written as

e5j&+ce (5p)= «p(5p 5$—)+qeg25—y .
Bx

(3.9)

It can be seen from Eqs. (3.5)—(3.9) that even in the pres-
ence of the PA the equations for amplitude perturbations
5p, 5o., and 5e are decoupled from those for phase pertur-
bations 5$ and 5y. As in Ref. [7], we make the ansatz
that all the perturbations vary as

o +rllcr =rll[i, +1—
A,ep cos(y —g)],

Bee+c +«e =«p cos(qr P)+eg—cos2g,
Bx

(2.8)
5p, 5o, 5e, 5$,5y-exp[i a(L /c )x+Pt ]+c.c. , (3.10)

(2.9)
where a and p are constants. For infinite medium a can
take any value from —~ to + ~, whereas for a cavity a
can take only discrete values

pg=r~ecr sin(q) —f),
ce +ey= —«p sin(y —g) eg sin2@—.BQ

Bx

(2.10)

(2.11)

It is clear from Eqs. (2.5) and (2.6) and the absence of 8 in
Eqs. (2.7)—(2.11) that the phase of the nonlinearity pa-
rameter leads only to a rotation of the complex ampli-
tudes E and P in the complex plane, and does not other-
wise affect the dynamics of the system.

Note that in absence of the PA (g =0) the set of Eqs.
(2.7)—(2.11) reduces to the set investigated by Risken and
Nummedal [7]. The introduction of the PA leads to extra
terms [see Eqs. (2.9) and (2.11}]which depend crucially
on the phase of the electric field.

Ca„=2~—n, n =0,+1,. . . .
L (3.1 1)

P +a&P +a2P+a3=0,

p +b,p+b2=0,
where

(3.12)

(3.13)

The use of the ansatz (3.10) in Eqs. (3.5)—(3.9) leads to a
set of homogeneous linear algebraic equations with
respect to the moduli of the perturbations 5p, 5o., 5e, 5y,
and 5$. The condition of nontriviality of the solution of
this set yields the following characteristic equations for
the stability of the amplitudes and phases, respectively:
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and

a, ——in+1+ y~~+K+qg

a, =y„(a+qg+ I)+ia(1+y„)+Ay„e

yii( +~e )+ ~@~ac ( +qg/

(3.14)

b&=ice+K+1 —qg,
b2=ia —2qg .

(3.15)

In Eqs. (3.12)—(3.15) the tilde denotes normalization with
respect to the transverse decay rate yt (for example,
y~~=y~~/y, ). We now look for the roots of p for real a
corresponding to the Eqs. (3.12) and (3.13). Instability of
the amplitudes (phases) is heralded by the existence of a
positive real part of the root of Eq. (3.12) [Eq. (3.13)j.
The condition for amplitude instability can be written as

The analytical results cited above were corroborated by
direct numerical solution of the Eqs. (3.12) and (3.13).
Calculations were carried out for y~~=0. 5 and for two
different values of the normalized cavity damping param-
eter k, namely, k=0. 1 and 3. The value of the pump pa-
rameter k was chosen to be 15. For R=O 1(.lr=3 0) .g/R
was chosen to be 0.5 (0.09). Note that for @~~=0.5,
K=0. 1, and g /k=0. 5, A,„=4.98 and A,„+= 16.955.
Thus this choice of parameters for X= 15, correspond to
the case when only q = —1 solution can be amplitude un-
stable. The other choice (i.e., a =3.0, A, = 15, and
g/a=0. 09) corresponds to the case when both the cw
solutions can show amplitude instability. The results are

7.0—

A, ) A,„=q—+ 1+q—
K K

X I:4+3y~~+2(4+6y1+2y~~)'"] (3.16)

3.5—
A

Note that A,„now has two values since q can take values
+1 corresponding to the pair of cw solutions. Let us
denote the value of A,„by A,„(k„+)for q = —1 (+1). It
is clear from Eq. (3.16) that I,„&A,„+. Thus for

, both the cw solutions are amplitude stable. For
&X(k„+ the solution corresponding to q=+1 is

the only (amplitude) stable solution. For A, )A,„+ both
the solutions become unstable. Hence the solution corre-
sponding to q = —1 is more prone to cw instability (so far
as the amplitudes are concerned). Thus, the ring laser
with the PA allows for a double second threshold X,„+ so
far as the amplitudes are concerned, below the least of
which the system may support two distinct cw states.
The finally realized state will depend on the phase stabili-
ty of these solutions and the initial conditions.

We now turn to phase instability. In absence of the
PA, the phases are known to be marginally stable. The
situation here is altogether different since the two solu-
tions behave differently in the context of phase instability.
Since Eq. (3.13) is a quadratic, it can be directly solved
for the values of p. However, we only look for the
boundary of the stable and unstable regions in the param-
eter space, i.e., we look for real solutions for Im(/3) set-
ting Re(p) =0. This leads to the equation

0.0—

—3.5—

—7.0
1 Q2

7.0—

3.5—

l~
00—

P

P

I-0.8

A

(b)

I—0.4 0.0

(ImP)'= 2

K qg
(3.17)

—3.5— A

It is clear from Eq. (3.17) that for q= —1, real solutions
for ImP are not possible and hence the cw solution corre-
sponding to q = —1 are always phase stable. The q =+ 1

solutions which are less prone to amplitude instability
can suffer phase instability. Note that generally g (K,
and for q = + 1 the modes close to the resonant one are
always phase unstable. The solutions for Im(P) corre-
sponding to the boundary of the stable domain can be ob-
tained from Eq. (3.17) by setting q = + 1. The range of
values of n corresponding to the unstable domain can
also be calculated. However, we do not present those re-
sults here.

—7.0—1.2
I—0.8 0.0

FIG. l. Im(P) as a function of Re(P) with the parameter a
varying from —~ to + ~. The solid curves are for (a) q = —1,
g/@=0. 5 and (b) q =+1,g/@=0. 5. The dashed curves are for

g =0 which corresponds to the case when the PA is absent.
Other parameters are A, =15, y~~=0. 5, k=0. 1. Curves marked

by A (P) correspond to the amplitudes (phases).
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shown in Figs. 1 and 2, where we have plotted Im(P) as a
function of Re(P) as a is scanned from —~ to + ~. We
have reproduced the results of Ref. [7] on all these curves
for the sake of comparison. Figures l(a) and 2(a) [1(b)
and 2(b}] show the dependence for q

= —1 (q = + 1 }. On
these figures curves marked A (P) are for amplitudes
(phases). It can be seen from Fig. 1(a) that the q = —1

solution shows enhanced amplitude instability. The
phase of these solutions which was marginally stable in
absence of the PA now become stable for all values of a.
Moreover, the domain of instability shifts away from the
central resonant mode. The other solution for q=+1
shows a different tendency [see Fig. 1(b)]. q =+1 solu-
tions for the said parameter values do not exhibit ampli-
tude instability. But the phases of these solutions can be-
come unstable for a close to zero. Thus the on-resonant

modes for q =+1 always show phase instability. A com-
parison of Figs. 1(a) and 1(b) reveals that the mechanism
of instability in the two solutions q = —1 and q = + 1 are
of different nature. q= —1 solutions can become unsta-
ble due to the instability of the off-resonant modes,
whereas for q =+1 the instability is basically due to the
phase fluctuations of the modes close to the resonant one.
Though over and above phase instability q =+1 solu-
tions can show amplitude instability of the off-resonant
modes for sufBciently large pumping. Similar features are
observed for the other set of parameters [see Figs. 2(a)
and 2(b)]. In contrast to Fig. 1(b) we now have the ampli-
tude instability of the off-resonant modes for q =+ 1 [Fig.
2(b)]. However, compared to the case when the PA is ab-
sent, the domains of instability move closer to the reso-
nant mode.

10.0—

5.0—

-5.0—

-10.0-5.0 I-4.0 I-3.0

(a)

I-2.0

A

A

p|

I-1.0 0.0

IV. STEADY-STATE PULSKS IN THE PRESENCE
OF THE PARAMETRIC AMPLIFIER

g=(t —x/v)/(L/v) (4.1)

the equations for the steady-state pulses can be written as
follows:

In this section we concentrate on the parameter range
in which the cw solutions discussed earlier become unsta-
ble. Evidently the temporal growth of the amplitudes
and the phases in the framework of a linear theory
renders them to be large enough leading to a breakdown
of the linearization approximation and an exact analysis
is called for. In our analysis we follow Ref. [7] and study
the truncated system for only the amplitudes. The
justification for this simplified approach in the context of
the present problem will be given later on the basis of nu-
merical integration of the full set of Eqs. (2.7)—(2.11). We
look for steady-state pulses of Eqs. (2.7)—(2.9) moving
with a velocity U. Introducing the dimensionless coordi-
nate g as

10.0-

5.0-

dp =(2n./a')(eo —p ),
do

=(2my /a')(1, +1—A,ep —o )

de =(2n. /Za')[p —[I+q(g/k)]e] .

(4.2)

(4.3)

(4.4)

0.0—

In Eqs. (4.2)—(4.4),

a'=2~(v /L )/yi, (4.5)

-5.0—

and the parameter e defined as

Z=(1 —c/v )/R (4.6)

I—4.0 0.0

I

—1 0.0—5.0 -3.0 -2.0 -1.0
Re(H)

FICx. 2. Same as in Fig. 1 except that now @=3.0 and the
solid curves are for g/R =0.09.

determines the velocity of the pulses in an implicit form.
In Eqs. (4.2)—(4.4) we have assumed that the phases p
and g of the electric field and polarization corresponding
to the steady-state pulses are stable and for q= —1

(q =+1) they are given by y=1tj=O (y=p=vr/2) It.
will be shown later by numerical integration of the set of
Eqs. (2.7)—(2.11) [9] that the phases corresponding to the
stable q = —1 (q = + 1) pulses indeed go to zero (m. /2) in
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the ion g-time limit. The se

p((+1)=p(g),
a(/+1) =o (g),
e(/+1) =e(g) .

(4.7)
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0.1 2—

0.1 0—

g Gj)
0.08—

0.06—

sponding to q= —1 in Fig. 3. Note that since 8 is
different for the q = —1 pulse one has a different value of
a (a=2.7361). The integration led us to a steady pulse
with phase m /2 for the final state (not shown). In other
words, one ends up with steady-state q = + 1 pulse corre-
sponding to this new o.. We now turn to the stability of
the pulses shown in Fig. 4. In this case, q= —1 pulse
turns out to be the stable one with both the phases
asymptotically reaching the value zero. These results are
shown in Fig. 8.

In order to see whether the above-mentioned pulsed
solutions are the only steady-state solutions of the sys-
tem, we look for other solutions of Eqs. (4.2) —(4.4) sub-

0.04
2.2 2.4 2.6 2.8 3.0 3.2 3.4

2.0—

1.5—

(a)

FIG. 5. Parameter 8 as a function of a'. Curve a is for the
RN pulse (g =0), whereas curve b (c) is for q = —1 (q =+1)
and g/k=0. 04. Other parameters are A. = 15, y~~

=0.5.

1.0—

0.5—
U

resonant modes are characterized by smaller amplitudes,
and these pulses are more "symmetric" with respect to
the peak or crest.

We now present some preliminary results on the stabil-
ity of the pulses shown in Figs. 3 and 4. All our results
and comments are based on the analysis of the full set of
Eqs. (2.7) —(2.11) with the boundary conditions given by
Eq. (2.4). We have noticed that the stability of the pulses
depends on the normalized cavity damping parameter k.
However, the domain of stability in the (a,K) plane for
the q

= + 1 pulses does not overlap with the same for the
q= —1 pulses. Thus for fixed system parameters only
one of these two pulses can be stable. Thus a bistable
operation between the two pulsed states in a ring laser
with the PA seems to be impossible. We have found that
for a'=3. 0 and i'd=1. 3 [which for q =+1, corresponds
to e=0.08632, and a=(2irc/L )/pi=2. 663] only the

q
= + 1 pulse is the stable one. We integrated the set of

Eqs. (2.7)—(2.11) with initial conditions e =e, + i, p =p„
o. =o.„where e„p„and o. , are the final steady-state
pulse values corresponding to q =+1 in Fig. 3. The re-
sults are shown in Fig. 7. In Fig. 7(a) we have shown the
temporal evolution of the maximum (e „)and minimum

(e;„) amplitudes of the electric field, whereas, in Fig.
7(b) the extremal values of y and g are plotted. It is clear
from Fig. 7(a) that in the long-time limit the extremal
amplitudes reach their steady-state values defined by the
stable q =+1 pulse. As was mentioned earlier, both the
phases reach vr/2 in the same limit thereby implying that
the phases are stable [see Fig. 7(b)]. In order to check the
stability of the q= —1 pulse corresponding to the same
sei of parmeters u', k, and k we integrated Eqs.
(2.7)—(2.11) with an initial guess given by the pulse corre-

0.0—

—0.5—

-1.0
2 3

mode no.

0.2— (b)

0.1

0.0 Cl

—0.1—

—0.2
2 3

mode no.

FIG. 6. Mode contents of the steady-state electric field given

in Fig. 4(a): (a) cosine component a„and (b) sine component b„.
The asterisks correspond to the RN pulse whereas the triangles

(squares) refer to q
= —1 (q =+1)and g/@=0. 04.
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ject to the boundary conditions given in Eq. (4.7). In oth-
er words, we address the question of uniqueness of the
nonlinear boundary value problem with unknown param-
eter F. To answer this question we tried various initial
guesses for e(0), o(0), and Z. We ended up with a solu-
tion which is quite distinct from the ones discussed
above. These results are shown in Fig. 9. We have repro-

2.5—

duced the RN pulse in Fig. 9(d) for cornparision. These
solutions with or without the PA are characterized by
larger velocities and smaller amplitudes. We investigated
the stability of these pulses. They turn out to be unstable.
However, the existence of these steady-state solutions
suggests that the solution of the problems posed above is
not unique. There may be other steady-state solutions
which might turn out to be stable. Moreover, one may
search for mechanisms that render the solutions of Fig. 9
stable. This may eventually lead to a bistable operation
between pulsed states.
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FIG. 7. Temporal evolution of (a) maximum and minimum
electric fields e,„,e;„and (b) maximum and minimum phases
of the electric field P,„,P;„(solid lines) and polarization

{dashed lines) as solutions of the set of Eqs.
(2.7)-(2.11). The initial values were chosen as e =e, +i, p =p„
o =o„where e„p„o., correspond to the curves with smaller
dashes in Fig. 3. The value of k was chosen to be 1.3. N along
the horizontal axis gives the number of round trips in time t,
i.e., N=t/(L/v).
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FIG. 8. Same as in Fig. 7 except that now e„p„o., corre-
spond to the curves with larger dashes in Fig. 4.
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V. CONCLUSIONS
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ble for specific system parameters. A detailed analysis of
the stability of these pulses is underway and is planned to
be published elsewhere. Finally we showed that the
Risken-Nummedal pulses are not the only pulsed solu-
tions of the steady-state equations and there may be other
kinds of solutions. We found one such solution, which,
however, turns out to be unstable.
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